

Autonomous Localization Method in Wireless Sensor Networks

Yoshikazu Ohta

Department of Information Networking
Graduate School of Information Science and Technology
Osaka University, Japan

yosi-ota@ist.osaka-u.ac.jp

Content

- Introduction
 - Localization system
 - Measurement of RSSI, Minimum Mean Squared Error (MMSE)
 - Problem of localization
- Proposed data collecting technique
 - Measurement of node density
 - Control method of transmission
- Performance evaluation
- Conclusion and future work

Wireless Sensor Networks

- Consist of micro-sensor nodes
- Objective
 - Monitor environment
 - temperature, motion
- Features
 - Pros
 - easy deployment
 - low cost
 - Cons
 - limited battery
 - low communication speed
 - low computation power

Sensor nodes canno send much data

Localization System in Sensor Networks

- Sensor networks are needed for indoor localization, because GPS cannot work indoors, e.g.
 - Localization of sensor position

2005/3/8

- Consumer position in supermarket
- Visitor position in exhibition, fair, etc.

Sink collects data from sensors and calculates target position

Details about Localization System

- Sensors measure the distance from target
 - Target has device which can send signal
 - Sensors receive signal from target and measure RSSI (Received Signal Strength Indicator)

Characteristics of RSSI Measurement

- Lower configuration cost than other methods (e.g. laser and ultrasonic wave)
- Larger error because RSSI is subject to negative effects of the fading channel
 - Radio interference

2005/3/8

- Obstacles (persons, walls)
- Individual differences of transmitters and receivers (antenna type, transmission power)

Position Estimation Algorithm

- Overview
 - Sink estimates target position (X, Y) by using sensor position and measured distance
- Minimum Mean Squared Error (MMSE)
 - Calculate (X, Y) to minimize $\sum_{i=1}^{N} f_i(X, Y)^2$

$$f_i(X,Y) = \sqrt{(X-x_i)^2 + (Y-y_i)^2} - di$$

 (x_i, y_i) : position of sensor i d_i : distance measured by sensor i N: amount of collected data

- Measurements from at least three nodes required
- Estimate position accurately in case of target being evenly surrounded by sensors
- Cannot estimate if sensors are placed on a line

Problem

- It is difficult to collect a large amount of data in wireless sensor networks
 - Long delay
 - High energy consumption

The amount of data collected by the sensors must be controlled.

Data Collecting Technique

- Control the number of transmitting sensors
 - Use density of sensors and measured distance
- Our mechanism
 - Measure density of sensors
 - Control the number of transmitting sensors

Measure Density of Sensors

- Sensors count the number of surrounding sensors by receiving discovery packets from other sensors
- Density _i around sensor i

$$- \qquad_{i} = M_{i}/(R^{2})$$

 M_i : number of sensors around sensor i

R : radio range

Transmission Control Method

- To control data transmission of Z sensors
 - Sensors decide to send data depending on the measured distance
 - sensors send data if distance is within D_i [m]
- Calculation of D_i
 - Use proportional relationship between D_i [m] and density

Z: amount of required data

Simulation Settings

- Simulation area: 100 x 100 [m²]
 - 25, 100, 400, 900, 1000, 1600, 2500, 10000 sensors deployed
 - Randomly generate target position
 - Topology is grid or random
- Radio range of target is 20 [m]
 - Sensors within 20 [m] from target can measure RSSI
- Estimate target position by using all collected data
- Measurement error of sensors

Measurement Error of Sensors

- 3 models with random measurement errors
 - Model(1)··· ± 20% of distance
 - Model(2)··· ± 2m
 - Model(3)··· ± 2m (distance under 10m)
 ± 20% of distance (distance over 10m)

distance between target and sensor (m)

Localization Error vs. Number of Sensors

Performance of Data Collecting Technique (Number of Collected Data)

Performance of Data Collecting Technique (Localization Error)

Conclusion and Future Work

Conclusion

- We proposed a method for localization in sensor networks
 - Measurement of node density
 - Transmission is controlled depending on distance from target
- Our proposal can control the amount of collected data and achieve high accuracy for localization

Future Work

- Evaluation of energy consumption and delay
- Mechanism for operation in sparse networks