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Abstract

Continuous and explosive growth of the Internet has
shown that current TCP mechanisms cannot achieve ef-
ficient utilization of networks with large bandwidth-delay
products. To address this problem, we propose an enhanced
transport-layer protocol called gHSTCP, which is based on
HighSpeed TCP proposed by S. Floyd. By monitoring the
changing trend of RTT, gHSTCP adapts to the traffic load
by switching between two control modes, which is shown to
provide significant performance improvement against tradi-
tional TCP Reno in terms of throughput and fairness. Fur-
thermore, it is observed that the performance of gHSTCP is
limited by both TailDrop and RED/ARED routers, thus we
develop a modified adaptive RED called gARED to address
the problem of simultaneous packet drops among multiple
flows. By adapting to the trend in variation of the average
queue length, gARED performs active queue management
more effectively than ARED. Simulations show that combin-
ing gHSTCP together with gARED leads to effect utilization
of network bandwidth and good fairness.

1. Introduction

Hosts (server machines) providing services that en-
compass data grids and storage area networks (SANs)
have gigabit-level network interfaces such as gigabit eth-
ernet. These hosts connect directly to high-speed networks
for terabyte/petabyte-sized data exchange to move pro-
gram data, perform backups, synchronize databases and so
on. Although they require large amounts of network band-
width and disk storage, such services will grow in the
future Internet due to application demands as well as tech-
nological advances. However, the most popular version
of TCP used on the current Internet, TCP Reno [1], can-
not achieve sufficient throughput for this kind of high-speed
data transmission because of the essential nature of the
TCP congestion control mechanism.

According to [2], in order for a TCP Reno connection,
with a packet size of 1,500 bytes and RTT (Round Trip
Time) of 100 ms, to fill a 10 Gbps link, a congestion win-
dow of 83,333 packets is required. This means a packet loss
rate of less than 2×10−10, well below what is possible with
present optical fiber and router technology. Furthermore,

when packets are lost in the network, 40,000 RTTs (about
4,000 sec) are needed to recover throughput. As a result,
standard TCP cannot possibly obtain such a large through-
put, primarily because TCP Reno drastically decreases its
congestion window size when packet loss is taking place,
and, even when experiencing no packet loss, increases it
only very slightly.

Focused on the above problem, HighSpeed TCP
(HSTCP) [2] was proposed to achieve high through-
put in networks with large bandwidth-delay products.
The basic idea is to employ a different window size con-
trol mechanism in the congestion avoidance phase of the
TCP mechanism [3]. Compared to TCP Reno, HSTCP in-
creases the windows more quickly and decease it more
slowly, which leads to a windows size large enough to fully
utilize the link bandwidth.

Although intuitively HSTCP appears to provide greater
throughput than TCP Reno, HSTCP performance character-
istics have not been fully investigated, such as the fairness
issue when HSTCP and TCP Reno connections share the
same link. Fairness issues are very important to TCP and
have been actively investigated in past literatures [4–9]. Al-
most all of these studies have focused on the fairness among
connections for a certain TCP version used in different en-
vironments and consider such factors as RTT, packet drop-
ping probability, the number of active connections and the
size of transmitted documents. Fairness among traditional
and new TCP mechanisms, such as HSTCP, is a quite im-
portant issue when we consider the migration paths of new
TCP variants. It is very likely that HSTCP connections be-
tween server hosts, and the traditional TCP Reno connec-
tions for Web access and e-mail transmissions, will share
high-speed backbone links. It is therefore important to in-
vestigate the fairness characteristics between HSTCP and
TCP Reno. It has also been mentioned in [2] that the rel-
ative fairness between standard TCP and HSTCP worsens
as link bandwidth increases. When HSTCP and TCP Reno
compete for a bandwidth on a bottleneck link, we do not
attempt to provide the same throughput that they are ca-
pable of achieving. But in this case, high throughput by
HSTCP should not occur at great sacrifice by TCP Reno,
i.e., HSTCP should not pillage too many resources at the
expense of TCP Reno.

