
Master’s Thesis

Title

Design and Evaluation of Shared Memory Architecture

for WDM-based λ Computing Environment

Supervisor

Professor Masayuki Murata

Author

Eiji Taniguchi

February 15th, 2006

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Design and Evaluation of Shared Memory Architecture

for WDM-based λ Computing Environment

Eiji Taniguchi

Abstract

Grid computing, where we can compute large scale problems which we cannot solve with only

single computer, has been studied and developed actively. We usually treat volume data in Grid

computing environment, so we need to transfer such data in high speed and with high reliability.

In conventional TCP/IP in the Internet, it is difficult to achieve good performance because of

overhead caused by packet processing and retransmission of lost packets.

So, we have proposedλ computing environment. Inλ computing environment, network

switches and computing nodes are connected each other with optical fibers, and by establishing

optical wavelength paths between end hosts, we can offer high speed and high reliable commu-

nication pipe for data sharing or data exchanging between computing nodes. Here we need to

consider shared memory architecture to solve large scale problems utilizing communication pipe

in λ computing environment. That is, it is different from the architecture of the conventional

multi-processor system or cluster system because computing nodes are located in a wide area in

λ computing environment. So that the performance of networks affects the performance of shared

memory and computing power.

In this study, we model and analyze the shared memory architecture inλ computing envi-

ronment, and we show how the network topology and the control method for cache coherency

influence the performance. Here we use semi-Markov process which enable us to set state resi-

dence time for modeling, and evaluate what type of shared memory architecture is suitable forλ

computing environment. As a result, we found that we could achieve high performance with some

parameter regions or conditions in each shared memory architecture.

1

Keywords

λ computing environment

Shared memory architecture

Cache coherency

Semi–Markov process

2

Contents

1 Introduction 8

2 λ computing environment: A new distributed computing environment 11

2.1 Basic technology . 11

2.2 Requirement to realize distributed computing environment 11

2.2.1 Data sharing method . 13

2.2.2 Data transmission method . 14

2.3 Characteristic factor of shared memory architecture 14

2.3.1 Network topology . 16

2.3.2 Memory access model . 16

2.3.3 Cache coherency protocol . 18

2.3.4 Realization method for cache coherency protocol 20

2.4 Proposed shared memory architecture . 21

3 Design of shared memory architecture inλ computing environment 25

3.1 Specification of network and computing node 25

3.2 Design of control message . 26

3.3 Design of function and behavior . 27

3.3.1 Ring-UMA architecture . 28

3.3.2 Ring-NUMA architecture . 31

3.3.3 Mesh-NUMA architecture . 33

4 Modeling and analysis with semi-Markov process 36

4.1 Semi-Markov process . 36

4.2 Variable definition in model . 37

4.3 Modeling of shared memory architecture . 38

4.3.1 Ring-UMA architecture . 38

4.3.2 Ring-NUMA architecture . 39

4.3.3 Mesh-NUMA architecture . 42

4.4 Analysis by using semi-Markov process . 44

3

4.4.1 Analytic approach . 44

4.4.2 Numerical analysis . 46

5 Evaluation 59

5.1 Network utilization . 59

5.2 Average memory access time to the shared memory 67

5.3 Computation throughput . 75

6 Conclusion 82

Acknowledgements 84

References 85

4

List of Figures

1 Brief overview ofλ computing environment. 9

2 Established wavelength paths. 12

3 Virtual ring topology. 14

4 Mesh topology can be dynamically changed. 15

5 Memory access models. 17

6 State transition diagram of the basic write-back invalidation protocol. 20

7 Behavior of the write-back invalidation protocol. 21

8 Ring-UMA architecture. 22

9 Ring-NUMA architecture. 23

10 Mesh-NUMA architecture. 24

11 Network interface. 26

12 State transition diagram of Ring-UMA architecture. 40

13 State transition diagram of Ring-NUMA architecture. 41

14 State transition diagram of Mesh-NUMA architecture. 45

15 Ring topology in physical . 46

16 Mesh topology in physical . 47

17 Distribution of steady state probability of Ring-UMA architecture (N = 16, s =

10−2) . 49

18 Distribution of steady state probability of Ring-UMA architecture (s = 10−2,

L =1km) . 50

19 Distribution of steady state probability of Ring-UMA architecture (N = 16, L =1

km) . 51

20 Distribution of steady state probability of Ring-NUMA architecture (N = 16, s =

10−2) . 53

21 Distribution of steady state probability of Ring-NUMA architecture (s = 10−2,

L =1 km) . 54

22 Distribution of steady state probability of Ring-NUMA architecture (N = 16,

L =1 km) . 55

5

23 Distribution of steady state probability of Mesh-NUMA architecture (N = 16, s =

10−2) . 56

24 Distribution of steady state probability of Mesh-NUMA architecture (s = 10−2,

L =1 km) . 57

25 Distribution of steady state probability of Mesh-NUMA architecture (N = 16,

L =1 km) . 58

26 Network utilization of Ring-UMA architecture in scenario 1. 61

27 Network utilization of Ring-UMA architecture in scenario 2. 62

28 Network utilization of Ring-NUMA architecture in scenario 1. 63

29 Network utilization of Ring-NUMA architecture in scenario 2. 64

30 Network utilization of Mesh-NUMA architecture in scenario 1. 65

31 Network utilization of Mesh-NUMA architecture in scenario 2. 66

32 Average memory access time of Ring-UMA architecture in scenario 1. 69

33 Average memory access time of Ring-UMA architecture in scenario 2. 70

34 Average memory access time of Ring-NUMA architecture in scenario 1. 71

35 Average memory access time of Ring-NUMA architecture in scenario 2. 72

36 Average memory access time of Mesh-NUMA architecture in scenario 1. 73

37 Average memory access time of Mesh-NUMA architecture in scenario 2. 74

38 Computation throughput of Ring-UMA architecture in scenario 1. 76

39 Computation throughput of Ring-UMA architecture in scenario 2. 77

40 Computation throughput of Ring-NUMA architecture in scenario 1. 78

41 Computation throughput of Ring-NUMA architecture in scenario 2. 79

42 Computation throughput of Mesh-NUMA architecture in scenario 1. 80

43 Computation throughput of Mesh-NUMA architecture in scenario 2. 81

6

List of Tables

1 Parameters of shared memory architecture. 27

2 Given parameters for models. 37

3 The residence time table [µs]. 43

3 The residence time table [µs]. 44

4 Numerical values of parameters in models. 48

7

1 Introduction

Recently, the demand for large scale computation such as the gene information analysis, image

