Master’s Thesis

Title

Design and Evaluation of Shared Memory Architecture

for WDM-based A Computing Environment

Supervisor

Professor Masayuki Murata

Author
Eiji Taniguchi

February 15th, 2006

Department of Information Networking
Graduate School of Information Science and Technology

Osaka University

Master’'s Thesis

Design and Evaluation of Shared Memory Architecture

for WDM-based A Computing Environment

Eiji Taniguchi

Abstract

Grid computing, where we can compute large scale problems which we cannot solve with only
single computer, has been studied and developed actively. We usually treat volume data in Grid
computing environment, so we need to transfer such data in high speed and with high reliability.
In conventional TCP/IP in the Internet, it is difficult to achieve good performance because of
overhead caused by packet processing and retransmission of lost packets.

So, we have proposedl computing environment. Ik computing environment, network
switches and computing nodes are connected each other with optical fibers, and by establishing
optical wavelength paths between end hosts, we can offer high speed and high reliable commu-
nication pipe for data sharing or data exchanging between computing nodes. Here we need to
consider shared memory architecture to solve large scale problems utilizing communication pipe
in A computing environment. That is, it is different from the architecture of the conventional
multi-processor system or cluster system because computing nodes are located in a wide area in
A computing environment. So that the performance of networks affects the performance of shared
memory and computing power.

In this study, we model and analyze the shared memory architectuteedmputing envi-
ronment, and we show how the network topology and the control method for cache coherency
influence the performance. Here we use semi-Markov process which enable us to set state resi-
dence time for modeling, and evaluate what type of shared memory architecture is suitable for
computing environment. As a result, we found that we could achieve high performance with some

parameter regions or conditions in each shared memory architecture.

Keywords

A computing environment
Shared memory architecture
Cache coherency

Semi—Markov process

Contents

1 Introduction 8
2) computing environment: A new distributed computing environment 11
2.1 Basictechnology 11
2.2 Requirement to realize distributed computing environment 11
2.2.1 Datasharingmethod 13
2.2.2 Datatransmissionmethod, 14
2.3 Characteristic factor of shared memory architecture 14
2.3.1 Networktopology 16
2.3.2 Memoryaccessmodel 0. 16
2.3.3 Cachecoherencyprotocol 18
2.3.4 Realization method for cache coherency protocol 20
2.4 Proposed shared memory architecture 21
3 Design of shared memory architecture im\ computing environment 25
3.1 Specification of network and computingnode 25
3.2 Designofcontrolmessage 26
3.3 Design of functionand behavior 27
3.3.1 Ring-UMA architecture, 28
3.3.2 Ring-NUMA architecture 31
3.3.3 Mesh-NUMA architecture 33
4 Modeling and analysis with semi-Markov process 36
4.1 Semi-MarkoV proCessS v v v i e e e e e e e e e 36
4.2 Variable definitioninmodel oo 37
4.3 Modeling of shared memory architecture 38
4.3.1 Ring-UMA architecture 38
4.3.2 Ring-NUMA architecture 39
4.3.3 Mesh-NUMA architecture 42
4.4 Analysis by using semi-Markov process 44

4.4.1 Analyticapproach

4.4.2 Numericalanalysis e 46
5 Evaluation 59
5.1 Network utilization 59
5.2 Average memory access timetothesharedmemory 67
5.3 Computation throughput 75
6 Conclusion 82
Acknowledgements 84
References 85

List of Figures

© 00 N o o b~ wWw N P

R e O o o e
N~ o a0 W N B O

18

19

20

21

22

Brief overview of\ computing environment. L. 9
Established wavelengthpaths. 12
Virtual ring topology. 14
Mesh topology can be dynamically changed. 15
Memory accessmodels. e 17
State transition diagram of the basic write-back invalidation protocol. 20
Behavior of the write-back invalidation protocol. 21
Ring-UMA architecture. o 22
Ring-NUMA architecture. 23
Mesh-NUMA architecture. 24
Network interface. 26
State transition diagram of Ring-UMA architecture. 40
State transition diagram of Ring-NUMA architecture. 41
State transition diagram of Mesh-NUMA architecture. 45
Ring topology inphysical 46
Mesh topology in physical 47
Distribution of steady state probability of Ring-UMA architectude £ 16, s =

1072) L e 49
Distribution of steady state probability of Ring-UMA architectuse€ 1072,

L=1KM) . . o oot 50
Distribution of steady state probability of Ring-UMA architecture £ 16, L =1

KM) 51
Distribution of steady state probability of Ring-NUMA architectuke £ 16, s =

1072) L 53
Distribution of steady state probability of Ring-NUMA architectuse={ 1072,

L=1KM) . . 54

23

24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Distribution of steady state probability of Mesh-NUMA architectuve£ 16, s =

1072) L e 56
Distribution of steady state probability of Mesh-NUMA architecture=(102,

L=TKM) . . 57
Distribution of steady state probability of Mesh-NUMA architectuté £ 16,

L=1Km) . . . e 58
Network utilization of Ring-UMA architecture in scenariol. 61
Network utilization of Ring-UMA architecture in scenario2. 62
Network utilization of Ring-NUMA architecture inscenariol. 63
Network utilization of Ring-NUMA architecture in scenario2. 64
Network utilization of Mesh-NUMA architecture in scenario1. 65
Network utilization of Mesh-NUMA architecture in scenario2. 66
Average memory access time of Ring-UMA architecture in scenario 1. 69
Average memory access time of Ring-UMA architecture in scenario 2. 70
Average memory access time of Ring-NUMA architecture in scenario 1. 71
Average memory access time of Ring-NUMA architecture in scenario 2. 72
Average memory access time of Mesh-NUMA architecture in scenario1. 73
Average memory access time of Mesh-NUMA architecture in scenario2. 74
Computation throughput of Ring-UMA architecture in scenario1. 76
Computation throughput of Ring-UMA architecture in scenario2. 77
Computation throughput of Ring-NUMA architecture in scenario1. 78
Computation throughput of Ring-NUMA architecture in scenario2. 79
Computation throughput of Mesh-NUMA architecture in scenario1. 80
Computation throughput of Mesh-NUMA architecture in scenario2. 81

List of Tables

A W W N P

Parameters of shared memory architecture. 27
Given parametersformodels. L L 37
Theresidencetimetablgg]. 43
Theresidencetimetablgpg]. 44
Numerical values of parametersinmodels. 48

1 Introduction

Recently, the demand for large scale computation such as the gene information analysis, image
processing and the global environment simulation that treats the volume data is arising. In order to
execute large scale computation, the Grid computing technology has been actively studied and de-
veloped. We expect to make distributed parallel processing and to calculate effectively by utilizing
CPUs and storage of computing nodes connected by networks in Grid computing environment. In
Grid computing environment, TCP/IP is usually used for communication such as control messages
and data exchanges between computing nodes. However TCP/IP has some harmful effects in such
environment. For example, some packets may be lost on the route from the source node to the
destination node because of traffic congestion caused by own volume data transmission on the
high-speed network. So that it needs retransmission of lost packets and then causes degradation
of network throughput and computing throughput on Grid.

To satisfy the demand in Grid computing, the new technology that enables high-speed and high
reliable communication is needed, so that research in optical domain has been studied in recent
years. Especially, the WDM (Wavelength Division Multiplexing) technology that use multiplexed
light wavelengths in optical domain is focused on. And IP over a WDM network has been studied
and developed to provide high-speed transmission on the Internet based on WDM technology.
Moreover, standardization of the routing technology of the Internet, called GMPLS (Generalized
Multi-Protocol Label Switching), which is the communication technology that uses various optical
technologies for a lower layer than the WDM technology, has also been advanced in IETF [1].

However, many such technologies presuppose the existing Internet technology. That is, an
IP packet is treated as a degree of granule treating information, and it is made into the target
for research and development of how to carry it at high speed on a network. Therefore, as long
as architecture based on packet switching technology is focused on, realization of high quality
communication to each connection will be very difficult. In order to execute distributed computing
effectively with Grid technologies which realize a volume data transfer on the photonic network,
new architecture which is different from conventional architecture is required.

Therefore, we consider that we establish broadband wavelength paths between computing
nodes and then provide these paths for end users as a realization method to achieve high-speed

and high reliable communication in Grid computing environment. That is, it is possible to provide

Optical switch

[Optical fiber

Wavelength path

Figure 1: Brief overview o\ computing environment.

an end user with ultra high speed and high reliable communication pipe by building a photonic
network that uses established fibers, or newly laid fiber if needed, and by utilizing wavelength
paths multiplexed in the fibers as the minimum particle size for information exchanges. Thus we
propose a new distributed computing architecture which we)catbmputing environment. In
A computing environment, by connecting computing nodes and optical switches on the photonic
network with the optical fibers each other (See Fig. 1), we can provide exclusive wavelength
paths and then computing nodes perform distributed computing by using these paths as exclusive
communication pipe. Irth computing environment, we can realize high-speed and high reliable
data exchanging or data sharing because computing nodes utilize not conventional TCP/IP network
but utilize beforehand established wavelength paths as exclusive communication channel.
Related works [2, 3] report which evaluate the architecture that realize distributed parallel
computing inA computing environment. Both presume shared memory architecture for data shar-
ing that is required for parallel computing. In [2], they make the virtual optical ring network
connected wavelength paths between computing nodes, and utilize the ring network in itself as a

shared memory. Shared memory architecture introduced in [3] are more realistic architecture than

that of [2]. In [3], every computing node has own shared memory and the data on the shared mem-
ory is the same in shared memory over all computing nodes. This shared memory is connected to
photonic network, and updated data on the shared memory is reflected to the shared memory on
other computing nodes through photonic network.

However, these studies does not discussed the influence of network characteristics or cache
coherency protocols to the performance of the architecture though these evaluated shared memory
architecture based on execution time of parallel application programs through simulation or as an
example of implementation on actual computers.Alnomputing environment, an architecture
which assumed to have a shared memory makes it easy for us to make a programming coding of
parallel computing applications, however it needs longer time for data sharing than a conventional
multi processor computer or a cluster computer with SDSM (Software Distributed Shared Mem-
ory) because computing nodes are located in a wide area. Therefore, data sharing processing may
influence to the computation performance. So, we have to consider data sharing methods, such
as access methods to a shared memory and cache coherency protocols more than conventional
multi processor systems. Moreover, we have to understand how the characteristics of the network,
network topologies and cache protocols have an impact on the shared memory architecture.

In this study, we design some types of shard memory architecture in terms of network topology,
memory access model and cache protocal fomputing environment, and we model and analyze
these architecture by using semi-Markov process which enable us to set state residence time for
modeling. And through numerical example, we clarify how the network topology and the control
method for cache coherency influence the performance and evaluate what type of shared memory
architecture is suitable fox computing environment.

The rest of the thesis organized as follows. In Section 2, we expl@omputing environ-
ment that we proposed. In Section 3 we design the shared memory architectireofmputing
environment and in Section 4 we model and analyze the model with semi-Markov process. Then
we show the evaluation through numerical examples in Section 5 and we conclude this study in

Section 6.

10

2) computing environment: A new distributed computing environment

As described in section 1, the performance of shared memory architecture may be influenced by
network topologies, memory access models, cache coherency protocols and soccomiputing
environment where computing nodes are located in a wide area not like a conventional multi
processor system. Therefore, we cannot sweepingly decide what types of architecture is suitable
for A computing environment.

In this section, in order to investigate which architecture is suitabl@ fmmputing environ-
ment, we firstly explain about computing environment that we have proposed as new distributed
computing environment and about the reason why we presume shared memory architecture. Sec-
ondly, we explain about overview of our proposed shared memory architectures. Then, we denote
that considering factors such as network topologies, memory access models, cache coherency pro-
tocols exist in\ computing environment and how they can influence on the performance of shared

memory architecture.