To our knowledge, there has been limited research on
this issue [10–12]. In [10, 11], only simulations or results
from experimental implementations are assessed. In [12],



the author addresses “a serious RTT unfairness problem.”
In this paper we evaluate throughput and fairness properties
when HSTCP and TCP Reno connections share a network
bandwidth. From the results we observe that HSTCP can
achieve high throughput, but it is accompanied by a large
degradation in TCP Reno throughput. To resolve this prob-
lem, we propose a modification to HSTCP called “gentle
HighSpeed TCP” (gHSTCP) that implements two modes,
HSTCP mode and Reno mode, in the congestion avoidance
phase to improve fairness yet allow both gHSTCP and tra-
ditional TCP to achieve satisfactory performance. In par-
ticular, when TailDrop is chosen as the queue management
mechanism, gHSTCP can achieve both higher throughput
and better fairness than the original HSTCP.

Furthermore, the performance improvement is limited
due to the nature of TailDrop router, which causes bursty
packet losses and large queueing delay. Congestion con-
trol to alleviate these problems can be accomplished by
end-to-end congestion avoidance together with an active
queue management (AQM) mechanism. Traditional Tail-
Drop queue management could not effectively prevent the
occurrence of serious congestion. Furthermore, global syn-
chronization [13] could occur during the period of conges-
tion, i.e., a large number of TCP connections could expe-
rience packet drops and reduce their transfer rates at the
same time, resulting in under-utilization of the network
bandwidth and large oscillations in queueing delay. Par-
ticularly in high-speed long-delay networks, where routers
may have large buffers, TailDrop can cause long queueing
delays. To address these problems, Random Early Detec-
tion (RED) [14] has been recommended for wide deploy-
ment in the Internet as an active queue management mech-
anism [15]. However, control parameter settings in RED
have proven highly sensitive to the network scenario, and
misconfiguring RED can degrade performance significantly
[16–20]. Adaptive RED (ARED) was therefore proposed as
a solution to these subsequent problems [21]. ARED can
adaptively change the maximum drop probability in accor-
dance with network congestion levels. However, in high-
speed and less multiplexed networks, our results indicate
some remaining problems with ARED, such as synchro-
nized packet drops and instability in queue length, leading
us to develop a more robust ARED mechanism. This im-
proved Adaptive RED, which we call gARED, monitors av-
erage queue length and trends in the variation in order to dy-
namically adapt the maximum packet drop probability.

The remainder of this paper is organized as follows. In
Section 2 we give a brief overview of HSTCP and review
some related works on TCP variants for high speed net-
works. In Section 3, we investigate, through simulations, the
throughput and fairness properties of HSTCP when sharing
bandwidth with TCP Reno on a bottleneck link. We then
propose a modification to HSTCP. In Section 4, we analyze
and evaluate ARED, show its weaknesses, propose an im-
proved version of ARED and then presents the performance
evaluation. Finally, Section 5 presents our conclusions for
this study.
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Figure 1. AIMD Parameters in HSTCP

2. Background

2.1. HSTCP (HighSpeed TCP)

To overcome problems with TCP mentioned in Sec-
tion 1, HSTCP was proposed in [2]. The HSTCP algorithm
employs the principle of Additive Increase Multiplicative
Decrease (AIMD) as in standard TCP, but is more aggres-
sive in its increases and more conservative in its decreases.
HSTCP addresses this by altering the AIMD algorithm for
the congestion window adjustment, making it a function of
the congestion window size rather than a constant as in stan-
dard TCP.