processing and the global environment simulation that treats the volume data is arising. In order to

execute large scale computation, the Grid computing technology has been actively studied and de-

veloped. We expect to make distributed parallel processing and to calculate effectively by utilizing

CPUs and storage of computing nodes connected by networks in Grid computing environment. In

Grid computing environment, TCP/IP is usually used for communication such as control messages

and data exchanges between computing nodes. However TCP/IP has some harmful effects in such

environment. For example, some packets may be lost on the route from the source node to the

destination node because of traffic congestion caused by own volume data transmission on the

high-speed network. So that it needs retransmission of lost packets and then causes degradation

of network throughput and computing throughput on Grid.

To satisfy the demand in Grid computing, the new technology that enables high-speed and high

reliable communication is needed, so that research in optical domain has been studied in recent

years. Especially, the WDM (Wavelength Division Multiplexing) technology that use multiplexed

light wavelengths in optical domain is focused on. And IP over a WDM network has been studied

and developed to provide high-speed transmission on the Internet based on WDM technology.

Moreover, standardization of the routing technology of the Internet, called GMPLS (Generalized

Multi-Protocol Label Switching), which is the communication technology that uses various optical

technologies for a lower layer than the WDM technology, has also been advanced in IETF [1].

However, many such technologies presuppose the existing Internet technology. That is, an

IP packet is treated as a degree of granule treating information, and it is made into the target

for research and development of how to carry it at high speed on a network. Therefore, as long

as architecture based on packet switching technology is focused on, realization of high quality

communication to each connection will be very difficult. In order to execute distributed computing

effectively with Grid technologies which realize a volume data transfer on the photonic network,

new architecture which is different from conventional architecture is required.

Therefore, we consider that we establish broadband wavelength paths between computing

nodes and then provide these paths for end users as a realization method to achieve high-speed

and high reliable communication in Grid computing environment. That is, it is possible to provide

8

Optical fiber
Wavelength path

Optical s w itch

Figure 1: Brief overview ofλ computing environment.

an end user with ultra high speed and high reliable communication pipe by building a photonic

network that uses established fibers, or newly laid fiber if needed, and by utilizing wavelength

paths multiplexed in the fibers as the minimum particle size for information exchanges. Thus we

propose a new distributed computing architecture which we callλ computing environment. In

λ computing environment, by connecting computing nodes and optical switches on the photonic

network with the optical fibers each other (See Fig. 1), we can provide exclusive wavelength

paths and then computing nodes perform distributed computing by using these paths as exclusive

communication pipe. Inλ computing environment, we can realize high-speed and high reliable

data exchanging or data sharing because computing nodes utilize not conventional TCP/IP network

but utilize beforehand established wavelength paths as exclusive communication channel.

Related works [2, 3] report which evaluate the architecture that realize distributed parallel

computing inλ computing environment. Both presume shared memory architecture for data shar-

ing that is required for parallel computing. In [2], they make the virtual optical ring network

connected wavelength paths between computing nodes, and utilize the ring network in itself as a

shared memory. Shared memory architecture introduced in [3] are more realistic architecture than

9

that of [2]. In [3], every computing node has own shared memory and the data on the shared mem-

ory is the same in shared memory over all computing nodes. This shared memory is connected to

photonic network, and updated data on the shared memory is reflected to the shared memory on

other computing nodes through photonic network.

However, these studies does not discussed the influence of network characteristics or cache

coherency protocols to the performance of the architecture though these evaluated shared memory

architecture based on execution time of parallel application programs through simulation or as an

example of implementation on actual computers. Inλ computing environment, an architecture

which assumed to have a shared memory makes it easy for us to make a programming coding of

parallel computing applications, however it needs longer time for data sharing than a conventional

multi processor computer or a cluster computer with SDSM (Software Distributed Shared Mem-

ory) because computing nodes are located in a wide area. Therefore, data sharing processing may

influence to the computation performance. So, we have to consider data sharing methods, such

as access methods to a shared memory and cache coherency protocols more than conventional

multi processor systems. Moreover, we have to understand how the characteristics of the network,

network topologies and cache protocols have an impact on the shared memory architecture.

In this study, we design some types of shard memory architecture in terms of network topology,

memory access model and cache protocol inλ computing environment, and we model and analyze

these architecture by using semi-Markov process which enable us to set state residence time for

modeling. And through numerical example, we clarify how the network topology and the control

method for cache coherency influence the performance and evaluate what type of shared memory

architecture is suitable forλ computing environment.

The rest of the thesis organized as follows. In Section 2, we explainλ computing environ-

ment that we proposed. In Section 3 we design the shared memory architecture forλ computing

environment and in Section 4 we model and analyze the model with semi-Markov process. Then

we show the evaluation through numerical examples in Section 5 and we conclude this study in

Section 6.

10

2 λ computing environment: A new distributed computing environment

As described in section 1, the performance of shared memory architecture may be influenced by

network topologies, memory access models, cache coherency protocols and so on inλ computing

environment where computing nodes are located in a wide area not like a conventional multi

processor system. Therefore, we cannot sweepingly decide what types of architecture is suitable

for λ computing environment.