2.1 Basic technology

A computing environment is based on WDM technology. Computing nodes and optical switches
that compose computing environment are connected with optical fibers. In a optical fiber, 100 or
more wavelengths, 1000 or more in a future, are multiplexed by WDM or DWDM (Dense WDM)
technology and provide broadband communication line for computing nodes. WDM technology
is usually considered as a lower layer technology that realize GMPLS and IP over WDM network.
In this study, we use WDM technology for establishing wavelength paths and utilize their paths as
exclusive communication line.

Therefore in\ computing environment, we can realize high-speed and high reliable data ex-
changing or data sharing because computing nodes utilize not conventional TCP/IP network but
utilize beforehand established wavelength paths as exclusive communication channel. We show

the detail of established wavelength paths in Figure 2.

2.2 Requirement to realize distributed computing environment

Next, we explain about how distributed computing is realized aomputing environment.

11

Optical switch

_ Optical fiber

e Wavelength path

Wavelength Path
From #2 to #1

Wavelength Path
From #1 to #2 J. Multiplexed Wavelength

Figure 2: Established wavelength paths.

12

2.2.1 Data sharing method

When we try to realize and perform distributed computing icomputing environment, we have
to consider that how data sharing among computing nodes is realized. We suppose two ways to
realize data sharing. One is shared memory and another is distributed memory.

In distributed memory architecture, MPI (Message Passing Interface) [4] is usually used for
realizing data sharing and data exchanging in parallel application. One representative implemen-
tation is MPICH which is often used over TCP/IP network. When we want to share a data in a

MPI program, we usually use two typical function; MBend and MPRecv like this.

shared int x;
if (source_node) then
MPI_Send(&x, 1, MPL_INT, destination_node, MPI_ANY_TAG,
MPI_COMM_WORLD);
else /* if destination_node */
MPI_Recv(&x, 1, MPL_INT, source_node, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

In this code, in order to realize data sharing, source node send the shared vabgtdgplicitly
calling function, MPLSend, and destination node receives the data and stores it to the shared
variablex by MPI_Recv.

On the other hand, in a shared memory architecture, we have only to use substitute expression

like this

shared int Xx;

x = 100;

Only executing this code, data sharing is implicitly done over all computing nodes. If other com-
puting nodes want to use this value, they only have to read the dataxfrom

In this study, we focus on shared memory architecture. However, data sharing realized by
message passing is also important because there is a lot of parallel application which use MPI.
By realizing message passing architecture. ioomputing environment, we can reuse MPI pro-
grams without code modification and execute them in photonic network. One example of message

passing architecture ik computing environment is introduced, implemented and evaluated in [5].

13

N\ I\ ical ri
L , Optical ring
i\

Figure 3: Virtual ring topology.

2.2.2 Data transmission method

Next, we explain about how the data updated at one node is reflected to other computing node.
As described above, we utilize virtual channels for distributed computing. When we update data,
the updated data is put onto virtual channels and send to other computing node. This proceeds
implicitly in background work whenever we update shared data.

In the case that the virtual channels can constitute a virtual ring topology (See Fig. 3), the
updated data go round on a ring, and all computing node can receive this data. So, we can realize
updates among computing nodes by broadcasting data on the irmpmputing environment. On
the other hand, the virtual channels can also constitute mesh topology which can be dynamically
changed by selecting appropriate wavelengths multiplexed in optical fibers. Then, the virtual
channels can organized optimal topology for data transmission and multicast when data sharing is
needed (See Fig. 4). In this case, each computing node can directly communicate with each other

and share the updated data.

2.3 Characteristic factor of shared memory architecture

As described in section 2.2.1, we focus on a shared memory architecture. So, we introduced what
characteristic factors exist in shared memory architecture and how they can affect on the shared
memory architecture. Here we focus on four characteristic factors, that is, network topology,

memory access model, cache coherency protocol, and realization method for cache coherency

protocol.

14

=
N

&

Ay

Figure 4: Mesh topology can be dynamically changed.

15

2.3.1 Network topology

A network topology can affect on propagation delay between computing hodemputing en-
vironment. In addition, this is also consideration matter for us to decide paths for data transmission

and required number of wavelength. We introduce representative two topologies below.

¢ Ring topology
This topology makes it easy to broadcast data for computing nodes. However, broadcasting
data requires at least the time to round the ring once. Moreover, each computing nodes only
forwards the data from upstream computing node to downstream computing node without

data duplicating.

e Mesh topology

Generally, average propagation delay on this topology become shorter than that of ring
topology. However, most of computing nodes have to duplicate received data in order to

forward their neighbor because they have more than two computing nodes at downstream.

2.3.2 Memory access model

Memory access model provides how computing nodes access to the shared memory. That is,
memory access model decides whether computing nodes can access to the shared memory directly
or not. In the case that a computing node accesses to the shared memory through network, it
takes longer time than the case that a computing node access to the shared memory without using
network. Memory access model is roughly classified into three models. We describe about these

models below.

e UMA (Uniform Memory Access) model
In this model, all processing elements share entire address space, and access time to the
shared memory is same (Fig. 5(a), Fig. 5(b)) .

e NUMA (Non Uniform Memory Access) model

In this model, all processing elements share entire address space, but access time to the

shared memory depends on address where a processing element access to (Fig. 5(c)).

16

Shared Memory

Shared Memory

Shared Bus

Cache

C

mEn CPU

ache
CPU

Processing Element

(a) UMA with shared bus (b) UMA with switch

Message
1 [|

T

Shared Memory CPU

The shared memory is accessed
through interconnection network.

The shared memory does not exist.
Cache Message passing is performed between
CPU through interconnection network.

Cache

CPU Memory

(c) NUMA (d) NORMA

Figure 5: Memory access models.

¢ NORMA (NO Remote Memory Access) model

In this model, each processing element has own memory which address space is independent
each other. That is, a shared memory does not exist in this model and each processing

element perform parallel computation by message passing (Fig. 5(d)).

When we adopt UMA model ta computing environment, read access does not need to use net-
work, but write access needs to use network in order to update data on other shared memory. In
NUMA model, in addition to write access, read access can also need to use network for accessing

data on other shared memory. NORMA model, include message passing model, is out of scope

17

of this study because there is no shared memory in this model, and our target is a shared memory

architecture.

2.3.3 Cache coherency protocol

When a processor tries to read or write to a shared memory, coherency controls is not needed if
another processor does not the same data in its local cache. However, if another processor has the
same data in its local cache, some methods can be considered to keep cache coherency. Moreover,
when a processor writes or updates the data on its cache, keeping cache coherency becomes still
more complicated and there are some ways to keep coherency. Such cache coherency protocols are
classified into four types according to the timing (write-through, and write-back) and the method

(invalidation, and updating) [6].

e Write-through invalidation protocol
Whenever a CPU write to the cache, the relative data on its shared memory is updated
and the relative cache line that is kept by other cache memory is invalidated. It is easy to
maintain cache coherency in this protocol. However, the performance is generally not better
than that of write-back protocol because shared media such as shared bus is used whenever

writing occurs, and congestion of shared media increases.

e Write-through updating protocol
Whenever a CPU write to the cache, the relative data on its shared memory is updated and
the relative cache line that is kept by other cache memory is also updated, as a result, cache
coherency is achieved. However, this protocol belongs to write-through protocol type, so it

has same problems mentioned above.

e Write-back invalidation protocol
Whenever writing occurs, the relative cache line kept by other cache memory is invalidated,
however in this protocol, the relative data on its shared memory is not updated. Therefore,
at most only one cache memory which is updated by its CPU keeps the latest data. Thus,
cache coherency is kept. This protocol is adopted many systems because processing and

implementation of this protocol is easy.

e Write-back updating protocol

18

Whenever writing occurs, the relative cache line kept by other cache memory is updated.

On the other hand, the relative data on its shared memory is not updated in this protocol.

When we adopt these protocols described abovedomputing environment, the write-back
invalidation protocol is most suitable because this protocol has the least network utilization. When
we adopt the write-through cachexa@omputing environment, we have to use network in order to
update data on other shared memory whenever writing access occurs. Moreover, when we adopt
the write-back updating protocol th computing environment, we also have to use network in
order to update data on other cache memory whenever writing access occurs. On the other hand, in
the write-back invalidation protocol, we do not use network when writing access occurs on a cache
line because other computing nodes do not have the relative cache line. Therefore, in this study,
we adopt the write-back invalidation protocol for our designing of the shared memory architecture
in A computing environment. The write-back invalidation protocol is simply explained below.

In the write-back invalidation protocol, data in the local cache has three sates; Invalid (1),
Clean (C) and Dirty (D). The | state means that data is invalidated and can not be used, the C state
means that the data on the cache is the same value compared to the data on the shared memory,
and the D state means that the data on cache is not the same value compared to the data on the
shared memory. We show the state transition diagram of the basic write-back invalidation protocol
in Fig. 6.

When one or some computers refer to an address, the data is copied to a cache from the shared
memory and that cache’s state becomes a clean state as shown in Figure 7 (a). Since the value of
the data on the shared memory and the data in the C state is the same, read access to this cache
line does not need cache coherency operation. If a processor writes to data in a C state, the state
will become a D state. At this time, the control message requesting invalidation of the relevant
data is sent on a shared media. Since the cache controllers of other processors snoop a shared
media, they receive the control message and invalidate the relevant data in their local cache (Fig. 7
(b)). Henceforth, read and write accesses to the data in a D state do not need cache coherency
operation. When other processors read to the data in a D state, the data in a D state is written
back to the shared memory, and cache coherency is completed. Next, the data is sent by a shared
media to the processor that requested the read access and states of cache lines on both processor’s

cache will become C states (Fig. 7 (c1)). On the other hand, when other processor writes to the

19

Nw Nr

n Lr: locally reads

Lw: locally writes

Nr: other node reads

Nw: other nodes writes

/N

Q== 2

Figure 6: State transition diagram of the basic write-back invalidation protocol.

address of the data in a D state, like reading, writing back of the data in a D state to the shared
memory takes place, and the data is sent to the processor which sent the demand message. Finally,
the demanding processor writes the data on a local cache, and the state of the data will be D. The

cache data on the processor that has the original data is invalidated (Fig. 7 (c2)).

2.3.4 Realization method for cache coherency protocol

In this study, we presume that each computing node has a cache, it is necessary to fully take into
consideration of the coherency between the data on the cache and the data on the shared memory.
Two ways, a snoop method and a directory method, are techniques for generally maintaining cache

coherency.

e Snoop method

Every cache that has a copy of the data from a line of physical memory also has a copy of
the sharing status of the line, and no centralized state is kept. The caches are usually on
a shared memory bus, and all cache controllers monitor or snoop on the bus to determine

whether or not they have a copy of a line that is request on the bus.
e Directory method

20

Q Shared memory D Shared memory

71N Invalldatlon request
Z AN
/ \

o
>

A
v
A

v

V4

Local Local
cache lp' C cache

OO0 O= O O

Node A NodeB Node C Node A Node B Node C
(a) 2 nodes read the same line synchronously (b) Node A writes to the line

g Shared memory @ Shared memory
1
|
|

Write back D line

Read from W.Elte_bic'(_Dln'_ II' Read from R
shared memory

< o

<

D--C)

I “shared m1mory -

a,

<=
|
|
Local _ Local
cache D_m C _)@ cache

Read
rite

Node A Node B Node C Node A Node B Node C
(c1) Node B reads the line (c2) Node B writes to the line

Figure 7: Behavior of the write-back invalidation protocol.

The sharing status of a line of physical memory is kept in just one location, called the di-
rectory. Information in the directory includes which caches have copies of the line, whether
it is dirty, and so on. When we have to keep cache coherency, by referring this directory,

invalidation signal is directly sent to target cache.

2.4 Proposed shared memory architecture

We propose three typical shared memory architectures listed below.

¢ Ring-UMA architecture (Fig. 8)
This architecture organizes ring topology, and adopts UMA type memory access model.
Moreover, we adopt the snoop method to this architecture to realize cache coherency by

assuming another ring for cache control.