In response to a single acknowledgment, HSTCP in-
creases the number of segments in its congestion window
w as:

w←w +
a(w)
w

In response to a congestion event, HSTCP decreases the
number of segments in its congestion window as:

w←(1− b(w))×w

Here, a(w) and b(w) are given by:

a(w) =
2w2·b(w)·p(w)

2− b(w)
(1)

b(w) = (bhigh − 0.5)
log(w)− log(Wlow)

log(Whigh)− log(Wlow)
+ 0.5

(2)

p(w) =
0.078
w1.2

(3)

where bhigh, Whigh and Wlow are parameters of HSTCP.
According to Equations (1) and (2) and a typical parame-

ter set as used in [2] (bhigh, Whigh and Wlow are 0.1, 83,000
and 38, respectively), Figure 1 shows how a(w) and b(w)
vary with the congestion window. We can see that the “in-
crease” parameter a(w) becomes larger, and the “decrease”
parameter b(w) becomes smaller, as the congestion widow
size increases. In this manner, HSTCP can sustain a large
congestion window and fully utilize the high-speed long-
delay network.
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Figure 2. Response Function of TCP Reno
and HSTCP

The HSTCP response function1 (3) is illustrated in Fig-
ure 2. We can observe from this figure that HSTCP relaxes
the constraint between drop probability and the congestion
window. For example, when p = 10−7 is in steady-state,
HSTCP can send at the rate of 100,000 pkts/RTT while the
sending rate of TCP Reno is around only 4,000 pkts/RTT.
Consequently, HSTCP can achieve a large congestion win-
dow even with a high loss rate.

2.2. Related Work

There are other solutions for overcoming the limitations
of standard TCP in high-speed networks.

• Scalable TCP [22]. This is a simple change to the
traditional TCP congestion control algorithm. On de-
tection of congestion, it reduces the congestion win-
dow in segments by 0.125× cwnd. For each acknowl-
edgment received when congestion has not been de-
tected, it increases the congestion window in segments
to cwnd + 0.01. This increase is exponential instead
of linear. Scalable TCP probing times are proportional
only to the RTT to make the scheme scalable to high-
speed IP networks. However, Scalable TCP exhibits
unfairness to TCP Reno greater than that of HSTCP
[2].

• FAST TCP [23]. This protocol is based on TCP-Vegas,
which it modifies to provide a stable protocol for high-
speed networks. In addition to packet loss, it uses
queuing delay as the main measure of congestion. Al-
though experimental results show Vegas can achieve
better throughput and fewer losses than standard TCP
Reno, there are few theoretical explanations for it. Any
problems with TCP-Vegas exist possibly within FAST
TCP, since its congestion control mechanism is based
on that of TCP Vegas [24].

• XCP [25]. This is a router-assisted protocol. XCP-
enabled routers inform senders concerning the degree
of congestion at a bottleneck. XCP introduces a new

1 The TCP response function maps the steady-state packet drop rate to
the TCP average sending rate in packets per RTT.

concept in which utilization control is decoupled from
fairness control. It produces excellent fairness and re-
sponsiveness as well as a high degree of utilization.
However, it requires the deployment of XCP routers,
therefore it cannot be deployed incrementally.

Compared with the above proposals, HSTCP has less
complexity and uses the AIMD algorithm similarly to TCP
Reno. It does not require additional feedback from routers
and TCP receivers and is therefore easy to deploy gradu-
ally in current networks. In this paper we propose gHSTCP.
Based on HSTCP, gHSTCP can achieve better fairness
with competing traditional TCP flows while extending the
HSTCP strongpoint of achieving high throughput.

3. gHSTCP: Gentle HighSpeed TCP

In this section we present simulation results to show
problems with HSTCP and propose a simple yet effective
modification, which we call gHSTCP. We take advantage
of the original HSTCP in terms of its AIMD algorithm for
aggressive increase and conservative decrease of the con-
gestion window. To gain better fairness with TCP Reno,
we modify the strategy for increasing the congestion win-
dow. We then illustrate how gHSTCP outperforms HSTCP
through simulations.