In this section, in order to investigate which architecture is suitable forλ computing environ-

ment, we firstly explain aboutλ computing environment that we have proposed as new distributed

computing environment and about the reason why we presume shared memory architecture. Sec-

ondly, we explain about overview of our proposed shared memory architectures. Then, we denote

that considering factors such as network topologies, memory access models, cache coherency pro-

tocols exist inλ computing environment and how they can influence on the performance of shared

memory architecture.

2.1 Basic technology

λ computing environment is based on WDM technology. Computing nodes and optical switches

that composeλ computing environment are connected with optical fibers. In a optical fiber, 100 or

more wavelengths, 1000 or more in a future, are multiplexed by WDM or DWDM (Dense WDM)

technology and provide broadband communication line for computing nodes. WDM technology

is usually considered as a lower layer technology that realize GMPLS and IP over WDM network.

In this study, we use WDM technology for establishing wavelength paths and utilize their paths as

exclusive communication line.

Therefore inλ computing environment, we can realize high-speed and high reliable data ex-

changing or data sharing because computing nodes utilize not conventional TCP/IP network but

utilize beforehand established wavelength paths as exclusive communication channel. We show

the detail of established wavelength paths in Figure 2.

2.2 Requirement to realize distributed computing environment

Next, we explain about how distributed computing is realized inλ computing environment.

11

Figure 2: Established wavelength paths.

12

2.2.1 Data sharing method

When we try to realize and perform distributed computing inλ computing environment, we have

to consider that how data sharing among computing nodes is realized. We suppose two ways to

realize data sharing. One is shared memory and another is distributed memory.

In distributed memory architecture, MPI (Message Passing Interface) [4] is usually used for

realizing data sharing and data exchanging in parallel application. One representative implemen-

tation is MPICH which is often used over TCP/IP network. When we want to share a data in a

MPI program, we usually use two typical function; MPISend and MPIRecv like this.

shared int x;

if (source_node) then

MPI_Send(&x, 1, MPI_INT, destination_node, MPI_ANY_TAG,

MPI_COMM_WORLD);

else /* if destination_node */

MPI_Recv(&x, 1, MPI_INT, source_node, MPI_ANY_TAG,

MPI_COMM_WORLD, &stat);

In this code, in order to realize data sharing, source node send the shared variablex by explicitly

calling function, MPISend, and destination node receives the data and stores it to the shared

variablex by MPI Recv.

On the other hand, in a shared memory architecture, we have only to use substitute expression

like this

shared int x;

x = 100;

Only executing this code, data sharing is implicitly done over all computing nodes. If other com-

puting nodes want to use this value, they only have to read the data fromx.

In this study, we focus on shared memory architecture. However, data sharing realized by

message passing is also important because there is a lot of parallel application which use MPI.

By realizing message passing architecture inλ computing environment, we can reuse MPI pro-

grams without code modification and execute them in photonic network. One example of message

passing architecture inλ computing environment is introduced, implemented and evaluated in [5].

13

Figure 3: Virtual ring topology.

2.2.2 Data transmission method

Next, we explain about how the data updated at one node is reflected to other computing node.

As described above, we utilize virtual channels for distributed computing. When we update data,

the updated data is put onto virtual channels and send to other computing node. This proceeds

implicitly in background work whenever we update shared data.

In the case that the virtual channels can constitute a virtual ring topology (See Fig. 3), the

updated data go round on a ring, and all computing node can receive this data. So, we can realize

updates among computing nodes by broadcasting data on the ring inλ computing environment. On

the other hand, the virtual channels can also constitute mesh topology which can be dynamically

changed by selecting appropriate wavelengths multiplexed in optical fibers. Then, the virtual

channels can organized optimal topology for data transmission and multicast when data sharing is

needed (See Fig. 4). In this case, each computing node can directly communicate with each other

and share the updated data.

2.3 Characteristic factor of shared memory architecture

As described in section 2.2.1, we focus on a shared memory architecture. So, we introduced what

characteristic factors exist in shared memory architecture and how they can affect on the shared

memory architecture. Here we focus on four characteristic factors, that is, network topology,

memory access model, cache coherency protocol, and realization method for cache coherency

protocol.

14

Figure 4: Mesh topology can be dynamically changed.

15

2.3.1 Network topology

A network topology can affect on propagation delay between computing nodes inλ computing en-

vironment. In addition, this is also consideration matter for us to decide paths for data transmission

and required number of wavelength. We introduce representative two topologies below.

• Ring topology

This topology makes it easy to broadcast data for computing nodes. However, broadcasting

data requires at least the time to round the ring once. Moreover, each computing nodes only

forwards the data from upstream computing node to downstream computing node without

data duplicating.

• Mesh topology

Generally, average propagation delay on this topology become shorter than that of ring

topology. However, most of computing nodes have to duplicate received data in order to

forward their neighbor because they have more than two computing nodes at downstream.

2.3.2 Memory access model

Memory access model provides how computing nodes access to the shared memory. That is,

memory access model decides whether computing nodes can access to the shared memory directly

or not. In the case that a computing node accesses to the shared memory through network, it

takes longer time than the case that a computing node access to the shared memory without using

network. Memory access model is roughly classified into three models. We describe about these

models below.

• UMA (Uniform Memory Access) model

In this model, all processing elements share entire address space, and access time to the

shared memory is same (Fig. 5(a), Fig. 5(b)) .

• NUMA (Non Uniform Memory Access) model

In this model, all processing elements share entire address space, but access time to the

shared memory depends on address where a processing element access to (Fig. 5(c)).

16

Shared Memory

Shared Bus

Cache

CP U

P ro cessi n g E l em en t

…

(a) UMA with shared bus

Switch

…

…

Shared Memory

Cache

CP U

(b) UMA with switch

Interconnection Network

Shared Memory

C ac he

C P U

The shared memory is accessed
t hrou g h in t ercon n ect ion n et w ork .