21

Ring for Control

o A Ring for Data Transfer
B G
The Control Token C 0 A R
B G
n-1] 2 #1 #2 & H
=
/Shared Cache \ I l/
Memory Memory #0 . \ / n—1 Z
of A A fﬁ] &
B B
c Z #4 #3
=
@
'z — o [T [
0 A F B
B L C
(0
n—1 7
n—1 Z

Figure 8: Ring-UMA architecture.

e Ring-NUMA architecture (Fig. 9)
This architecture has similar characteristic to the Ring-UMA architecture. Difference be-
tween Ring-UMA architecture and Ring-NUMA architecture is memory access model. This

architecture enables us to use larger address space than Ring-UMA architecture.

e Mesh-NUMA architecture (Fig. 10)
This architecture organizes mesh topology, and adopts NUMA type memory access model.

In this architecture, the directory method is used for cache coherency operation because it

is difficult to realize the snoop method on mesh topology.

It is important to keep coherency between each processors and to maintain consistency be-
tween the cache memory and the shared memory for a shared memory architecture. In addition,
from a parallel application level point of view, synchronization between processes is also impor-
tant. Broadcasting is mainly used for these cache coherency processing and process synchroniza-
tion. Then, first of all, we analyze and evaluate shared memory architecture that organizes ring
topology which makes it easy to broadcast among computing nodesamputing environment.

In this topology, we prepare the wavelength for control on its wavelength. By snooping this token,

22

n [T A |Ring for Control
H G Ring for Data Transfer
The Control Token a 2n R R
n G
2n—1 p G H
#1 #2
=
/ Shared Cache \ lﬁ] |/
Memory Memory #0 . , 3n—-1
= S
o A A
B B
C z #4 #3
- =
(0
@ z / N [y F
an| F B L
w L
X
4n-1
Sn—1 Z

Figure 9: Ring-NUMA architecture.

we can naturally extend conventional snoop cache method. We adopt the write-back invalidation
protocol to these architecture.

However, as mentioned before, communication between computing nodes must round optical
ring at least one time and the rounding time becomes propagation delay. Therefore, we also study
a shared memory architecture that organizes mesh topology where the average propagation delay
between computing nodes become shorter than ring topology in general. In this architecture, it is
difficult to prepare the wavelength for control like ring topology. Therefore, we adopt directory
method for realizing cache coherency protocol. We also adopt the write-back invalidation protocol.
Moreover, the processing load on each computing node is higher than that of ring topology because
duplicating data frame is required on each computing node for realizing broadcasting. Therefore,
NUMA type memory access model is appropriate for architectures which organize mesh topology
because each computing node is responsible for a certain range of address spaces and this removes
necessity of broadcasting from architectures which is adopted this topology when cache coherency
processing is executed. When a computing node updates the data on its cache memory, cache
coherency is done among computing nodes which has relative cache line and which is responsible

for the relative physical address of the shared memory.

23

Shared Cache
Memory Memory #0

o] A A
B B
C Z
n—1 Z

G
a 2n R R
n G
2n—1 p G H
#1 #2
=
lr /r
\ | / 3n-1
= &
N7
N
#4 #3
- =
@ ©
@ 3n U
an| F F L
w L
X
4n-1
S5n —1 z

Figure 10: Mesh-NUMA architecture.

24

3 Design of shared memory architecture in\ computing environment

In this section, we introduce three shared memory architectures which we adopbimputing
environment, and explain about their behavior. At first, we describe our network model. We also
explain about interaction between network and computerdomputing environment. Next, we
explain about behavior of shared memory architectures in the point of characteristic factor we

described in section 2.

3.1 Specification of network and computing node

We show a configuration of each computing node and data flows through a network interface
between a computing node and wavelengths of photonic network (Fig. 11). Computing nodes that
compose\ computing environment are connected to photonic network with optical fibers. In this
study, we presuppose that each computing node has one CPU with the CPU-cache, level-2 cache
memory, and a main memory. A main memory is separated into two area. One is local memory
area. A local memory is used for storage of programming code and private data. Another one is
shared memory area. This area is used for storage of shared data. By using this area, data sharing
between computing nodes is done. It has also two types of L2 cache memory. One is for local
memory which is used for caching local memory. We call this cache memory local cache. Another
one is for shared memory which is used for caching shared memory. We call this cache memory
shared cache. We adopt cache coherency protocol to level-2 cache not to CPU-cache. Capacity of
L2 cache iC KB and cache line size isKB. Therefore, the number of cache line in the shared
cache is¢.

Next, we explain about network. The bandwidth of photonic netwoik Gbps and the prop-
agation delay time is ms/km. For example, in the case of the distance between two computing
nodes ard. km, it takess x I, 4 Lx8x10° us to transmit one cache line. There is a cache controller

Bx109
at a network interface. The cache controller works for keeping the cache coherency and mem-

ory consistency by invalidating a cache line, watching the shared cache and the shared memory,
managing the state of a cache line, sending/receiving a control message, updating the shared mem-
ory, responding to other computing node’s message, and so on. The cache controller also works
when the CPU accesses to the shared cache and shared memory. Therefore, the cache controller

performs very important part for the behavior of the shared memory architecture.

25

Main Memory

Shared
Memory

‘ n wavelengths are multiplexed

Figure 11: Network interface.

3.2 Design of control message

Next, we explain about control messages. We use these messages to control the behavior of a

shared memory architecture. The behavior of architecture is shown in Section 3.3.

Lock messageA computing node that receives this message prevents the locked cache line from

accessing.

Verify message After a computing node that has the requested cache line receives this message,

it attaches the state message to this message.
State messageThis message contains about the state of requested cache line.

Copy messageA computing node that receives this message has to send the requested cache line

to the computing node which sends this message.

Write back messageA computing node that receives this message writes back the requested

cache line to the shared memory.

26

Table 1: Parameters of shared memory architecture.

Transmission speed in a optical fiber 5 [us/km]
Access time between CPU-L2 cache t1 [us]
Access time between L2 cache—Main memory to [us]
Frame processing time at network interface ts [us]

Capacity of shared memory of each computing nodég¢ [MB]

Capacity of L2 cache memory C [KB]
Cache line size [[KB]
Bandwidth of network B [Gbps]
Number of node N

Invalidation message Computing nodes that receive this message invalidate the relevant cache

line which is on own shared cache.

3.3 Design of function and behavior

Now, we describe the design of shared memory architectures by mainly focusing on its function
and behavior. We adopt the write-back invalidation protocol for cache coherency to all architec-
ture. Because, this protocol is often adopted to parallel computing system. In a system which
adopts this protocol, there is only one CPU which has the latest cache line by invalidating other
CPUr's relevant cache line. This protocol realize cache coherency by this simple mechanism. This
protocol has also the least shared bus or network usage. So, this protocol is suitalderfgyut-
ing environment.

Before we explain about behavior of these architectures, we define some terminology. These

terminologies are for Ring-NUMA architecture and Mesh-NUMA architecture.

e Home memory

Home memory is a part of the shared memory that each computing node is responsible for.

e Home node
Home node is a computing node that is responsible for the own shared memory and cache

coherency between home memory and other shared cache.

27

e Ownership

Ownership is the right to update the cache line.

3.3.1 Ring-UMA architecture

This architecture organizes ring topology, and makes it easier to broadcast data and to realize
synchronization among computing nodes which composemputing environment. However,

when a computing node sends data, it requires at least the time to go round once on an optical
ring as propagation delay. This factor may influence the performance of this architecture. This
architecture has UMA type memory access model. So, the shared memory of each computing
node has same address space and then computing nodes share all of data which is on the shared
memory (See Fig. 8). Therefore, total capacity of the shared memafyG®. In this architecture,

each computing node does not require to use network when they access to shared data. They only
have to access to own shared memory because all of shared data exist on own shared memory. We
provide a wavelength to realize the snooping method for the cache coherency. We explain about

behavior of this architecture below.

Behavior of read access In the case of read access and the cache line is

C or D state: Each computing node has only to access to the shared cache and reads data. The

processing of cache coherency protocol is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access
to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the token and

sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

verify message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the

state message is attached to the control token, théf@isD state cache line in other

28

shared cache. If the state message is not attached, the relevant cache line does not

exist in other shared cache and this is same dsstate. If the state of other cache is

I or Cstate: Node A only has to copy the cache line from the shared memory and
read data. Then the state of the cache line is changéddtate. The cache

coherency protocol is not needed.

D state: Node A attaches the write back message to the control token. Node B,
which has theD state cache line, must respond this message, send back the
cache line to the shared memory, and change the state of this cache dine to
state. Then, node A copies the received data to the shared cache, sets the state

of cache line ta” state, and reads data from cache.

Behavior of write access In the case of write access and the cache line is

C state: Each computing node can access to the shared cache and update data. Invalidating other

shared cache is needed.

D state: Each computing node also has only to access to the shared cache and updates data.

Invalidating other shared cache is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access
to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the token and

sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the
state message is attached to the control token, théreisD state cache line in other

shared cache. If the state message is not attached, the relevant cache line does not

29

exist in other shared cache and this is same dsstate. If the cache line of other

shared cache is

I state Node A copies the received cache line to the shared cache and updates data.
Then node A changes the state of the cache line &tate.

C state: Node A updates the cache line. Then, invalidating other cache is performed.

D state: Node A attaches the write back message to the control token. Node B,
which has theD state cache line, must respond this message, write back the
cache line to the shared memory and change the state of this cache @ihe to
state. Then, node A copies the received cache line to the shared cache and

updates the data. Then invalidating other cache is performed.

Behavior of invalidating other cache Invalidating other shared cache and keeping cache co-

herency is realized as follows.
(1) Node A waits for the control token.

(2) Node A attaches the lock message to the token. Other computing nodes are prevented from

accessing to the relevant cache line.

(3) After going round on the optical ring, node A updates the cache line, changes the flate to

state and sends invalidation signal.

(4) After finishing invalidation, node A attaches the unlock message to the control token.

Write back the cache line to the shared memory

(1) Requested computing node attaches the lock message to the control token when it receives

the write back message.

(2) After going round on the optical ring, it writes back the cache line to the shared memory.

Then the state of the cache is changed'tstate.

(3) Then the unlock message is attached to the control token.

30

3.3.2 Ring-NUMA architecture

This architecture organizes ring topology, so Ring-NUMA architecture has similar characteristics

to Ring-UMA architecture. However, Ring-NUMA architecture has NUMA type memory access
model. Therefore, each computing node has a part of address space. Then, by merging each shared
memory, we can built one shared memory, thathas N GB capacity, and share whole address
space (See Fig. 9). A computing node may have to use network when they access to shared data.
It can access to the shared memory without using network when the requested data exists on own
shared memory. However, if the requested data exists on other shared memory, computing nodes
access to other shared memory through network. We also adopt the snooping method for cache
coherency. We explain about behavior of this architecture below. The behavior of this architecture

is similar to Ring-UMA architecture.

Behavior of read access In the case of read access and the cache line is

C or D state: Each computing node has only to access to the shared cache and reads data. The

processing of cache coherency protocol is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access
to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the token and

sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the
state message is attached to the control token, théf@isD state cache line in other
shared cache. If the state message is not attached, the relevant cache line does not

exist in other shared cache and this is same dsstate. If the state of other cache is

31

I or C state: Node A sends the copy message to home node. Home node sends the
cache line to node A. Then node A copies the received cache line to the shared

cache and reads data. Then the state of the cache line is changestie.

D state: Node A attaches the write back message to the control token. Node B,
which has theD state cache line, must respond this message and sends back the
cache line to the home node and changes the state of this cache dingtate.

Home node writes back the received cache line to the home memory. Then,
home node sends the cache line to node A. Node A copies the cache line to the
shared cache, sets the state of cache Ilin€' wtate, and reads data from the

shared cache.

Behavior of write access In the case of write access and the cache line is

C state: Each computing node can access to the shared cache and update the cache line. Invali-

dating other cache is needed.

D state: Each computing node also has only to access to the shared cache and update the cache

line. Invalidating other shared cache is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access
to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the control

token and sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the
state message is attached to the control token, théf@isD state cache line in other
shared cache. If the state message is not attached, the relevant cache line does not

exist in other shared cache and this is same dsstate. If the state of other cache is

32

I state Node A sends the copy message to home node. Home node sends the cache
line to node A. Then node A copies the received cache line to the shared cache

and writes data. Then the state of the cache line is changBdstate.