3.1. Simulation with HSTCP

We first present the results of simulation experiments to
clarify HSTCP problems with throughput and fairness. ns-2
network simulator [26] is used for the simulations. The net-
work topology is shown in Figure 3, where S1/S2 represents
sender groups consisting of sender hosts, and D1/D2 repre-
sents sink groups consisting of destination hosts. R1 and R2

are routers with a buffer size of 10,000 packets. The packet
size is 1,500 bytes. The bandwidth of the bottleneck link
is set to 2.5 Gbps, and the propagation delay of the bottle-
neck link is set to 25, 50 and 100 ms, respectively. UDP
traffic is used as background traffic, its maximum rate is
about 125 Mbps. There are 10 connections between senders
and sinks. S1 contains five connections with an access link
bandwidth of 100 Mbps. S2 contains five connections with
an access link bandwidth of 1 Gbps. For HSTCP connec-
tions, we show the simulation results with and without the
Selective ACKnowledgement (SACK) option. We denote
HSTCP+SACK and HSTCP, respectively. TailDrop is used
as the queue management mechanism in this section. We
use a greedy FTP source for data transmission.

Two metrics are used: aggregate throughput and fairness
(Jain’s fairness index). Jain’s fairness index is defined as:

FairnessIndex =
(
∑n

i=1 xi)2

n
∑n

i=1 x2
i

Here, n is the total connection number and xi is the normal-
ized throughput for flow i defined as xi = Mi/Ci, where
Mi is the measured throughput and Ci is the fair through-
put found by max-min optimality. The fairness index always
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Figure 3. Simulation Topology

lies between 0 and 1. A value of 1 indicates that all connec-
tions are receiving the fairest allocation of bandwidth.

Three simulation sets are conducted:

• Case 1: TCP Reno is used for S1 and S2.

• Case 2: TCP Reno is used for S1 and HSTCP is used
for S2.

• Case 3: TCP Reno is used for S1 and HSTCP+SACK
is used for S2.

Table 1 shows results of the three cases. In Case 1, TCP
Reno flows having high-bandwidth access links compete
with similar flows having lower bandwidth access links. We
can see that S1 group fully utilizes its access link bandwidth,
and S2 group, although it achieves higher throughput, does
not utilize the entire available bandwidth. This confirms that
TCP Reno cannot fully utilize the high link bandwidth, as
mentioned in Section 1.

In Case 2, HSTCP is used in S2 group instead of TCP
Reno. S2 group obtains a slight benefit from HSTCP, but the
performance of S1 group is severely damaged and a degra-
dation in total throughput occurs. This is because the con-
gestion window is inflated in S2 group, resulting in more
frequent buffer overflows and increasing packet loss in all
of the flows. As we know, TCP Reno lacks a mechanism for
recovering from a multiple packet loss event without incur-
ring a timeout. Lost packets cause retransmission timeouts
(this is a fundamental mechanism of TCP Reno [27]), and
timeouts place the connection in the slow-start phase, re-
sulting in serious throughput degradation. Note that HSTCP
uses the same algorithm as TCP Reno for packet retrans-
mission. This is the reason why HSTCP connections in
Case 2 cannot obtain high throughput compared with the
TCP Reno connections in Case 1.

In Case 3, the TCP SACK option is applied with HSTCP
for group S2.2 The TCP SACK mechanism [29], combined
with a selective retransmission policy, can help overcome
limitations in recovering from many packet losses. Table 1
shows that S2 group achieves very high throughput while
that of TCP Reno is severely degraded. Although there are
still multiple packet drops, S2 group, using the SACK op-
tion, infers the dropped packets and retransmits only the
missed ones. This function is not available to S1 group, and

2 In this paper, we don’t apply SACK option to group S1 though it is
pointed that half of TCP connections are using TCP/Sack [28]. Group
S1 represents the ordinary users in simulations, they maybe not ex-
plicitly enable SACK option on their systems.

that group therefore receives less link bandwidth compared
to Case 2.

It is clear in Case 1 that as propagation delay increases S2

group does not affect S1 group. This is because both groups
employ the same mechanism and group S2 cannot fully uti-
lize the leftover bandwidth of group S1. But in Case 2 and
Case 3, the larger the propagation, the smaller the through-
put that can be achieved by group S1 due to the use of dif-
ferent algorithms by the two groups.