(c) NUMA

Interconnection Network

Cache

CP U

The shared memory does not exist.
M essag e p assing is p erf ormed b etw een
C P U throu g h interc onnec tion netw ork .

Memory

Mes s ag e

(d) NORMA

Figure 5: Memory access models.

• NORMA (NO Remote Memory Access) model

In this model, each processing element has own memory which address space is independent

each other. That is, a shared memory does not exist in this model and each processing

element perform parallel computation by message passing (Fig. 5(d)).

When we adopt UMA model toλ computing environment, read access does not need to use net-

work, but write access needs to use network in order to update data on other shared memory. In

NUMA model, in addition to write access, read access can also need to use network for accessing

data on other shared memory. NORMA model, include message passing model, is out of scope

17

of this study because there is no shared memory in this model, and our target is a shared memory

architecture.

2.3.3 Cache coherency protocol

When a processor tries to read or write to a shared memory, coherency controls is not needed if

another processor does not the same data in its local cache. However, if another processor has the

same data in its local cache, some methods can be considered to keep cache coherency. Moreover,

when a processor writes or updates the data on its cache, keeping cache coherency becomes still

more complicated and there are some ways to keep coherency. Such cache coherency protocols are

classified into four types according to the timing (write-through, and write-back) and the method

(invalidation, and updating) [6].

• Write-through invalidation protocol

Whenever a CPU write to the cache, the relative data on its shared memory is updated

and the relative cache line that is kept by other cache memory is invalidated. It is easy to

maintain cache coherency in this protocol. However, the performance is generally not better

than that of write-back protocol because shared media such as shared bus is used whenever

writing occurs, and congestion of shared media increases.

• Write-through updating protocol

Whenever a CPU write to the cache, the relative data on its shared memory is updated and

the relative cache line that is kept by other cache memory is also updated, as a result, cache

coherency is achieved. However, this protocol belongs to write-through protocol type, so it

has same problems mentioned above.

• Write-back invalidation protocol

Whenever writing occurs, the relative cache line kept by other cache memory is invalidated,

however in this protocol, the relative data on its shared memory is not updated. Therefore,

at most only one cache memory which is updated by its CPU keeps the latest data. Thus,

cache coherency is kept. This protocol is adopted many systems because processing and

implementation of this protocol is easy.

• Write-back updating protocol

18

Whenever writing occurs, the relative cache line kept by other cache memory is updated.

On the other hand, the relative data on its shared memory is not updated in this protocol.

When we adopt these protocols described above toλ computing environment, the write-back

invalidation protocol is most suitable because this protocol has the least network utilization. When

we adopt the write-through cache toλ computing environment, we have to use network in order to

update data on other shared memory whenever writing access occurs. Moreover, when we adopt

the write-back updating protocol toλ computing environment, we also have to use network in

order to update data on other cache memory whenever writing access occurs. On the other hand, in

the write-back invalidation protocol, we do not use network when writing access occurs on a cache

line because other computing nodes do not have the relative cache line. Therefore, in this study,

we adopt the write-back invalidation protocol for our designing of the shared memory architecture

in λ computing environment. The write-back invalidation protocol is simply explained below.

In the write-back invalidation protocol, data in the local cache has three sates; Invalid (I),

Clean (C) and Dirty (D). The I state means that data is invalidated and can not be used, the C state

means that the data on the cache is the same value compared to the data on the shared memory,

and the D state means that the data on cache is not the same value compared to the data on the

shared memory. We show the state transition diagram of the basic write-back invalidation protocol

in Fig. 6.

When one or some computers refer to an address, the data is copied to a cache from the shared

memory and that cache’s state becomes a clean state as shown in Figure 7 (a). Since the value of

the data on the shared memory and the data in the C state is the same, read access to this cache

line does not need cache coherency operation. If a processor writes to data in a C state, the state

will become a D state. At this time, the control message requesting invalidation of the relevant

data is sent on a shared media. Since the cache controllers of other processors snoop a shared

media, they receive the control message and invalidate the relevant data in their local cache (Fig. 7

(b)). Henceforth, read and write accesses to the data in a D state do not need cache coherency

operation. When other processors read to the data in a D state, the data in a D state is written

back to the shared memory, and cache coherency is completed. Next, the data is sent by a shared

media to the processor that requested the read access and states of cache lines on both processor’s

cache will become C states (Fig. 7 (c1)). On the other hand, when other processor writes to the

19

I

C D

Nw

Nr
L r

L wNw

L w
Nr L w

L r

L r

Nw Nr

Lr: l o c a l l y re a d s
Lw : l o c a l l y w ri t e s
N r: o t h e r n o d e re a d s
N w : o t h e r n o d e s w ri t e s

Figure 6: State transition diagram of the basic write-back invalidation protocol.

address of the data in a D state, like reading, writing back of the data in a D state to the shared

memory takes place, and the data is sent to the processor which sent the demand message. Finally,

the demanding processor writes the data on a local cache, and the state of the data will be D. The

cache data on the processor that has the original data is invalidated (Fig. 7 (c2)).

2.3.4 Realization method for cache coherency protocol

In this study, we presume that each computing node has a cache, it is necessary to fully take into

consideration of the coherency between the data on the cache and the data on the shared memory.

Two ways, a snoop method and a directory method, are techniques for generally maintaining cache

coherency.

• Snoop method

Every cache that has a copy of the data from a line of physical memory also has a copy of

the sharing status of the line, and no centralized state is kept. The caches are usually on

a shared memory bus, and all cache controllers monitor or snoop on the bus to determine

whether or not they have a copy of a line that is request on the bus.