C state: Node A sends the copy message to home node. Home node sends the cache
line to node A. Then node A copies the received cache line to the shared cache

and updates data. Invalidating other shared cache is performed.

D state: Node A attaches the write back message to the control token. Node B,
which has theD state cache line, must respond this message and then sends
back the cache line to the home node and changes the state of this cache line to
C state. Then, home node receives the cache line, updates home memory, and

sends the cache line to node A. Then, invalidating other cache is performed.

Invalidating other cache The behavior of invalidating other cache is same as Ring-UMA archi-

tecture and we already described about this. So, we omit to explain about this process.

3.3.3 Mesh-NUMA architecture

This architecture organizes mesh topology and makes average propagation delay between com-
puting nodes shorter than that of ring topology. In this architecture, we adopt the directory method
for realizing the cache coherency protocol.

We introduce three states of the shared memory.

e U state
This state means that a block which is relevant to each cache line on home memory is not

cached.

e S state
This state means that a copy that is consistent with home memory exists on other shared

cache.

e [state
This state means that a copy that is not consistent with home memory exists on other shared

cache.

By using these states, we describe about behavior of this architecture below.

33

Behavior of read access In the case of read access and the cache line is

C or D state: Each computing node has only to access to the shared cache and read data. In this

case, the processing of cache coherency protocol is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access to
the shared memory to get the data. However, in this case, other computing nodes may have

the latest data. Therefore, computing nodes have to process the cache coherency protocol as

follows.

(1) Acomputing node (node A) requests to home node to copy the block of home memory

which contains required data.

(2) The home node verifies the state of requested block. If the state of block on home

memory is

U or S state: Home node sends back the requested block and sets the state of block

on the shared memory 9 state.

D state: Home node looks up directory and searches the computing node (node B)
which has the latest cache line. Then, the write back message is sent by home
node to node B. After node B writes back the cache line, home node sends the
requested block to node A and sets the state of block on the shared memory to
S state. Node A receives the latest data block, copies to the shared cache, sets

the cache line state {0 state and reads data.

Behavior of write access In the case of write access and the cache line is

D state: Each computing node has only to access to the shared cache and read data. The process-

ing of cache coherency protocol is not needed.

C state: Other computing node may have the relevant cache line. So, invalidating other shared

cache is needed. After invalidating other shared cache, the state of cache line i¥set to

state and updated.

I state: Required data does not exist on the shared cache. So, computing nodes have to access to

the shared memory to get the data. However, in this case, other computing nodes may have

34

the latest data. Therefore, computing nodes have to process the cache coherency protocol as

follows.

(1) A computing node (node A) requests to home node to copy the block of home memory

which contains required data.
(2) A home node verifies the state of requested block. If the state of block is

U state: Home node sends back the requested block and sets the state of block on

the shared memory t6 state.

S state: Other computing node may have the relevant cache line. So, invalidating
other shared cache is needed. After invalidating other shared cache, node A
receives the cache line from home node. Then node A sets the state of cache

line to D state and updates the data.

D state: Home node looks up directory and searches the computing node (node B)
which has the latest cache line. Then, write back request is sent by home node to
node B. After node B writes back the cache line, home node sends the requested
block and sets the state of block on the shared memo®y giate. Node A

receives the latest data block, sets the cache line stélestate and writes data.

Invalidating other cache Invalidation of other cache is processed as follows.
(1) A computing node (node A) requests ownership to home node.

(2) Home node looks up directory and searches computing nodes that have the relevant cache

line.

(3) Home node sends invalidation signal to other computing nodes that have the relevant cache

line. After that, home node waits for receiving Ack.

(4) Computing nodes that receive invalidation signal invalidate the relevant cache line and set

the state td state. Then, they send Ack to home node.

(5) After receiving Ack, home node transfers the ownership and the cache line to node A. Then,

the state of relevant home memory block is sebtetate.

35

4 Modeling and analysis with semi-Markov process

In this section, we model and analyze the shared memory architecture we designed in section 3.

For modeling and analyzing, we utilize semi-Markov process.

4.1 Semi-Markov process

In this study, we use semi-Markov process [7] for modeling the shared memory architecture. In
semi-Markov process, we can voluntarily set the residence time of each state. Therefore, we
consider that semi-Markov process is suitable for modeling the shared memory architecture where
a complicated request such as cache coherency control arises. We describe the definition of semi-

Markov process [8] below.

Definition: Let {X(¢),t > 0} be the stochastic process that has state space which is composed
by countable set. If X (¢)}, let the moments of the state changestbe< ¢; < to---
and putX,, = X(¢,). In this case, we call the stochastic procé¢ss(t),t > 0}, that

{X,|n=0,1,2,---} forms Markov process, as semi-Markov process.

To obtain the steady state probability for semi-Markov process, we can follow the same method
to solve the steady state probabilities for discrete time Markov chains. Indeed, at the moments
of state changes, the semi-Markov process behaves exactly as a discrete time Markov chains.
Concrete algorithm to obtain the steady state probabilities for semi-Markov process is as follows
[7,9].

(1) Compute the steady state probability for the discrete time Markov chain with state transition

matrixp = (p; ;), denoted here as.
(2) Compute the average state residence timpésr all statei in the semi-Markov process.

(3) Compute the steady state probability in the semi-Markov process by taking these residence

time into account, as follows.
min;

P= (1)
225 il
We can also obtain the escape probabilitigas follows.
P;
Ai = — (2)
i

36

Table 2: Given parameters for models.

Cache hit ratio h
Ratio of read access per main memory access r
Ratio of write access per main memory access w

Ratio of shared memory access per main memory access

4.2 Variable definition in model

We describe variables with given parameters in Table 2.
The probability Pp that a certain computing node has a certain cache line state is ex-
pressed as follows.

Pp = hws 3)

Then the probabilityP; that only one of other computing nodes has a cache line state and

other computing nodes do not have the cache line state is expressed as follows.
Py = (N —1)hws(1 — hws)N ! 4)

The probability P that a certain computing node has a certain cache ling gtate is ex-
pressed as follows.

Po = hrs (5)

Then the probabilityP. that at least one computing node except for itself has a cache life in
state is expressed as follows.

Po=1—(1—hrs)N7! (6)

The probabilityP, that there is no space for a new cache line is considered as follows. When
the cache memory has no space for the new cache line, an open space for new line is made by

invalidation signal from other computing nodes. So, the probalfititys expressed as follows.
Px = (1 - Pinv)N_l (7)

where P;,,, is the probability that a certain cache line is invalidated by other computing nodes.

The invalidation signal is sent when a certain computing node does write access to the relevant

37

cache line or does write access to the cache line which is not in its cache memory and also not in

D state. Therefore;,,, is expressed as follows.

Pipny = hPow + (1 —h)(1 — Pyw (8)

4.3 Modeling of shared memory architecture

We model shared memory architecturehicomputing environment by using semi-Markov pro-
cess. We make the state transition diagram in the point of view of CPU on each computing node.
In order to make the state transition diagram, we follow the behavior of each architecture we

designed in section 3.

4.3.1 Ring-UMA architecture

Fig. 12 shows the state transition diagram of the Ring-UMA architecture. The state 1 is compu-
tation state. That is, in this state, a CPU can execute instructions without any memory accesses.
Then, if a LOAD or STORE instruction is executed, the state is change to the state 2 or state 32.
In the state 32, a CPU accesses to the local memory, then changes the state to 1. When the state
changes to the state 2, it immediately changes to one of the{State8, 22, 23, 31} because this

state is transient state. In the case of read access, the state chafyes&d, and in the case of

write access, the state change$20, 23, 31}. That is, the state changes according to the behavior

we designed in section 3.3.1.

An access to the shared memory can be blocked when other computing nodes are accessing
to the same cache line. We can obtain this probabHityas follows. We presume that each CPU
access the cache line in random, so each cache line is acces%edl\bweover, the set of the
state that a CPU is accessing to the cache lind el 9, 20, 21, 25, 34}, let this set b&,,. So, an
access is blocked when at least one computing node tries to access the same line and the state is at
s € S,. Therefore, the probability; that each cache line is accessed is expressed as follows.

l
a] = c Z P 9
$€Sa

whereS, = {10, 19, 20, 21, 25, 34}. Therefore Pg is expressed as follows.

Pg=1—(1-o)N! (10)

38

A CPU must write back the cache line to the shared memory when other computing nodes send
the write back message. We can obtain this probab#ityas follows. The write back message
is sent when at least one computing node leave the state 10 or 25 by prob&fildy Ao5 and

change the state to 14 or 26 BYy. So, the probability>, is expressed as follows.

Pq = Pd()\m +)\25) (11)

4.3.2 Ring-NUMA architecture

Fig. 13 shows the state transition diagram of the Ring-NUMA architecture. Most of the state
transition and transition probabilities is same as the Ring-UMA architecture. So, we do not explain
about this architecture in detail. The important thing in the state transition diagram of Ring-NUMA
architecture is the residence time of stéité, 17, 32}. When a cache miss occurs, these states are
sure to transit, and at this state, the copy message is sent to home node. If the node that sends
the copy message is the home node, it only has to access to own shared memory. This probability
is % = % If the node that sends the copy message is not the home node, it has to wait for
receiving the cache line from the home node by probablli{y%. Therefore, the residence time

of the state{15, 17, 32} is obtained as follows.

1 1
Ms =17 =152 = ta g +7(N) (12)

wherer is the time to round the ring once.
Moreover, we can also obtain the probabiliy and P, in the same way described in section

4.3.1.
[
Qg = 6 Z Py (13)
SES)
whereS, = {10, 15,17, 21,22,23,27,32,37} in Fig. 13. ThereforePg is expressed as follows.
PB =1- (1 — OéQ)N_l (14)

ThenP, is expressed as follows.

Py = Pa(Mo + Ao7) (15)

39

Update other
shared memory,

Request to
write back

26
27
2l
28

Verify the state of line
on other cache

Replace
the other line

Access is blocked
by other nodes

Access is locked
by other nodes

Access to
private data

h*r*(1-Pg)

(1-s)/(1+Paq) Waiting for the token

(1-PB)*(1-h)*r

Access to
shared data

8

1-PB)*(1-h)*w
Waiting for the token

Access is blocked
by other nodes

Unlock
other nodes

Access is locked
by other nodes

1-Ps|
Verify the state of line
Qn local cache

Update the line and
Invalidation on other cache

Verify the state of line
on other cache

Replace
the other line

Access is blocked
by other nodes

Replace
the other line

Request to
write back

Figure 12: State transition diagram of Ring-UMA architecture.

40

‘w
-

Request to
write back

Verify the state of line

Replace
on other cache

the other line

Access is blocked
by other nodes

Access is locked
by other nodes

Access to
private data

h*r*(1-PB)

PB*r

Access to
shared data

Update other
shared memory,

Access is blocked
by other nodes

other nodes

Access is locked
by other nodes

Verify the state of line
Qn local cache

Update the line and
Invalidation on other cache

Verify the state of line

on other cache
1-Pc-Pd 10

11
Line is Invalid
Pc
12 Pd

Line is Clean

Replace
the other line

Access is blocked
by other nodes

Replace
the other line

Request to
write back

Line copy request

Figure 13: State transition diagram of Ring-NUMA architecture.

41

4.3.3 Mesh-NUMA architecture

Fig. 13 shows the state transition diagram of the Mesh-NUMA architecture. In this diagram, the
state 1 is also computation state and if a LOAD or a STORE instruction is executed, then state is
change to the state 2. Then the state changes according to the behavior we designed in section
3.3.3. When the state reaches at the stateé4}, the copy message or the invalidation message is

sent to a home node and enqueued by the probability
a3 = (Pc + Pd)()\4 +)\14). (16)

Therefore, when a message is sent to the home node, the average number of mi€ssathes

queue is derived as

N-1
K=Y ix(n-1Cias' (1 —ag)V 717, (17)
i=1

and the average waiting time in the queyés expressed as follows.