3.2. gHSTCP Description

The original HSTCP increases the congestion window
size based solely on the current congestion window size.
This may lead to bursty packet losses, because the window
size continues to be rapidly increased even when packets
begin queued at the router buffer. In addition, differences
in speed gains among the different TCP variants result in
unfairness. To alleviate this problem, we consider chang-
ing the behavior of HSTCP for speed increases to account
for full or partial utilization of bottleneck links. We regu-
late the congestion avoidance phase in two modes, HSTCP
mode and Reno mode, and switch between modes based on
the trend of changing RTT.

Denote the departure time and RTT value of a transmit-
ted packet i as di and ti, respectively, the correlation be-
tween di and ti is tested statistically. From pairs (di,ti) to
calculate the correlation coefficient r:

r =
∑N

i=1 (di − d̄)(ti − t̄)√∑N
i=1 (di − d̄)2(ti − t̄)2

where N is the size of CWND in packet, d̄, t̄ are the mean
values of di and ti. If di and ti tend to increase together, r
is positive. If, on the other hand, one tends to increase as the
other tends to decrease, r is negative. The value of correla-
tion coefficient lies between -1 and +1.

Because the pairs (di,ti) are N independent observa-
tions, r can be used to estimate the population correlation
ρ. To make inference about ρ using r, usually N is a large
number, we require the sampling distribution of r by calcu-
lating the statistic Z:

Z =
1
2

ln
(

1 + r

1− r

)√
N − 3

If Z is larger than a certain value (3.09 in the following
simulation results), there is very strong evidence of statis-
tical significance, i.e. (di, ti) is positive correlation, other-
wise it is non-positive correlation.

If a positive correlation is recognized, that is, an increas-
ing trend in the observed RTT values is present, then bot-
tleneck congestion is occurring for a sender. If more and
more packets are buffered in the router queue, then the
bottleneck is fully used. The sender should therefore slow
down its increasing speed of the sending rate to keep the
fairness against TCP Reno connections. The process dur-
ing this period is referred to as Reno mode, in which the
sender increases its congestion window linearly as with



Case S1 S2 Router Delay Throughput of S1 Throughput of S2 Fairness
group group Mechanism (ms) (Mbps) (Mbps)

1 Reno Reno TailDrop 25 493.83 1565.58 0.99
50 493.38 1251.27 0.95
100 500.00 1315.89 0.95

2 Reno HSTCP TailDrop 25 168.22 1630.03 0.85
50 112.40 1533.62 0.76
100 129.23 1439.23 0.78

3 Reno HSTCP with TailDrop 25 45.42 2396.71 0.57
SACK option 50 42.55 2396.17 0.57

100 36.95 2353.52 0.55

Table 1. Aggregate Throughput and Fairness Comparison with Reno/HSTCP+TailDrop

standard TCP. This will maintain fairness among TCP Reno
and gHSTCP connections. On the other hand, if there is a
non-positive correlation between di and ti, it means the net-
work is in an under-utilized state and the sender should in-
crease the congestion window rapidly to utilize the unused
bandwidth. The process during this period is called HSTCP
mode. The sender increases the window size in the same
way as HSTCP, and adaptively changes mode as needed.
The algorithm is summarized as follows.

When a new acknowledgment is received, gHSTCP in-
creases its congestion window in segments as:

w←w +
a(w)
w

where a(w) is given by:

a(w) =

⎧⎨
⎩

2w2·b(w)·p(w)
2− b(w)

HSTCP mode

1 Reno mode

Once a retransmission timeout occurs, or duplicated ac-
knowledgments are received, the sender decreases the con-
gestion window in the same way as original HSTCP. When
a timeout occurs, the congestion window size is reset to
one packet and the phase is changed to slow-start. When
a packet loss event is detected and retransmitted by fast re-
transmit algorithm then sets its congestion window size to
(1− b(w))×w, b(w) is given by Equation 2 for two modes.
If the sender host is in HSTCP mode, it remains in HSTCP
mode. If a retransmission happens during Reno mode, the
sender switches to HSTCP mode.