• Directory method

20

Shared memory

Local
cache

C P U

C C

N ode A N ode B N ode C
(a) 2 nodes read the same line synchronously

Shared memory

Local
cache

C P U

D

N ode A N ode B N ode C
(b) N ode A w rites to the line

Shared memory

Local
cache

C P U
N ode A N ode B N ode C

(c1) N ode B reads the line

Shared memory

Local
cache

C P U
N ode A N ode B N ode C
(c2) N ode B w rites to the line

C�I

D�C C D�I C�D

Invalidation request

W rite b ack D line R ead f rom
shared memory

W rite b ack D line R ead f rom
shared memory

W rite R ead

Shared memory

Local
cache

C P U

C C

N ode A N ode B N ode C
(a) 2 nodes read the same line synchronously

Shared memory

Local
cache

C P U

D

N ode A N ode B N ode C
(b) N ode A w rites to the line

Shared memory

Local
cache

C P U
N ode A N ode B N ode C

(c1) N ode B reads the line

Shared memory

Local
cache

C P U
N ode A N ode B N ode C
(c2) N ode B w rites to the line

C�I

D�C C D�I C�D

Invalidation request

W rite b ack D line R ead f rom
shared memory

W rite b ack D line R ead f rom
shared memory

W rite R ead

Figure 7: Behavior of the write-back invalidation protocol.

The sharing status of a line of physical memory is kept in just one location, called the di-

rectory. Information in the directory includes which caches have copies of the line, whether

it is dirty, and so on. When we have to keep cache coherency, by referring this directory,

invalidation signal is directly sent to target cache.

2.4 Proposed shared memory architecture

We propose three typical shared memory architectures listed below.

• Ring-UMA architecture (Fig. 8)

This architecture organizes ring topology, and adopts UMA type memory access model.

Moreover, we adopt the snoop method to this architecture to realize cache coherency by

assuming another ring for cache control.

21

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

A
B
C

Z

S h a r e d
M e m o r y

Ca c h e
M e m o r y

A

R

B

G

G

Z

F
L
F
L

H

V

Ring for Control
Ring for D a ta T ra ns fe r

0

1 # 2

3# 4

T h e Control T ok e n

0

1−n

0

1−n

0

1−n

0

1−n

0

1−n

0

1−n

Figure 8: Ring-UMA architecture.

• Ring-NUMA architecture (Fig. 9)

This architecture has similar characteristic to the Ring-UMA architecture. Difference be-

tween Ring-UMA architecture and Ring-NUMA architecture is memory access model. This

architecture enables us to use larger address space than Ring-UMA architecture.

• Mesh-NUMA architecture (Fig. 10)

This architecture organizes mesh topology, and adopts NUMA type memory access model.

In this architecture, the directory method is used for cache coherency operation because it

is difficult to realize the snoop method on mesh topology.

It is important to keep coherency between each processors and to maintain consistency be-

tween the cache memory and the shared memory for a shared memory architecture. In addition,

from a parallel application level point of view, synchronization between processes is also impor-

tant. Broadcasting is mainly used for these cache coherency processing and process synchroniza-

tion. Then, first of all, we analyze and evaluate shared memory architecture that organizes ring

topology which makes it easy to broadcast among computing nodes inλ computing environment.

In this topology, we prepare the wavelength for control on its wavelength. By snooping this token,

22

A
B
C

Z

A
B
C

Z

T
H
a

p

T
H
a

p

R
n
G

R
n
G

U
L
U
LF

W
x

z

F
W
x

z

S h ar e d
M e m o r y

Cac h e
M e m o r y

A

R

B

A
G

G

Z

F
L
F
L

H

F

0

1 # 2

3# 4

0

1−n

12 −n

n

n2

13 −n

n3

14 −n

n4

15 −n

Ring for Control
Ring for D a ta T ra ns fe r

T h e Control T ok e n

Figure 9: Ring-NUMA architecture.

we can naturally extend conventional snoop cache method. We adopt the write-back invalidation

protocol to these architecture.

However, as mentioned before, communication between computing nodes must round optical

ring at least one time and the rounding time becomes propagation delay. Therefore, we also study

a shared memory architecture that organizes mesh topology where the average propagation delay

between computing nodes become shorter than ring topology in general. In this architecture, it is

difficult to prepare the wavelength for control like ring topology. Therefore, we adopt directory

method for realizing cache coherency protocol. We also adopt the write-back invalidation protocol.

Moreover, the processing load on each computing node is higher than that of ring topology because

duplicating data frame is required on each computing node for realizing broadcasting. Therefore,

NUMA type memory access model is appropriate for architectures which organize mesh topology

because each computing node is responsible for a certain range of address spaces and this removes

necessity of broadcasting from architectures which is adopted this topology when cache coherency

processing is executed. When a computing node updates the data on its cache memory, cache

coherency is done among computing nodes which has relative cache line and which is responsible

for the relative physical address of the shared memory.

23

A
B
C

Z

A
B
C

Z

T
H
a

p

T
H
a

p

R
n
G

R
n
G

U
L
U
LF

W
x

z

F
W
x

z

S h ar e d
M e m o r y

Cac h e
M e m o r y

A

R

B

A
G

G

Z

F
L
F
L

H

F

0

1 # 2

3# 4

0

1−n

12 −n

n

n2

13 −n

n3

14 −n

n4

15 −n

Figure 10: Mesh-NUMA architecture.

24

3 Design of shared memory architecture inλ computing environment

In this section, we introduce three shared memory architectures which we adopt inλ computing

environment, and explain about their behavior. At first, we describe our network model. We also

explain about interaction between network and computer inλ computing environment. Next, we

explain about behavior of shared memory architectures in the point of characteristic factor we

described in section 2.

3.1 Specification of network and computing node

We show a configuration of each computing node and data flows through a network interface

between a computing node and wavelengths of photonic network (Fig. 11). Computing nodes that

composeλ computing environment are connected to photonic network with optical fibers. In this

study, we presuppose that each computing node has one CPU with the CPU-cache, level-2 cache

memory, and a main memory. A main memory is separated into two area. One is local memory

area. A local memory is used for storage of programming code and private data. Another one is

shared memory area. This area is used for storage of shared data. By using this area, data sharing

between computing nodes is done. It has also two types of L2 cache memory. One is for local

memory which is used for caching local memory. We call this cache memory local cache. Another

one is for shared memory which is used for caching shared memory. We call this cache memory

shared cache. We adopt cache coherency protocol to level-2 cache not to CPU-cache. Capacity of

L2 cache isC KB and cache line size isl KB. Therefore, the number of cache line in the shared

cache isC
l .