K x (n26 + n27)

I
<
|

= K x (120 + 130)
= Kx27 (18)

Therefore, the residence time at the stgtel4} is derived as
N =M =T+1 (19)

wherer is propagation delay between the home node and the node which sends the message.
When a node has the cache linedrstate and the home node sends the invalidation message
to this node by the probabilitj,g. Therefore, the probability?, that this node receives the

invalidation message is expressed as follows,
Pa = PoAy. (20)

When a node has the cache linelinstate and the other node accesses to the relative cache
line, the home node sends the invalidation message to this node by the probagilitherefore,

the probabilityPg that this node receives the write back message is expressed as follows,
P = Pplaog. (21)

42

When at least one node leaves the sfdtd 4} and a cache line i€' or D state in other shared

cache, the home node receives the copy message. Therefore, the proBapifitst the home

node looks up directory for the cache coherency protocol processing is derived as,

Pg=1-(1—(Pc+Pp)(Aa+)V L

Lastly, we show the residence time table at Table. 3

Table 3: The residence time tabjes].

State Ring-UMA Ring-NUMA Mesh-NUMA
1 0.002 0.002 0.002
2 0 0 t1
3 2T 27 0
4 t t (1— %)
5 0 0 (1—%)7
6 t1 0 T
7 0 t1 T
8 0.57 0.57 T
9 2T 27 T
10 T T t1 4+ to
11 0 0 T
12 to 0 to
13 0 0 t1
14 0 27 (1—)7
15 27 w2+ (1=)7 T
16 to ta T
17 0.57 St + (1= %) t1 + t
18 27 ta T
19 T 0.57 to
20 T 2T t1
21 T T ht1 + (1 — h)(t1 + t2)

43

Table 3: The residence time tabjes|.

State Ring-UMA Ring-NUMA Mesh-NUMA
22 27 T t
23 0.57 R s
24 27 21 t+ to
25 T 0.57 t1 + to
26 0 2T T
27 0 ’ -
28 0 0 t1 + to
29 2T 0 -
30 t2 0 T
31 h 2T t1+t2
32 | hti+(1—=h)(ti+1t2) | mlat+(l—x)7
33 i1+ t2 to
34 27 t
35 hty + (1 = h)(t1 + t)

36 t + to
37 27

4.4 Analysis by using semi-Markov process

In this section we explain about the procedure to obtain steady state probabilities for the analysis

and we show some numerical results.

4.4.1 Analytic approach

We cannot obtain steady state probabilities directly by solving semi-Markov models described
in section 4.1. Because some of transition probabilities depend on steady state probabilities in a
semi-Markov model. Therefore, we achieve these probabilities by giving an appropriate initiate

value and iterating calculation until convergence. We show the procedure below.

44

Home node writes back

Home node receives
the latest line

the latest line

(1-8)/(1+PA+PE+PG)
/

Home node sends
PA(1 +PA+PE+PG)\ e requsted cache line
Y Access to

private data

Home node request
to write back the latest line

Requested to
invalidate the line

Replace
the other line

Line copy request
to home node

Requested to
send back the line

L\

24(Send back line PE/(1+PA+PE+PG) s/(1+PA+PE+PG)

Access to
shared data

&

Pa/(1+PA+PE+P Line copy request
to home node

Home node request

Pd to write back the latest line

Replace
the other line

Receive ack

Requet home node
to send invalidation siganls

Home node sends

Send invaidation signals requsted cache line

Home node sends
invalidation signal

2
Request write back
\ 27 /
Requested to

send the cache line

Home node receives
acknowledgements

Home node writes back

Home node receives
the latest line

the latest line

Figure 14: State transition diagram of Mesh-NUMA architecture.

45

r/

N

(a) Ring topology (b) Mesh topology

Figure 15: Ring topology in physical

(1) Initialize transition matrix = (p; ;)

(2) Obtain the stationary distribution vector= {7;} in discrete time Markov chain by solving

the equationr = 7p
(3) Obtain steady state probabilities by expression (1)
(4) Update transition probabilities by usikd@ }

(5) Returnto 2 when the difference between the lafé5} and the previougP; } is larger than

given enough small value

4.4.2 Numerical analysis

We analyze our models by giving parameters appropriate values and show numerical results of

each architecture. At first, we explain about two scenarios we suppose.

Scenario 1 We built ring topology in physical onn computing environment, then establish ring
topology (Ring-UMA architecture and Ring-NUMA architecture) or mesh topology (Mesh-
NUMA architecture) in logical. In this scenario, we give the length of optical ring as pa-
rameterL in advance, so the length of optical ring network is independent to the number of

computing nodes.

Scenario 2 We built grid topology in physical oh computing then establish ring topology (Ring-
UMA architecture and Ring-NUMA architecture) or mesh topology (Mesh-NUMA archi-

46

N1

(a) Ring topology (b) Mesh topology

Figure 16: Mesh topology in physical

tecture) in logical. In this scenario, we give the distance between computing nodes as pa-
rameterL, so the length of ring in Ring-UMA and Ring-NUMA architecture is decided by

the number of computing nodes.

We also set various values in shared memory architecture for analysis. We show the values
at Table. 4. Moreover, a CPU uses LOAD instruction by 15 %, STORE instruction by 5 % and
other instructions by 80 %. Therefore, we set the parameter0.75 andw to 0.25. Then, we
analyze by changing the parameférthe number of nodes; ratio of shared memory access, and
L; length of ring (in scenario 1) or distance between computing nodes (in scenario 2).

Fig. 17 through Fig. 19 show the distributions of the steady state probabilities of Ring-UMA
architecture. In Ring-UMA architecturé’ g, Pog, P>1, Which are the states of processing cache
coherency protocol, are the largest. As the length of ring become longer (See Fig. 17), these
probabilities become larger. On the contrary, especi&lly, which is the state of accessing to
the local memory, becomes smaller and smaller. This is becausggthgg, 721, which are the
residence time, are decided by the length of ring, Bad P»1, P> are derived by weighting each
residence time. Therefore, as the length of ring becomes longer, these steady state probabilities
become larger, and occupy the majority of the distribution of steady state probabilities. However,

the increase of these probabilities is relatively small, at most about 10 %, on the contrary, the

a7

Table 4: Numerical values of parameters in models.

Clock frequency of a CPU 2 [GHz]
Access time between CPU-L2 cache 0.01 [us]
Access time between L2 cache—Main memory 1 [us]
Frame processing time at network interface 3 [us]

Capacity of shared memory of each computing nodég24 [MB]

Capacity of L2 cache memory 1024 [KB]
Cache line size 4 [KB]
Bandwidth of network 10 [Gbps]
Cache hit ratio 0.95

length of ring becomes a million times.

Next, we consider the case of increasing the number of computing nodes (See Fig. 18). Com-
pare the case aV = 4 with the case ofV is around 10, by increasing the number of node,

Py, Py, Po; become larger. This is because, when the number of nodes increases, the amount of
cache line becomes large and the probability which more then two computing nodes access to the
same cache line becomes large. So, steady state probabilities that the node processes the cache co-
herency protocol become large. However, if the number of nodes become too large, the blocking
probability Pz becomes large and influences on other steady state probabilities. Therefore, the
caseN > 30, steady state probabilities processing the cache coherency protocol become small as
the blocking probability becomes large.

Then we explain about the influence of the change (8ee Fig. 19). While is large value
around10~! or 10~2, steady state probabilities that are the state of processing cache coherency
protocol, are large. However, as the value becomes smaller, these probabilities become smaller
and P, and Ps2, which are the probabilities that these state compute and access to the local mem-
ory, become larger and total of these probabilities reaches about one and steady state probabilities
of the cache coherency protocol processing become small. Consequently, we consigleathat

have big impact on the performance of shared memory architecture.

48

0.25

0.2
2
2
-§ 0.15
o
3
3
>
§ 0.1
&
0.05
'23456, P
101112 13 14 1516 17 1
19 20 24 22
State Number 24 25 26 27 28 29 39 3
32 33 34
00.01km B0.1km O1km O10km B 100km
(a) Scenario 1
0.25
0.2
2z
2
a 0.15
3
a
3
3
]
3 01
©
3
]

0.05

1234
5674
9 101112131415 16 17 18
19 20 21

22
State Number 23 24 25 26 27 28 29 30 3; 2
33 34

D0.01km HO0.1km O1km C110km |

(b) Scenario 2

Figure 17: Distribution of steady state probability of Ring-UMA architectuve£ 16, s = 1072)

49

0.25

0.2
2
2
2 015
[
o
2
3
5 01
©
2
(2]
0.05
123 4
5 6
789 10”1213'4151617
1819 20 5y
22
State Number 23 24 25 26 27 28 29 30 o
32 33 34
CN=4 BN=8 ON=16 ON=32
(a) Scenario 1
0.25
0.2
2
z
2 015
[
a
2
k]
(2]
5 01
@
2
(2]

0.05

1234
56 7 8
9
1011121314 1516 17 18 19 99
21 22

State Number 23 24 25 95 27 28 29 49 P
33 34

ON=4 BN=16 ON=36 ON=64

(b) Scenario 2

Figure 18: Distribution of steady state probability of Ring-UMA architecture:(10~2, L =1km)

50

0.9

0.8
E 0.7
z
@ 0.6
a
2 05
&
3
©
2
%)

1 2 3 4
5
878910y
1213 14 1516 17 18
19 20 21 22
State Number 23 24 35 26 27 o8 29 30 3;
32 33 34
[B5=10"(-6) Ws=10"(-5) Os=10"(-4) O5=10"(-3) Ws=10"(-2) Ds=10"(-1) |
(a) Scenario 1

0.9

0.8
> 0.7
z
-5 0.6
a
f; 05
%]
>
® 0.4/
2
%]

123 4
56 7 8
9
1011 12 13141516 1718 19
20 21 9p

State Number 23 24 25 26 27 28 29 30 31 39 o
34

[B5=10"(-6) Ms=10"(-5) O5=10"(-4) Os=10"(-3) Ws=10"(-2) @s=10"(-1) |

(b) Scenario 2

Figure 19: Distribution of steady state probability of Ring-UMA architectuve=£ 16, L =1 km)
51

In Ring-NUMA architecture, we can also find these trend described above. Because, there
is few difference between Ring-UMA architecture and Ring-NUMA architecture. One important
difference is that when cache miss occurred, a computing node may send the copy message. How-
ever, the probability that cache miss occurs is low by probahilityh. Therefore, this difference
have little influence on the performance of Ring-NUMA architecture (See Fig. 20-Fig. 22).

Fig. 23 through Fig. 25 show the distributions of the steady state probabilities of Mesh-NUMA
architecture. In Fig. 24(a}%, Ps, Pr, Ps, which are the states of processing the cache coherency
protocol, are large. These states transit when computing nodes have a cache&’lig@aia and
write access to the relative cache line occurs. It takes time that is decided by propagation delay
and a request processing time at each computing node to perform the cache coherency. Therefore,
residence times of these states are large and as a result, steady probabilities of these become large.
On the contrary, in Fig. 23(b), when the distance between computing nodes is 0.01 km and 0.1 km,
Py is the largest. This is because, the propagation delay is very small. In addition, the number of
nodes passed by messages is lower than that of scenario 1. So, the total request processing time
also become lower. As a result;; becomes large. However, as the distance between computing
nodes becomes longer, the propagation delay becomes larger and this reduces the Falue of
and steady state probabilities of the cache coherency protocol processing become large.

When, the number of nodes increases, steady state probabilities for the cache coherency pro-
tocol processing®s, Ps, Pr, P11) become large. Because, as the number of nodes increase, the
total number ofC' state cache line and write access to cache lines are increase. As a result, for
keeping cache coherency, steady state probabilities for the cache coherency protocol processing
become larger anél,; becomes small. By keeping the valuesah small, P;; can be kept to the

probability about 0.9.