3.3. gHSTCP Evaluation with Simulations

In this subsection we compare the performance of
HSTCP and gHSTCP based on simulations in the model of
Figure 3. Using TailDrop as the queue management mech-
anism, the following simulations are performed:

• Case 4: TCP Reno is used for S1 and gHSTCP is used
for S2.

• Case 5: TCP Reno is used for S1 and gHSTCP+SACK
is used for S2.

From the results (Table 2), where TCP Reno is used with
gHSTCP (Case 4), we can see that throughput is signifi-
cantly improved for both S1 and S2 groups. Fairness also
improves compared with the HSTCP case (Case 2). Al-
though total throughput for the high-speed flows of Cases 3
and 5 is the same when the SACK option is used, through-
put is greatly improved for the TCP Reno connections in
Case 5. Is is because gHSTCP can adaptively change its
increase mode according to the network congestion level
and avoid the “starving” condition that occurs in traditional
TCP, better fairness among the different flow types is ob-
tained.

Table 1 and Table 2 also illustrate degraded fair-
ness among HSTCP/gHSTCP and TCP Reno flows as
the bottleneck link delay becomes larger. In this situ-
ation, HSTCP/gHSTCP connections are able to obtain
larger throughput while the TCP Reno connections suf-
fer degraded throughput. This is caused by the different
algorithms used for increasing/decreasing the conges-
tion window size. TCP Reno resizes its congestion win-
dow in the same way regardless of the current window
size. HSTCP/gHSTCP increases its congestion win-
dow more rapidly when the window size is larger and
decreases it more slowly. Consequently, when the prop-
agation delay of the bottleneck becomes large, that is,
when the bandwidth-delay product of the bottleneck
link becomes large, HSTCP/gHSTCP connections in-
crease the size of their congestion windows quickly. This
shows the disadvantage of TCP Reno in a long-delay net-
work as discussed in Section 1. When TCP Reno is used for
high-speed flows, fairness is better than that if SACK op-
tion is used but too much link bandwidth goes unused.

To improve network performance in terms of link uti-
lization and system fairness, it has been proposed that Ac-
tive Queue Management (AQM) such as RED be deployed
in the Internet [15]. In contrast to TailDrop, which drops
incoming packets only when the buffer is fully utilized,
the RED algorithm drops arriving packets probabilistically,
with the probability calculated based on queue length of
the router buffer [14]. Here, we replace TailDrop with RED
and investigate the performance of HSTCP and gHSTCP.
Topology and other conditions are the same as for the pre-
vious simulation experiments. The queue length minimum



Case S1 S2 Router Delay Throughput of S1 Throughput of S2 Fairness
group group Mechanism (ms) (Mbps) (Mbps)

4 Reno gHSTCP TailDrop 25 392.79 1810.27 0.99
50 269.47 1768.84 0.93
100 147.11 1580.86 0.80

5 Reno gHSTCP with TailDrop 25 266.38 2168.85 0.89
SACK option 50 189.09 2241.03 0.80

100 79.24 2324.06 0.63

Table 2. Aggregate Throughput and Fairness Comparison with gHSTCP+TailDrop

threshold, minth, is set to 2,500 packets. The other RED
parameters are set to their default values in ns-2 (maxth =
3 ∗ minth, wq = 0.002 and maxp = 0.1). The follow-
ing simulation experiments are performed:

• Case 6: TCP Reno is used for S1 and HSTCP is used
for S2 with RED deployed.

• Case 7: TCP Reno is used for S1 and HSTCP+SACK
is used for S2 with RED deployed.

• Case 8: TCP Reno is used for S1 and gHSTCP is used
for S2 with RED deployed.

• Case 9: TCP Reno is used for S1 and gHSTCP+SACK
is used for S2 with RED deployed.

