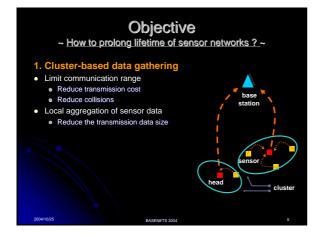
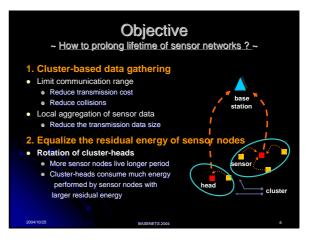
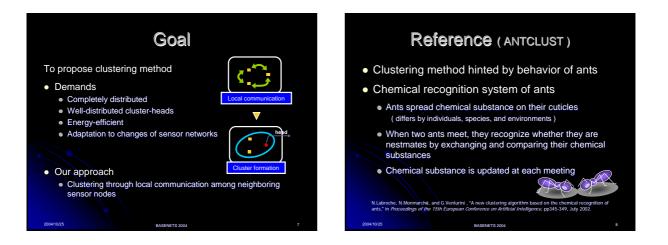
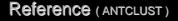
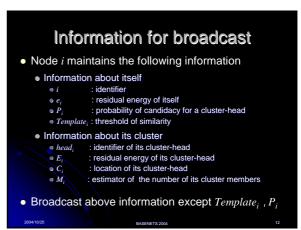

Energy-Efficient Clustering Method for Data Gathering in Sensor Networks

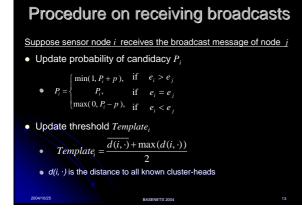

Junpei Kamimura, Naoki Wakamiya Masayuki Murata Osaka University, Japan

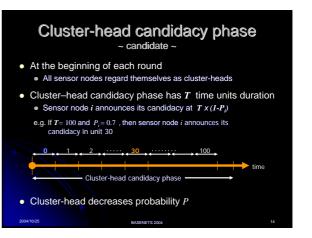

Outline

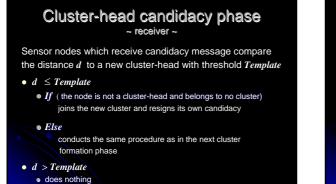

- Introduction
- Objective
- Our proposal
- Simulation
- Conclusion & future work



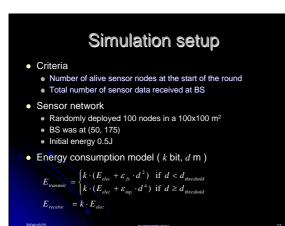

- ANTCLUST parameters
 - Ant : Object
 - Chemical : Information about object
 - Nest : Cluster
- Meeting
 - Two randomly chosen objects compare the similarity with threshold Template


BASENETS 20


move to the same cluster

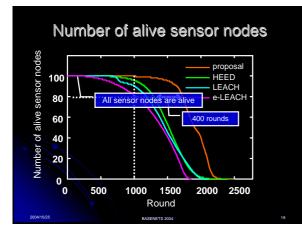

- Similar & different clusters
- Not similar & same cluster
- move to a different cluster Repeat above meetings
- Our proposal • Apply ANTCLUST to sensor networks • Ant : Sensor node • Similarity : Nearness to cluster-head Chemical : Identifier, residual energy, location of cluster-head Meeting : Information exchange by broadcasting Differences from ANTCLUST Introduce a mechanism of cluster-head candidacy Meeting by broadcasting All sensor nodes within limited range receive broadcast and update parameters
 - Limited number of meetings in terms of energy

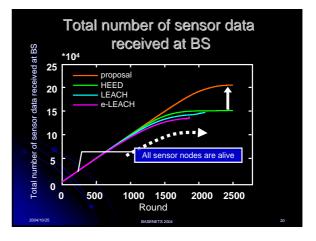
Overview of our pro ~ "round" = one cycle of data ga 1. Cluster-head Candidacy Phase • Sensor nodes with larger residual energy broadcast their candidacy within 'R" • Tentative clusters are formed	
 Cluster Formation Phase "P_{ex}" of sensor nodes broadcast cluster information within "r" and meet each other Selection of a cluster-head 	
 3. Registration Phase Registration of members to their cluster-heads 	
4. Data Gathering Phase • Cluster members send the data to heads • Cluster-heads send aggregated data to BS 2004/1025 BASENETS 2004	monitoring-region



Cluster formation phase

- Pex of sensor nodes which are not a cluster-head broadcast cluster information
- Sensor nodes which receive cluster information compare distance *d* to a new cluster-head with threshold *Template*
- If $(d \leq Template)$
 - choose a better cluster with larger $\frac{E}{M \cdot d^2}$


closer cluster-head (smaller d)


- cluster-head with larger residual energy (larger E)
- cluster-head with less cluster members (smaller M)

- LEACH
 - e-LEACH: distributed-version of LEACH-C
- HEED
- Parameter settings for proposal
 - Range "R" for candidacy : 40m
- Range "r" for exchange of cluster information : 20m Percentage "P_{ex}" for exchange of cluster information: 10%

Conclusion & future work

Conclusion

- We proposed a clustering method for sensor networks based on ANTCLUST
- Simulation experiments showed that in our method more sensor nodes stayed alive for a longer period than in other clustering approaches

Future work

Autonomous adjustment of parameters by sensor nodes

BASENETS 20

• Multi-hop transmission among cluster-heads