Next, we explain about network. The bandwidth of photonic network isB Gbps and the prop-

agation delay time is 5µs/km. For example, in the case of the distance between two computing

nodes areL km, it takes5×L+ l×8×103

B×109 µs to transmit one cache line. There is a cache controller

at a network interface. The cache controller works for keeping the cache coherency and mem-

ory consistency by invalidating a cache line, watching the shared cache and the shared memory,

managing the state of a cache line, sending/receiving a control message, updating the shared mem-

ory, responding to other computing node’s message, and so on. The cache controller also works

when the CPU accesses to the shared cache and shared memory. Therefore, the cache controller

performs very important part for the behavior of the shared memory architecture.

25

Figure 11: Network interface.

3.2 Design of control message

Next, we explain about control messages. We use these messages to control the behavior of a

shared memory architecture. The behavior of architecture is shown in Section 3.3.

Lock messageA computing node that receives this message prevents the locked cache line from

accessing.

Verify messageAfter a computing node that has the requested cache line receives this message,

it attaches the state message to this message.

State messageThis message contains about the state of requested cache line.

Copy messageA computing node that receives this message has to send the requested cache line

to the computing node which sends this message.

Write back messageA computing node that receives this message writes back the requested

cache line to the shared memory.

26

Table 1: Parameters of shared memory architecture.

Transmission speed in a optical fiber 5 [µs/km]

Access time between CPU–L2 cache t1 [µs]

Access time between L2 cache–Main memory t2 [µs]

Frame processing time at network interface t3 [µs]

Capacity of shared memory of each computing nodesM [MB]

Capacity of L2 cache memory C [KB]

Cache line size l [KB]

Bandwidth of network B [Gbps]

Number of node N

Invalidation messageComputing nodes that receive this message invalidate the relevant cache

line which is on own shared cache.

3.3 Design of function and behavior

Now, we describe the design of shared memory architectures by mainly focusing on its function

and behavior. We adopt the write-back invalidation protocol for cache coherency to all architec-

ture. Because, this protocol is often adopted to parallel computing system. In a system which

adopts this protocol, there is only one CPU which has the latest cache line by invalidating other

CPU’s relevant cache line. This protocol realize cache coherency by this simple mechanism. This

protocol has also the least shared bus or network usage. So, this protocol is suitable forλ comput-

ing environment.

Before we explain about behavior of these architectures, we define some terminology. These

terminologies are for Ring-NUMA architecture and Mesh-NUMA architecture.

• Home memory

Home memory is a part of the shared memory that each computing node is responsible for.

• Home node

Home node is a computing node that is responsible for the own shared memory and cache

coherency between home memory and other shared cache.

27

• Ownership

Ownership is the right to update the cache line.

3.3.1 Ring-UMA architecture

This architecture organizes ring topology, and makes it easier to broadcast data and to realize

synchronization among computing nodes which composeλ computing environment. However,

when a computing node sends data, it requires at least the time to go round once on an optical

ring as propagation delay. This factor may influence the performance of this architecture. This

architecture has UMA type memory access model. So, the shared memory of each computing

node has same address space and then computing nodes share all of data which is on the shared

memory (See Fig. 8). Therefore, total capacity of the shared memory isM GB. In this architecture,

each computing node does not require to use network when they access to shared data. They only

have to access to own shared memory because all of shared data exist on own shared memory. We

provide a wavelength to realize the snooping method for the cache coherency. We explain about

behavior of this architecture below.

Behavior of read access In the case of read access and the cache line is

C or D state: Each computing node has only to access to the shared cache and reads data. The

processing of cache coherency protocol is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access

to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the token and

sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

verify message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the

state message is attached to the control token, there isC or D state cache line in other

28

shared cache. If the state message is not attached, the relevant cache line does not

exist in other shared cache and this is same as inI state. If the state of other cache is

I or Cstate: Node A only has to copy the cache line from the shared memory and

read data. Then the state of the cache line is changed toC state. The cache

coherency protocol is not needed.

D state: Node A attaches the write back message to the control token. Node B,

which has theD state cache line, must respond this message, send back the

cache line to the shared memory, and change the state of this cache line toC

state. Then, node A copies the received data to the shared cache, sets the state

of cache line toC state, and reads data from cache.

Behavior of write access In the case of write access and the cache line is

C state: Each computing node can access to the shared cache and update data. Invalidating other

shared cache is needed.

D state: Each computing node also has only to access to the shared cache and updates data.

Invalidating other shared cache is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access

to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the token and

sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the

state message is attached to the control token, there isC or D state cache line in other

shared cache. If the state message is not attached, the relevant cache line does not

29

exist in other shared cache and this is same as inI state. If the cache line of other

shared cache is

I state Node A copies the received cache line to the shared cache and updates data.

Then node A changes the state of the cache line toD state.

C state: Node A updates the cache line. Then, invalidating other cache is performed.

D state: Node A attaches the write back message to the control token. Node B,

which has theD state cache line, must respond this message, write back the

cache line to the shared memory and change the state of this cache line toC

state. Then, node A copies the received cache line to the shared cache and

updates the data. Then invalidating other cache is performed.

Behavior of invalidating other cache Invalidating other shared cache and keeping cache co-

herency is realized as follows.

(1) Node A waits for the control token.

(2) Node A attaches the lock message to the token. Other computing nodes are prevented from

accessing to the relevant cache line.

(3) After going round on the optical ring, node A updates the cache line, changes the state toD

state and sends invalidation signal.