52

Steady State Probability

00.01km B0.1km O1km O10km B 100km

(a) Scenario 1

Steady State Probability

00.01km B0.1km O1km O10km

(b) Scenario 2

Figure 20: Distribution of steady state probability of Ring-NUMA architectuxe £ 16,s =
1072)

53

Steady State Probability

ON=4 BN=8 ON=16 ON=32

(a) Scenario 1

Steady State Probability

ON=4 BN=16 ON=36 ON=64

(b) Scenario 2

Figure 21: Distribution of steady state probability of Ring-NUMA architecture-(1072, L =1
km)

54

Steady State Probability

‘ Os=10"(-6) Ms=10"(-5) Os=10"(-4) Os=10"(-3) Ws=10"(-2) @s=10"(-1) ‘

(a) Scenario 1

0.9

0.8

0.7

0.6

0.5

Steady State Probability

1234
5673g
910
1112]3141516]7181920
2122 93 94

25 26 97
State Number 27 28 99 30 31 39 334 35 ¢
37

‘ Os=10"(-6) Ms=10"(-5) Os=10"(-4) Os=10"(-3) Ws=10"(-2) @s=10"(-1) ‘

(b) Scenario 2

Figure 22: Distribution of steady state probability of Ring-NUMA architectuve=£ 16, L =1
km)

55

Steady State Probability

00.01km B0.1km O1km O10km B100km

(a) Scenario 1

Steady State Probability

00.01km B0.1km O1km O10km

(b) Scenario 2

Figure 23: Distribution of steady state probability of Mesh-NUMA architectwVe=€ 16,s =
1072)

56

Steady State Probability

ON=4 BN=8 ON=16 ON=32

(a) Scenario 1

Steady State Probability

[EN=4 BIN=16 ON=36 ON=64 |

(b) Scenario 2

Figure 24: Distribution of steady state probability of Mesh-NUMA architectare (10~2, L =1
km)

57

Steady State Probability

[B5=10"(-6) Ws=10"(-5) Os=10"(-4) Os=10"(-3) Ws=10"(-2) @s=10"(-1)

(a) Scenario 1

Steady State Probability

[@5=10"(-6) Ws=10"(-5) Os=10"(-4) Os=10"(-3) Ws=10"(-2) @s=10"(-1)]

(b) Scenario 2

Figure 25: Distribution of steady state probability of Mesh-NUMA architectiWe=£ 16, L =1
km)

58

5 Evaluation

In this section, we evaluate each shared memory architecture by using the result of numerical
analysis obtained in section 4. Here we evaluate three performance measures, that is, network

utilization, average memory access time, and computation throughput.

5.1 Network utilization

We define the network utilization by following expression.

D,
B xn,

Network utilization= N x > (P,) (23)

whereV is the set of states where some data are sent/ang size of data transmitted at the
statev. From this expression, we find that a residence time of each state can influence on network
utilization. That is, if a residence time of a state is high, network utilization becomes low. In this
study, data is the message (32 byte) or the cache line (4 KByte). We ghamd D,, in each

architecture below.

¢ Ring-UMA architecture
V = {10, 15,19, 20,21, 25, 29, 34}
D1g = D15 = D19 = Doy = D21 = Da5 = D9 = 32 bit
D3y = 32 +4 x 8 x 10? bit

e Ring-NUMA architecture
V ={10,14,15,17,21,22,23,27, 31, 32, 37}
D1g = D14 = D31 = Da3 = Da3 = Dy7 = D31 = 32 bit
D15 = Di7 = D3y = D37 = 32 + 4 x 8 x 10? bit

e Mesh-NUMA architecture
V = {4,14,23,24,26,31}
Dy = D4y = Do3 = Dog = 32 bit
Doy = D3y =32 +4 x 8 x 10? bit

We find that network utilization is extremely low and less tH&m® in each scenario, in

all architecture. This is because, computing nodes use network when the processing of cache

59

coherency protocol is needed. However, the cache coherency protocol is bursty performed because
cache hit ratio is high and most of accesses to the shared memory are read access. Thus, an access
to the shared memory end up to be read hit and the read hit access does not require processing
of the cache coherency protocol. Moreover, as the length of ring or distance between computing
nodes become longer, network utilization becomes low because the propagation delay becomes
large.

Compare with case of Ring-UMA architecture and Ring-NUMA architecture in both scenario,
network utilization of Ring-UMA architecture is higher than that of Ring-NUMA architecture.

The reason is considered as follows. The copy message makes the network utilization relatively
small when we think about the entire execution time. That is, the steady state probability of the
state where the node sends the copy message makes other steady state probabilities small and this
influence on network utilization.

In Mesh-NUMA architecture, network utilization is lower than that of Ring-UMA/NUMA ar-
chitecture. In Ring-UMA/NUMA architecture, that we designed, transmitted data has to round
ring once and source node has to wait the data rounding optical ring. However, in Mesh-NUMA
architecture, computing nodes can directly communicate with each other and does not have to wait
the message for rounding the optical ring. So average propagation delay of Mesh-NUMA archi-
tecture is lower than that of Ring-UMA/NUMA architecture. As a result, the network utilization
of Mesh-NUMA architecture becomes higher than Ring-UMA/NUMA architecture. Comparing
with the case of scenario 1 and 2, the average propagation delay of scenario 1 is higher than that

of scenario 2. So, network utilization of scenario 1 is lower than the case of scenario 2.

60

Network Utilization

Network Utilization

1e-08

1e-09

1e-10

1e-11 | E
1e-12 | E
1e-13 . L .
0.01 0.1 1 10 100
Length of ring [km]
(@)s =102
1e-08 T
§=107(-2) —+—
s=108(-4)
5=10(-6) -
1e-09 B
-
—
Te-10 |]
1e-11 | B
1e-12 | B
,,,,,,,,,,,,,,,,,, [OOSR
1e-13 L L L
0.01 0.1 1 10 100
Length of ring [km]
(c)N =16

61

Network Utilization

Network Utilization

1e-08 T
N=4 —+—
N=8 -~
N=16 ------
1e-09 N=32 o 4
1e-10 E
le-11 E
1e-12 =} B & 4
,,,,,,,,,,,,,,,,,, K Ko e
1e-13 : : :
0.01 0.1 1 10 100
Length of ring [km]
(b)s =107
1e-08 T
s=10"
s=10"
s=10"
1e-09 E
I
~_
~_
te1OF . E
le-11 | E
Te-12 - Hooome e Hememe B Rt
1e-13 L L L
0.01 0.1 1 10 100

Length of ring [km]

(d) N = 32

Figure 26: Network utilization of Ring-UMA architecture in scenario 1.

Network Utilization

Network Utilization

1e-08

1e-09

1e-10

1e-11 | 7
1e-12 | 7
1e-13 L L
0.01 0.1 1 10
Length of ring [km]
(@)s =102
1e-08 T
s=107(-2) —+—
s=108(-4)
5=108(-6) -~
1e-09 !
—
7\’\\\
1e-10 | 7
1e-11 | !
1e-12 | !
,,,,,,,,,,,,,,,,,,,,,,,, U
1e-13 L L
0.01 0.1 1 10

Length of ring [km]

(c)N =16

Network Utilization

Network Utilization

1e-08
N=4 —+—
N=16 -
N=36 -
1e-09 N=64 & i
1e-10 ,
1e-11 | E
1@-12 e --oommmmmmmemmmennneean e Koo
1e-13 - -
0.01 0.1 1 10
Length of ring [km]
(b)s =107
1e-08 T
1e-09 | E
tetO b o \
1e-11 | E
1e-12 - oo Heoo ooy
1e-13 L L
0.01 0.1 1 10

Length of ring [km]

(d)N = 32

Figure 27: Network utilization of Ring-UMA architecture in scenario 2.

62

Network Utilization

Network Utilization

1e-08

1e-09

1e-10

1e-11

1e-12

1e-13

1e-14

1e-15

1e-16

1e-17

1e-08

0.01 0.1 1 10

Length of ring [km]

(@)s =102

1e-09

1e-10
1e-11
1e-12
1e-13
1e-14
1e-15

1e-16

1e-17
0.

Length of ring [km]

(c)N =16

100

Network Utilization

Network Utilization

1e-08
1e-09
1e-10
1e-11
1e-12

1e-13

fe-14

1e-15

1e-16

1e-17
0.

1e-08

01 0.1 1 10 100
Length of ring [km]

(b)s =10"°

1e-09

1e-10
1e-11
1e-12
1e-13
1e-14
1e-15

1e-16

1e-17
0.0

Length of ring [km]

(d) N = 32

Figure 28: Network utilization of Ring-NUMA architecture in scenario 1.

63

Network Utilization

Network Utilization

1e-08
N=4 —+—
N=16 -~
N=36 ---3*---
1e-09 | N=64 = 7
S S N
fet0 | e R, 3
S
.
1e-11 | 7
1e-12 | 7
1e-13 | 7
1e-14 ‘ ‘
0.01 0.1 1 10
Length of ring [km]
(@s=10"7
1e-08 T
§=10M(-2) —+—
s=10M(-4) =~
1000 L s=107(-6) -~ |
1e-10 | 774#”””””’*””*\\ 3
1e-11 | 7
1e-12 | N . 7
1e-13 | 7
fou1q E iy ST, L
01 0.1 1 10

Figure 29: Network utilization of Ring-NUMA architecture in scenario 2.

Length of ring [km]

(c)N =16

64

Network Utilization

Network Utilization

1e-08

N=4 —+—

N=16

N=36 ---*---
1e-09 N=64 ,
1e-10 | p
1e-11 | i
le-12 | i
1e-13 | p
1e-14 e T ST, e |

0.01 0.1 1
Length of ring [km]
(b)s = 10~°
1e-08 ;
1e-09 4
— —
1e-10 T i
le-11 | i
te-12 | - -]
1e-13 i
1e-14 T—— i S S L
0.01 0.1 1

Length of ring [km]

(dN =36

Network Utilization

Network Utilization

1e-12

1e-13

1e-14

1e-15

1e-16

1e-17

1e-18
0.

01 0.1 1 10 100
Length of ring [km]

(@)s =102

1e-12

1e-13

1e-14

1e-15

1e-16

1e-17

1e-18

0.01 0.1 1 10 100

Length of ring [km]

(c)N =16

Network Utilization

Network Utilization

1e-12

1e-13

1e-14

1e-15

1e-16

1e-17

1e-18
0.

01 0.1 1 10 100
Length of ring [km]

(b)s =10"°

1e-12

1e-13

1e-14

1e-15

1e-16

1e-17

1e-18

001 0.1 1 10 100

Length of ring [km]

(d) N = 32

Figure 30: Network utilization of Mesh-NUMA architecture in scenario 1.

65

Network Utilization

Network Utilization

1e-11 :

B
,,,,,,,,,,,,,,,,,,,,,,,, Kol o]
1e-12 | E
e
Ned —+— \
N=16 -~
N=36 -
N=64 &
1e-13 ‘ ‘
0.01 0.1 1
Length of ring [km]
(@)s =102
1e-11
|
1e-12 | 7
1e-13 | T
1e-14 | 7
1e-15 | T
rrrrrrrrrrrrrrrrrrrrrrrr Koo
Te16 b o qoni) v 1
s=107(-4)
s=10(-6) ---%---
1e-17 ‘ ‘
0.01 0.1 1

Length of ring [km]

(c)N =16

Network Utilization

Network Utilization

1e-15

1e-16

N=4 —+—
N=16 -
N=36 ------
N=64 &
1e-17 L L
0.01 0.1 1 10
Length of ring [km]
(b)s = 10~°
1e-11 T T
.
—
te-12 b —
1e-13 E
1e-14 E
1e-15 E
,,,,,,,,,,,,,,,,,,,,,,,, .
""" <Kol
1e16 b o qoni) v 3
s=10(-4)
0N(-6) -~~~
1e-17 L L
0.01 0.1 1 10
Length of ring [km]
d) N = 36

Figure 31: Network utilization of Mesh-NUMA architecture in scenario 2.