From the results,3 we find that fairness is improved, but
link under-utilization is still present and total throughput is
less than that using TailDrop in some cases. In this high-
speed environment, every high-speed flow has a very large
congestion window. Once a packet loss event occurs, mul-
tiple packets are dropped (although the packet drop proba-
bility is quite small). This results in timeouts if the SACK
option is not used for high-speed flow. Although RED is
deployed at the routers, global synchronization also oc-
curs because of the multiple packet losses. This phenom-
ena is present to a smaller extent when gHSTCP is used
but can still happen. If the SACK option is used for the
HSTCP/gHSTCP flows, a simultaneous decrease in the con-
gestion windows of multiple flows can still occur, but the
congestion windows will not be reset to 1 packet.

It is well-known that system performance is quite sen-
sitive to the RED parameters [16–20]. The following sim-
ulation experiments illustrate this problem, with correctly
tuned RED parameter maxp set initially to 0.001:

• Case 10: TCP Reno is used for S1 and HSTCP is used
for S2 with RED (maxp = 0.001).

• Case 11: TCP Reno is used for S1 and HSTCP+SACK
is used for S2 with RED (maxp = 0.001).

• Case 12: TCP Reno is used for S1 and gHSTCP is used
for S2 with RED (maxp = 0.001).

• Case 13: TCP Reno is used for S1 and
gHSTCP+SACK is used for S2 with RED
(maxp = 0.001).

3 Due to limited space, the results are not presented here.

The results of these simulations show that the system can
achieve both high throughput and better fairness in this sit-
uation. However, there is no complete parameter set of the
RED mechanism to successfully cope with the various net-
work conditions, since the RED parameters are very sensi-
tive to the network factors.

In the next section, an additional mechanism will be in-
troduced to address this problem.

4. gARED: Gentle Adaptive RED

The results in Section 3 are primarily the effects of the
TailDrop and RED mechanisms at the bottleneck routers.
We observed that maxp is an important parameter that sig-
nificantly affects system performance when RED is de-
ployed. We need a mechanism that can adjust the parame-
ters automatically, especially maxp, in response to the net-
work environment. Adaptive RED (ARED) [21], an im-
proved version of RED, is such a mechanism, and its ap-
plication is expected to improve system performance. We
first conduct simulation experiments with ARED and de-
duce its shortcomings from the results. We then propose a
modification to alleviate these deficiencies, through a pro-
cess of automatic parameter setting, but that still preserves
the effectiveness of the ARED mechanism.

4.1. ARED Mechanism

RED monitors impending congestion by maintaining an
exponential weighted moving average of the queue length
(q̄). However, RED parameter settings have proven to be
highly sensitive to network conditions, and performance can
suffer significantly for a misconfigured RED [16, 17]. The
motivation for ARED is to diminish or eliminate the short-
comings of RED, i.e., remove the effect of the RED pa-
rameters on average queue length and performance. Follow-
ing is a brief overview of the differences between RED and
ARED, the details of which can be reviewed in [21].

• maxp: In RED, this value does not change at runtime.
In ARED, maxp is dynamically adapted to keep the
average queue size within the target queue boundaries
according to network conditions. When the average
queue size is larger than the target queue size, maxp

is increased. When the average queue size is less than
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Figure 4. Sketch of Average Queue (gARED)

the target queue size, maxp is decreased. One recom-
mended range for maxp is (0.01, 0.5).

• maxth: RED recommends setting maxth to at least
twice minth. In ARED, the rule of thumb is to set
maxth to three times that of minth. The target queue
is determined by maxth and minth as [minth + 0.4 ∗
(maxth −minth),minth + 0.6 ∗ (maxth −minth)].
The target queue, the objective for ARED adapting the
maxp setting, determines the queuing delay expected
at the router. The setting for minth is determined by
the network manager.

• wq: This parameter is used as a low-pass filter on the
instantaneous queue size in order to estimate the long-
term queue average. RED sets it to a fixed value. The
fixed value is not suitable as the bandwidth link in-
creases. In ARED, it is set to 1−exp(−1/C), where C
is the link capacity in packets/second. The intent here
is to maintain the time constant on the order of RTT.