(4) After finishing invalidation, node A attaches the unlock message to the control token.

Write back the cache line to the shared memory

(1) Requested computing node attaches the lock message to the control token when it receives

the write back message.

(2) After going round on the optical ring, it writes back the cache line to the shared memory.

Then the state of the cache is changed toC state.

(3) Then the unlock message is attached to the control token.

30

3.3.2 Ring-NUMA architecture

This architecture organizes ring topology, so Ring-NUMA architecture has similar characteristics

to Ring-UMA architecture. However, Ring-NUMA architecture has NUMA type memory access

model. Therefore, each computing node has a part of address space. Then, by merging each shared

memory, we can built one shared memory, that hasM ×N GB capacity, and share whole address

space (See Fig. 9). A computing node may have to use network when they access to shared data.

It can access to the shared memory without using network when the requested data exists on own

shared memory. However, if the requested data exists on other shared memory, computing nodes

access to other shared memory through network. We also adopt the snooping method for cache

coherency. We explain about behavior of this architecture below. The behavior of this architecture

is similar to Ring-UMA architecture.

Behavior of read access In the case of read access and the cache line is

C or D state: Each computing node has only to access to the shared cache and reads data. The

processing of cache coherency protocol is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access

to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the token and

sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the

state message is attached to the control token, there isC or D state cache line in other

shared cache. If the state message is not attached, the relevant cache line does not

exist in other shared cache and this is same as inI state. If the state of other cache is

31

I or C state: Node A sends the copy message to home node. Home node sends the

cache line to node A. Then node A copies the received cache line to the shared

cache and reads data. Then the state of the cache line is changed toC state.

D state: Node A attaches the write back message to the control token. Node B,

which has theD state cache line, must respond this message and sends back the

cache line to the home node and changes the state of this cache line toC state.

Home node writes back the received cache line to the home memory. Then,

home node sends the cache line to node A. Node A copies the cache line to the

shared cache, sets the state of cache line toC state, and reads data from the

shared cache.

Behavior of write access In the case of write access and the cache line is

C state: Each computing node can access to the shared cache and update the cache line. Invali-

dating other cache is needed.

D state: Each computing node also has only to access to the shared cache and update the cache

line. Invalidating other shared cache is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access

to the shared memory to get the data. However, other computing nodes may have the latest

data. Therefore, computing nodes have to process the cache coherency protocol as follows.

(1) A computing node (node A) waits for the control token.

(2) After receiving the control token, node A attaches the verify message to the control

token and sends it to other computing nodes.

(3) A computing node (node B) which has the relevant cache line has to respond to the

message and attaches the state message.

(4) After going round on the optical ring, node A can receive the state message. If the

state message is attached to the control token, there isC or D state cache line in other

shared cache. If the state message is not attached, the relevant cache line does not

exist in other shared cache and this is same as inI state. If the state of other cache is

32

I state Node A sends the copy message to home node. Home node sends the cache

line to node A. Then node A copies the received cache line to the shared cache

and writes data. Then the state of the cache line is changed toD state.

C state: Node A sends the copy message to home node. Home node sends the cache

line to node A. Then node A copies the received cache line to the shared cache

and updates data. Invalidating other shared cache is performed.

D state: Node A attaches the write back message to the control token. Node B,

which has theD state cache line, must respond this message and then sends

back the cache line to the home node and changes the state of this cache line to

C state. Then, home node receives the cache line, updates home memory, and

sends the cache line to node A. Then, invalidating other cache is performed.

Invalidating other cache The behavior of invalidating other cache is same as Ring-UMA archi-

tecture and we already described about this. So, we omit to explain about this process.

3.3.3 Mesh-NUMA architecture

This architecture organizes mesh topology and makes average propagation delay between com-

puting nodes shorter than that of ring topology. In this architecture, we adopt the directory method

for realizing the cache coherency protocol.

We introduce three states of the shared memory.

• U state

This state means that a block which is relevant to each cache line on home memory is not

cached.

• S state

This state means that a copy that is consistent with home memory exists on other shared

cache.

• D state

This state means that a copy that is not consistent with home memory exists on other shared

cache.

By using these states, we describe about behavior of this architecture below.

33

Behavior of read access In the case of read access and the cache line is

C or D state: Each computing node has only to access to the shared cache and read data. In this

case, the processing of cache coherency protocol is not needed.

I state: Required data does not exist on the shared cache. So, computing nodes have to access to

the shared memory to get the data. However, in this case, other computing nodes may have

the latest data. Therefore, computing nodes have to process the cache coherency protocol as

follows.

(1) A computing node (node A) requests to home node to copy the block of home memory

which contains required data.

(2) The home node verifies the state of requested block. If the state of block on home

memory is

U or S state: Home node sends back the requested block and sets the state of block

on the shared memory toS state.

D state: Home node looks up directory and searches the computing node (node B)

which has the latest cache line. Then, the write back message is sent by home

node to node B. After node B writes back the cache line, home node sends the

requested block to node A and sets the state of block on the shared memory to

S state. Node A receives the latest data block, copies to the shared cache, sets

the cache line state toC state and reads data.

Behavior of write access In the case of write access and the cache line is

D state: Each computing node has only to access to the shared cache and read data. The process-

ing of cache coherency protocol is not needed.

C state: Other computing node may have the relevant cache line. So, invalidating other shared

cache is needed. After invalidating other shared cache, the state of cache line is set toD

state and updated.

I state: Required data does not exist on the shared cache. So, computing nodes have to access to

the shared memory to get the data. However, in this case, other computing nodes may have

34

the latest data. Therefore, computing nodes have to process the cache coherency protocol as

follows.

(1) A computing node (node A) requests to home node to copy the block of home memory

which contains required data.

(2) A home node verifies the state of requested block. If the state of block is

U state: Home node sends back the requested block and sets the state of block on

the shared memory toS state.