66

5.2 Average memory access time to the shared memory

We define the average memory access time, denoteg as, to the shared memory as following

expression.
tshare = T Xt + W X sy (24)
te = hx D> Ounu+(1—h)x > &m (25)
uERy, VERM
tsw = hX Z Oy + (1 - h) X Z Ou 1y (26)
ueWp, vEWnm,

wheret,, is the average memory access time of read ac¢gsss the average memory access
time of write accessRy, is the set of states which they can transit when the read access is cache
hit, R,, is the set of state which they can transit when the read access is caché&lfpisghe set

of states where they can transit when the write access is cach& jits the set of state which

they can transit when the write access is cache mjsis the probability, that the stateis passed

by the probabilitys,,.

We showt, andtg,, of each architecture below.

e Ring-UMA architecture

ter = M2+ Ppnoa+ hisi
+(1 — h)(n23 + P24 + 25 + Pa(n26 + m20) + Penar + (1 — Pe — Pa)m2s + Penzo +131)
tsw = T2+ Ppnz+ h(na+w(ns +ne) + (7 +mr + Bis + o + m20 + 121))
+(1 = h)(ns + Ppng + nio + (1 — ¢ — d)(m1 + Pz + 16)
+ c(m3 + Pymie + nig + 120 + 121)

+ d(m1a + ms + Pemie + 019 + 120 + 721))
¢ Ring-NUMA architecture

tsr = N2+ Ppnog + hnsg
+(1 = h)(n25 + Ppmze + na7 + Pa(nes + n31) + Penag
+ (1 — Pe — Pa)nso + n32+ Penzs + 134)
tsw = M2+ Ppng+ h(na+w(ns +n7) +7(n6 + Mo + Pen2o + M21 + 122 + 123))

+(1 = h)(n8 + Ppng + n1o + (1 — ¢ — d)(n11 + m7 + Pems + 05 + 17)

67

+ c(mz + ms + Peme + 121 + 122 + 1723)

+ d(m3 + ma + mis + Petie + 121 + m22 + 123))

¢ Mesh-NUMA architecture

tss = h(n2+nw)
+(1 = h)Py(ma + ms + me + mr7 + ms + Penig + 120)
+(1 = h)(1 = Pg)(ma + ms + Pemo + 120)

tow = h(m2+n3+ms+r(s + 06+ 17 +m1+ Pamz))
+(1 = h)Pa(n2 +n4 + 18 + 19 + mo + m1 + Pemz + M3
+(1 = h)Pe(n2 +na +m6 + 17 + 11 + Pema + ms

+(1 = h)(1 — P. — Pg)(n2 +na + 16 + 17 + m1 + Pemiz + mi3)

From these expressions, we can find that average memory access time is determined by residence
time of states in model. So, the length of ring (in scenario 1) or the distance between computing
nodes (in scenario 2) have big impact on average memory access time because the residence time
is decided by them.

Fig. 32—-Fig. 37 shows average memory access time of each architecture and each scenario.
As mentioned before, as the length of ring or the distance between computing nodes become
longer, average memory access time remarkably become larger. However, in Ring-UMA/NUMA
architecture, while the length of ring is small (less than 1 km), average memory access time is
larger than propagation delay. The reason is frame processing time at the network interface. We
set this value at s by referring our implemented prototype system. This value is large and while
the length of ring is short, total frame processing delay at each computing nodes occupies the most
of average memory access time.

As the number of increase, the number of nodes passed by data rounding optical ring become
large in scenario 2. So, in scenario 2, the cas®& of 64, the length of ring reaches 640 km and
this is very long. Therefore, Ring-UMA/NUMA architecture in scenario 2 takes time to access to
the shred memory longer than that of in scenario 1.

On the contrary, in Mesh-NUMA architecture (Fig. 36, Fig. 37), average memory access time

is smaller than that of Ring-UMA/NUMA architecture. This is because a CPU does not have to

68

700 :
600 |-N=16 ---%--- |
500 | T
400 | 7
300 |

200 -

Average Memory Access Time [us]
Average Memory Access Time [us]

100 |

0
0.01 0.1 1 10 100
Length of ring [km] Length of ring [km]
(@)s=10"2 (b)s=10"°

Average Memory Access Time [us]
Average Memory Access Time [us]

Length of ring [km] Length of ring [km]

©N =16 (d)N =32

Figure 32: Average memory access time of Ring-UMA architecture in scenario 1.

wait the data rounding optical ring, that is broadcasting, and can communicate each other directly.
So the propagation delay becomes smaller than that of Ring-UMA/NUMA architecture and aver-

age memory access time becomes small. Especially in scenario 2, the physical topology is grid
topology. So, average propagation delay become lower than that of scenario 1 that organize ring
topology in physical. Therefore, average memory access time in scenario 2 is lower than that of

scenario 1.

69

Average Memory Access Time [us]

Average Memory Access Time [us]

4000

3500

3000

2500

2000

1500

1000

500

0.01 0.1 1

Distance beween computing nodes [km]

(@)s =102

1
0.01 0.1 1

Distance beween computing nodes [km]

(c)N =16

Average Memory Access Time [us]

Average Memory Access Time [us]

4000

3500

3000

2500

2000

1500

1000

500

2000

Distance beween computing nodes [km]

(b)s = 10~°

0
0.01 0.1 1

Distance beween computing nodes [km]

(d) N = 36

Figure 33: Average memory access time of Ring-UMA architecture in scenario 2.

Average Memory Access Time [us]

Average Memory Access Time [us]

600

500

300

200

100

550
500
450
400
350
300
250
200
150
100

50

0.01

o T AR —
0.01

*

0.1 1
Length of ring [km]

(@)s =102

Length of ring [km]

(c)N =16

Average Memory Access Time [us]

Average Memory Access Time [us]

600

N
500

Length of ring [km]

(b)s = 10~°

100
Length of ring [km]

(d)N = 32

Figure 34: Average memory access time of Ring-NUMA architecture in scenario 1.

71

Average Memory Access Time [us]

Average Memory Access Time [us]

4000 4000
N=4 —+—
N=16 - N=16 -~
3500 7N=32 - 1 = 3500 7N=3(2S - B
N=64 E N=64 o
3000 |- R 2 3000 |- R
F
2500 |- g 3 2500 E
Q
<
2000 |- E S 2000 - E
g
1500 |- g 1500 - g
500 £ 1500
[}
1000 R & 1000 - R
sl 3 el
g z .
500 - & s 1 500 g o o b
e o . - B
0= L ok . PR
0.01 0.1 1 10 0.01 0.1 1 10

Distance beween computing nodes [km]

(@)s =102

Distance beween computing nodes [km]

(c)N =16

Average Memory Access Time [us]

Distance beween computing nodes [km]

(b)s = 10~°

Distance beween computing nodes [km]

(d) N = 36

Figure 35: Average memory access time of Ring-NUMA architecture in scenario 2.

72

Average Memory Access Time [us]

Average Memory Access Time [us]

N=4
N=

350 ’N=1g
N=32

300

250 -

Length of ring [km]

(@)s =102

280
260
240
220
200
180
160
140
120
100
80 F———
6

0
0.01

0.1 1 10 100
Length of ring [km]

(c)N =16

Average Memory Access Time [us]

Average Memory Access Time [us]

400
N=4 —+—
N=8 -
350 FN=16 - 7
N=32 &
300 E
250 - g

Length of ring [km]

(b)s = 10~°

400

350 -

300 -

250 -

150 L
0.01

Length of ring [km]

(d)N = 32

Figure 36: Average memory access time of Mesh-NUMA architecture in scenario 1.

73

Average Memory Access Time [us]

Average Memory Access Time [us]

35+ T
30 S
25 A

20 | E

Distance beween computing nodes [km]

(@)s =102

30 T

20 |- 1

5 e L

0.1 1
Distance beween computing nodes [km]

(c)N =16

Average Memory Access Time [us]

Average Memory Access Time [us]

50
45
40
35
30
25

20

40

35

30

25

20

Distance beween computing nodes [km]

10~

(b) s

0.1 1
Distance beween computing nodes [km]

(d) N = 36

Figure 37: Average memory access time of Mesh-NUMA architecture in scenario 2.

74

5.3 Computation throughput

We define the computation throughput by following expression. In this study, we use the compu-

tation throughput as MIPS (Million Instruction Per Second).

N
MIPS = (27)
0.8 xm1 +0.2 X 5 X tepare + 0.2 X (1 — 5) X tprivate

wheret,,i,qte IS the average memory access time to the local memory. We objaip.. as
follows.

tprivate = h Xt + (1 - h) X (tl + tg) (28)

Fig. 38—Fig. 43 show the computation throughput of each architecture. We assume that the
frequency of a CPU is 2 GHz. So, if a CPI (Clock Per Instruction) of this CPU is 10, this CPU
achieves 200 MIPS. Therefore, we set our first goal to achieve over 200 MIPS. Second goal is to
achieve 1000 MIPS.

In Ring-UMA architecture, as the value sfbecome lower, we can achieve high throughput,
on the contrary, while is large, we can not achieve our goal. The case isflarge, the cache
coherency protocol is performed and calculation is stalled. Moreover, the thingsthatlarge
value is that a CPU accesses to the shared memory many time. This means that data is frequently
rounding optical ring and it takes time to propagation delay. Therefore, whslarge, the length
of ring can also influence on the computation throughput badly. On the contrary,siglitaw, the
length of ring influence on the computation throughput so much and we can achieve our second
goal. In scenario 1 and the casesof 10, the difference between the caselof= 100 km and
L =1 km are less than 1 %. These facts described above can be found in scenario 2.

Ring-NUMA architecture has similar trend to Ring-UMA architecture in both scenario. In
Ring-NUMA architecture, the computation throughput decreases slightly compare to the Ring-
UMA architecture. This is because the accesses to the home memory can be processed when
cache miss occurs. However, the access to the home node rarely occurs because cache hit ratio is
high. Therefore, the computation throughput is not remarkably decreased.

We can found that Mesh-NUMA architecture achieves the high computation throughput and
this is about to reach 10000 MIPS. In scenario 1, the trend is similar to the case of Ring-UMA/NUMA
architecture of scenario 1. This is because they organize ring topology in physical. However,

Mesh-NUMA architecture organize mesh topology in logical, the average propagation delay is

75

10000

— 10000 ‘ — =
g L S 1000 X E
(%] 1000 |* (%]
9] I}
Q o
c c
2 2 100 4
o o
2 =4
@ k7
< 100F <
= = 10 F S E
= = A
— —
s=10"-2) —+— s=107(-2) —+—
s=107(-4) s=107(-4)
5=107(-8) ---*--- $=10%(-6) -~
10 L L L L L i L 1 L L L L L L
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of node Number of node
(@ L = 1km (b) L = 100km
100 T T T T T T T 10000
ok
2 — £
Q Q
(53 o
[jo)
» n "
c f=
=} 10 - K- S
° ©
=3 B =3
B KT B
@ . 2 ya
< * E ¥
2 2 /
g g /
L=0.01 km —+— / L=0.01 km —+—
L=1km L=1km
L=100km --%--- ¥ L=100km ---%---
1 Il Il Il Il Il Il Il 1000 Il Il Il Il Il Il Il
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Number of node Number of node
(c)s =102 (d)s =106

Figure 38: Computation throughput of Ring-UMA architecture in scenario 1.

lower than that of Ring-UMA/NUMA architecture. Therefore, we can achieve high computation
throughput, which is about to over 10000 MIPS, than that of Ring-UMA/NUMA architecture.

In scenario 2, we can achieve higher throughput than that of Ring-UMA/NUMA architecture of
scenario 2. The reason is the average propagation delay is small compare to the case of Ring-
UMA/NUMA architecture of scenario 2. They can establish the shortest wavelength path among
computing nodes. Therefore, in spitexil large, the influence of the distance between comput-

ing nodes is low and we can get higher computation throughput than that of Ring-UMA/NUMA
architecture. Especially the casesof 106, the computation throughput is beyond 10000 MIPS.