Of the above three changes, the first is a key factor be-
cause it is an adaptation to network conditions. The other
settings are determined at system startup.

However, based on analysis and simulation, we find
some problems with ARED. One is that it does not consider
the trend in average queue variation when it changes the up-
per bound of maxp. Another one is that the lower bound of
parameter maxp is determined to some extent by the net-
work manager to ensure ARED performance.

4.2. An Improvement of ARED

To solve these problems inherent to ARED we propose
a modified version referred to gARED as shown in Fig-
ure 4. When the average queue becomes larger than the
target queue and there is an increasing trend, maxp is in-
creased. When the average queue becomes smaller than the
target queue, then only if the average queue length is larger
than minth and there is a decreasing trend, maxp is de-
creased. When the average queue size is within target queue
or less than minth, there is no change on maxp.

Comparing gARED with the original ARED, if the aver-
age queue size is larger than the target queue size while t is
in the interval (t2, t4), ARED increases maxp but gARED
does not. The small maxp gives the network more stabil-
ity. On the other hand, if the average queue size is less than

the target queue, maxp is larger for gARED than one for
ARED, So that the average queue can return to the target
queue slowly.

Another difference between gARED and ARED is that
there is no limit on the lower bound of maxp in gARED. It
is determined automatically based on minth.

The algorithm of gARED is given as:

Every interval seconds:
if (avg > target and avg > old_avg and

max_p < top)
increase max_p:
max_p = max_p + alpha

if (min_th < avg and avg < target and
avg < old_avg)

decrease max_p:
max_p = max_p * beta

avg: average queue length
old_avg: previous average queue length
top: upper bound of max_p
alpha: increment, min(0.01,max_p/4)
beta: decrease factor, 0.9

4.3. Evaluation of gHSTCP with gARED

Finally, Table 3 shows throughput and fairness when
there are five gHSTCP flows competing with 5 TCP Reno
flows, and gARED is used at the routers. Two simulation ex-
periments are conducted:

• Case 14: TCP Reno is used for S1 and gHSTCP is used
for S2 with gARED deployed.

• Case 15: TCP Reno is used for S1 and
gHSTCP+SACK is used for S2 with gARED de-
ployed.

We can see that when TCP Reno is used with gHSTCP
with a propagation delay of 25 ms or 50 ms, the virtues
of gHSTCP and gARED in combination are exhibited in
terms of throughput and fairness. Even without the SACK
option, gHSTCP achieves the same performance as when
the SACK option is used. At a propagation delay of 100 ms,
these are acceptable results compared to that when ARED
is deployed.

5. Conclusion

We have proposed a new approach for improving
HSTCP performance in terms of fairness and through-
put. Our proposal, gHSTCP, achieves this goal by intro-
ducing two modes in the congestion avoidance phase:
Reno mode and HSTCP mode. When there is an in-
creasing trend in RTT, gHSTCP uses Reno mode; oth-
erwise, it uses HSTCP mode. In addition, to address
problems with ARED in high-speed long-delay net-
works, we also proposed a modified version of ARED,
called gARED, which adjusts maxp according to the aver-
age queue length and the trend in variation. This technique
also avoids the problem of determining an appropri-
ate lower bound for maxp. We showed through simulations



Case S1 S2 Router Delay Throughput of S1 Throughput of S2 Fairness
group group Mechanism (ms) (Mbps) (Mbps)

14 Reno gHSTCP gARED 25 477.55 1921.03 1.00
50 454.17 1986.32 0.99
100 148.25 1778.03 0.79

15 Reno gHSTCP with gARED 25 493.17 1943.71 1.00
SACK option 50 454.15 1979.05 0.99

100 188.28 2177.32 0.77

Table 3. Aggregate Throughput Comparison with gHSTCP+gARED

that the proposed algorithms outperform the original al-
gorithms. Future work will include further investigation
of gHSTCP, e.g., how to recover effectively from si-
multaneous packet losses, refinement of the technique
for making estimations based on the trends of chang-
ing RTT.
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