76

Million Instruction per Second

Million Instruction per Second

10000

1000 |

100

s=108(-2) —+—
S=10M4)

10 20 30 40
Number of node

() L = 1km

o =} g
L=0.01 km —+—
L=0.1km -~
L=1km ---%---
L10km 9 s s s s
10 20 30 40 50 60

Number of node

(c)s =102

Million Instruction per Second

Million Instruction per Second

10000 T T
s=107(-2) —+—
s=100(-4)
107(-6) K
1000 | P E
%
100 ,
10 | E
T 4
1 Il Il Il Il Il Il
10 20 30 40 50 60
Number of node
(b) L = 10km
10000 T T
1000 | 1
100 L L L L L L

10 20 30 40
Number of node

(dys=10"°

50

60

Figure 39: Computation throughput of Ring-UMA architecture in scenario 2.

77

Million Instruction per Second

Million Instruction per Second

10000

¥
1000 ¥ E
100 | E
—
$=107(-2) —+—
s=100(-4)
s=107(-6) ---3---
10 Il Il Il Il Il 1 Il
5 10 15 20 25 30 35
Number of node
(@)L = 1km
100
F— -
______ X
10 | e E
L=0.01km —+—
L=tkm -
L=10km ------
1 L L L L L ! L
5 10 15 20 25 30 35

Number of node

(c)s =102

Million Instruction per Second

Million Instruction per Second

10000

1000

100

10000

1000

........ K
ke
Lx " 7
-
3 o |
o
—
)
)
I I) ‘ ‘ ‘) |
5 10 15 20 e = =

Number of node

(b) L = 100km

L
15 20
Number of node

5 10

(dys=10"°

Figure 40: Computation throughput of Ring-NUMA architecture in scenario 1.

78

Million Instruction per Second

Million Instruction per Second

10000

s=108(-2) ——
§=107(-4)
s=104(-6) ------
1000 | e o
100 | E
A
10 I 1 L L - L
10 20 30 40 50 60
Number of node
100
e e ——.
K Koo e
10 | 1
o B =
L=0.01 km —+—
L=0.Tkm -
L=tkm -----
L=10km &
1 ! I L L L .
10 20 30 40 50 60
Number of node
—2
(c)s=10

Million Instruction per Second

Million Instruction per Second

10000 T T
s=107(-2) —+—
s=100(-4)
107(-6) T
1000 | L E
100 ,
10 | E
T -
1 Il Il Il Il Il Il
10 20 30 40 50 60
Number of node
(b) L = 10km
10000 T T
1000 | 1
100 L L L L L L

10 20 30 40 50
Number of node

(dys=10"°

60

Figure 41: Computation throughput of Ring-NUMA architecture in scenario 2.

79

Million Instruction per Second

Million Instruction per Second

10000

¥
1000 ¥ E
100 | E
—
$=107(-2) —+—
s=100(-4)
s=107(-6) ---3---
10 Il Il Il Il Il 1 Il
5 10 15 20 25 30 35
Number of node
(@)L = 1km
100
F— -
______ X
10 | e E
L=0.01km —+—
L=tkm -
L=10km ------
1 L L L L L ! L
5 10 15 20 25 30 35

Number of node

(c)s =102

Million Instruction per Second

Million Instruction per Second

10000

1000

100

10000

1000

........ -k
ke
L’ |
[
] o — |
-)
)
, ‘ w ‘) ‘
10 15 20 25 " s
Number of node
(b) L = 100km

10

L
15 20
Number of node

(dys=10"°

Figure 42: Computation throughput of Mesh-NUMA architecture in scenario 1.

80

Million Instruction per Second

Million Instruction per Second

10000

1000

100

10

0
s=1002) —+—
10N)
§=10"(-6) %
o b B |
K
o -
e
o / | | ‘ ‘ ‘
10 20 30 - o .

Number of node

() L = 1km

20 30 40 50 60
Number of node
(c)s =102

Million Instruction per Second

Million Instruction per Second

100000 , :
0M-2) —+—
4)
6)
10000 | [ﬂ
e
1000 P]
e
1of]
Y
10 !) ‘ ‘ ‘ |
10 20 30 0 = -
Number of node
(b) L = 10km
100000 : :
L=10km &
/‘ﬁ
10000 |)
1000 E— . ‘ ‘ ‘ |
10 20 30 . = -
Number of node
(d)s=10""°

Figure 43: Computation throughput of Mesh-NUMA architecture in scenario 2.

81

6 Conclusion

In this thesis, we designed and evaluated some shared memory architectu@miputing en-
vironment that we proposed as new distributed computing environment. We confirm that shared
memory architecture in computing environment have good performance.

We designed three architecture; Ring-UMA architecture, Ring-NUMA architecture and Mesh-
NUMA architecture in section 3. We investigated the characteristic factors that influence on the
performance of shared memory architecture and picked up four factors; topology, memory access
model, cache coherency protocol, and realization method for cache coherency protocol. By taking
these factors into account, we designed control messages and behavior of the shared memory
architecture.

Then we modeled and analyzed shared memory architectures we designed. We utilized semi-
Markov process for modeling and analyzing. By modeling these architecture, we made state
transition diagrams of each architecture. And by using these state transition diagrams, we analyzed
and obtained the distribution of the steady state probability.

At last, by utilizing steady state probabilities, we evaluated shared memory architectures we
designed. As a result, we found that network utilization was very low in all architecture. So,
congestion or packet loss which often happens on the Internet does not occur. Therefore, we
confirm that we can provide high reliability communication line to computing nodes. On the other
hand, the average memory access times is relatively large and we found that this may be influenced
on the network. However, we can achieve high computation throughput in each architecture by
keeping the ratio of access to the shared memory low. Especially, we can achieve high computation
throughput in Mesh-NUMA architecture.

While Mesh-NUMA architecture can achieve the high computation throughput, we do not
take into account about the number of wavelength for designing. That is, we assume that we
can freely use wavelength path with no restriction. However, the wavelength is actually limited
resources and the number of wavelength which each computing node can use is restricted. So, we
have to investigate a new architecture by taking into account this. In addition, we do not consider
about the synchronization among computing nodes. However, synchronization among computing
nodes is very important. So, a new synchronization method suitabledomputing is required.

Moreover, keeping the ratio of access to the shared memory is realizable but it requires for the

82

assistance of application level. In order to realize this problem, we investigate and develop a new

compiler which is suitable fok computing and supports parallel application.

83

Acknowledgements

| would like to express my deepest gratitude to my supervisor Professor Masayuki Murata at
Osaka University, who introduced me to the area of computer networks including the subjects in
this thesis and support my studies. His excellent guidance and thoughtful advice that | could have
through my studies are irreplaceable and invaluable my fortune and will help me in my life.

| am most grateful to Associate Professor Ken-ichi Baba at Osaka University for his much
appreciated comments and support. All of my works would not have been possible without his
worthwhile suggestions and encouragement.

| wish to express my sincere appreciation to Professors Koso Murakami, Makoto Imase, Teruo
Higashino, Hirotaka Nakano, and Tetsuji Satoh of Osaka University, for their appropriate guid-
ance.

| appreciate Associate Professor Noriyuki Fujimoto at Osaka University, Dr. Akira Okada
at NTT Photonics Laboratory and Dr. Hiroaki Harai at National Institute of Information and
Communications Technology for their useful advices and discussion.

| am also indebted to Associate Professor Naoki Wakamiya, Associate Professor Go Hasegawa,
Assistant Professor Shin’ichi Arakawa and Assistant Professor Masahiro Sasabe at Osaka Univer-
sity for their helpful comments.

| want to heartily thank my friends and colleagues in the Department of Information Network-
ing of Osaka University.

Finally, | wish to express my warmest thanks to my parents, grandparents and sisters for their

unconditional love, support, patience and understanding.

84

References

[1] Lou Berger Ed., “Generalized Multi-Protocol Label Switching (GMPLS) Signaling Func-
tional Description, TETF RFC3471Jan. 2003.

[2] Hirohisa Nakamoto, Ken-ichi Baba, and Masayuki Murata, “Proposal and Evaluation of
Realization Approach for a Shared Memory System i@omputing Environment,” ifPro-
ceedings of the forth International Conference on Optical Internet (COIN2@@5)90-95,

May 2005.

[3] Eiji Taniguchi, Ken-ichi Baba, and Masayuki Murata, “Implementation and Evaluation of
Shared Memory System for Establishik@omputing Environment,” ifProceedings of 10th
OptoElectronics and Communications Conference (OECC2@p50-21, July 2005.

[4] Message Passing Interface availablétp://www-unix.mcs.anl.gov/mpi/

[5] MaiImoto, Eiji Taniguchi, Ken-ich Baba, and Masayuki Murata, “Implementation and Eval-
uation of MPI Library with Globus Toolkit for Establishiny Computing Environment,” in
Proceedings of 6th Asia-Pacific Symposium of Information and Telecommunication Tech-

nologies (APSITT 2005pp. 421-426, Nov. 2005.
[6] Hideharu AmanoParallel ComputersShokodo, 1996. (in Japanese).

[7] Oudewijn R. Haverkort, PERFORMANCE OF COMPUTER COMMUNICATION SYS-
TEMS WILEY, 1998.

[8] Masaaki HaradaRrobability Model McGraw—Hill, 1977. (in Japanese).

[9] Kazuki Joe and Jun Naito, “An Analytic Model for the Performance of the ASURA Cluster
using a Semi—Markov Processinggchnical Report of IPSARC-1992-097), pp. 65—72,
1992. (in Japanese).

[10] John L. Hennessy and David A. PattersGomputer Architecture: A Quantitative Approach
Morgan Kaufmann, 1996.

[11] Gary S. Delp and David J. Farber and Ronald G. Minnich and Jonathan M. Smith and Ming-
Chit Tam, “Memory As A Network AbstractionJEEE Network Magazinel991.

85

[12] Hirohisa Nakamoto, “Proposal and Evaluation of Realization Approach for a Shared Mem-

ory System in\ Computing Environment,” Master’s thesis, Osaka University, 2005.

[13] Gary S. Delp, Adarshpal S. Sethi, and David J.Farber, “An Analysis of Memnet: An Ex-
periment in High-Speed Shared-Memory Local Networking A@M SIGCOMM Computer
Communication Reviewol. 18, pp. 165-174, ACM Press, 1988.

[14] Hirohisa Nakamoto, Ken-ichi Baba, and Masayuki Murata, “Shared memory access method
for a lambda computing environment,” Proceedings of Optical Netwrok and Technology

Conference 2004 (OpNeTech200dp. 210-217, Oct. 2004.

[15] William A. Wulf and Sally A. McKee, “Hitting the Memory Wall: Implications of the Obvi-
ous,” Computer Architecture Newsol. 23, no. 1, pp. 20-24, 1995.

[16] Norihisa Suzuki, Shigenori Simizu, and Nagatsugu Yamanouahilmplementation of a

Shared Memory Multiprocesso€EORONA PUBLISHING, 1993. (in Japanese).

[17] Kiyofumi Tanaka, Takashi Matsumoto, and Kei Hiraki, “Quantitative Eavaluation of Scal-
able Directory Schemes in Hardware Distribured Shared Memoeghnical Report of IPSJ
(ARC-2000-129), pp. 7-12, 2000. (in Japanese).

[18] Akira Okada, Hiromasa Tanobe, and Morito Matsuoka, “Dynamically reconfigurable real—
time information—sharing network system based on a cyclic—frequencyAWG and tunable—
wavelength lasers,” iRroceedings of 29th European Conference on Optical Communication
(ECOC2003)2003.

[19] Hiromi Okada,nformation Network Baifukan, 1994. (in Japanese).
[20] Akihiro Hashimoto,Computer ArchitectureShokodo, 1995. (in Japanese).
[21] Hideo Miyahara and Yuji OieComputer NetworkKyoritsu Shuppan, 1999. (in Japanese).

[22] Thomas DeFanti, Maxine Brown, Jason Leigh, Oliver Yu, Eric He, Joel Mambretti, David
Lillethun, and Jeremy Weinberger, “Optical Switching Middleware for the OptIPteICE
Transaction on Communicatipuol. E86-B, pp. 2263-2272, Aug. 2003.

86