S state: Other computing node may have the relevant cache line. So, invalidating

other shared cache is needed. After invalidating other shared cache, node A

receives the cache line from home node. Then node A sets the state of cache

line toD state and updates the data.

D state: Home node looks up directory and searches the computing node (node B)

which has the latest cache line. Then, write back request is sent by home node to

node B. After node B writes back the cache line, home node sends the requested

block and sets the state of block on the shared memory toD state. Node A

receives the latest data block, sets the cache line state toD state and writes data.

Invalidating other cache Invalidation of other cache is processed as follows.

(1) A computing node (node A) requests ownership to home node.

(2) Home node looks up directory and searches computing nodes that have the relevant cache

line.

(3) Home node sends invalidation signal to other computing nodes that have the relevant cache

line. After that, home node waits for receiving Ack.

(4) Computing nodes that receive invalidation signal invalidate the relevant cache line and set

the state toI state. Then, they send Ack to home node.

(5) After receiving Ack, home node transfers the ownership and the cache line to node A. Then,

the state of relevant home memory block is set toD state.

35

4 Modeling and analysis with semi-Markov process

In this section, we model and analyze the shared memory architecture we designed in section 3.

For modeling and analyzing, we utilize semi-Markov process.

4.1 Semi-Markov process

In this study, we use semi-Markov process [7] for modeling the shared memory architecture. In

semi-Markov process, we can voluntarily set the residence time of each state. Therefore, we

consider that semi-Markov process is suitable for modeling the shared memory architecture where

a complicated request such as cache coherency control arises. We describe the definition of semi-

Markov process [8] below.

Definition: Let {X(t), t ≥ 0} be the stochastic process that has state space which is composed

by countable set. In{X(t)}, let the moments of the state changes bet0 < t1 < t2 · · ·

and putXn = X(tn). In this case, we call the stochastic process{X(t), t ≥ 0}, that

{Xn|n = 0, 1, 2, · · ·} forms Markov process, as semi-Markov process.

To obtain the steady state probability for semi-Markov process, we can follow the same method

to solve the steady state probabilities for discrete time Markov chains. Indeed, at the moments

of state changes, the semi-Markov process behaves exactly as a discrete time Markov chains.

Concrete algorithm to obtain the steady state probabilities for semi-Markov process is as follows

[7, 9].

(1) Compute the steady state probability for the discrete time Markov chain with state transition

matrixp = (pi,j), denoted here asπ.

(2) Compute the average state residence timesηi for all statei in the semi-Markov process.

(3) Compute the steady state probability in the semi-Markov process by taking these residence

time into account, as follows.

Pi =
πiηi∑
j πjηj

(1)

We can also obtain the escape probabilitiesλi as follows.

λi =
Pi

ηi
(2)

36

Table 2: Given parameters for models.

Cache hit ratio h

Ratio of read access per main memory access r

Ratio of write access per main memory access w

Ratio of shared memory access per main memory accesss

4.2 Variable definition in model

We describe variables with given parameters in Table 2.

The probabilityPD that a certain computing node has a certain cache line inD state is ex-

pressed as follows.

PD = hws (3)

Then the probabilityPd that only one of other computing nodes has a cache line inD state and

other computing nodes do not have the cache line inD state is expressed as follows.

Pd = (N − 1)hws(1 − hws)N−1 (4)

The probabilityPC that a certain computing node has a certain cache line inC state is ex-

pressed as follows.

PC = hrs (5)

Then the probabilityPc that at least one computing node except for itself has a cache line inC

state is expressed as follows.

Pc = 1 − (1 − hrs)N−1 (6)

The probabilityPx that there is no space for a new cache line is considered as follows. When

the cache memory has no space for the new cache line, an open space for new line is made by

invalidation signal from other computing nodes. So, the probabilityPx is expressed as follows.

Px = (1 − Pinv)N−1 (7)

wherePinv is the probability that a certain cache line is invalidated by other computing nodes.

The invalidation signal is sent when a certain computing node does write access to the relevant

37

cache line or does write access to the cache line which is not in its cache memory and also not in

D state. Therefore,Pinv is expressed as follows.

Pinv = hPcw + (1 − h)(1 − Pd)w (8)

4.3 Modeling of shared memory architecture

We model shared memory architecture inλ computing environment by using semi-Markov pro-

cess. We make the state transition diagram in the point of view of CPU on each computing node.

In order to make the state transition diagram, we follow the behavior of each architecture we

designed in section 3.

4.3.1 Ring-UMA architecture

Fig. 12 shows the state transition diagram of the Ring-UMA architecture. The state 1 is compu-

tation state. That is, in this state, a CPU can execute instructions without any memory accesses.

Then, if a LOAD or STORE instruction is executed, the state is change to the state 2 or state 32.

In the state 32, a CPU accesses to the local memory, then changes the state to 1. When the state

changes to the state 2, it immediately changes to one of the state{3, 4, 8, 22, 23, 31} because this

state is transient state. In the case of read access, the state changes to{3, 4, 8}, and in the case of

write access, the state changes to{22, 23, 31}. That is, the state changes according to the behavior

we designed in section 3.3.1.

An access to the shared memory can be blocked when other computing nodes are accessing

to the same cache line. We can obtain this probabilityPB as follows. We presume that each CPU

access the cache line in random, so each cache line is accessed byl
C . Moreover, the set of the

state that a CPU is accessing to the cache line are{10, 19, 20, 21, 25, 34}, let this set beSa. So, an

access is blocked when at least one computing node tries to access the same line and the state is at

s ∈ Sa. Therefore, the probabilityα1 that each cache line is accessed is expressed as follows.

α1 =
l

C

∑

s∈Sa

Ps (9)

whereSa = {10, 19, 20, 21, 25, 34}. Therefore,PB is expressed as follows.

PB = 1 − (1 − α1)N−1 (10)

38

A CPU must write back the cache line to the shared memory when other computing nodes send

the write back message. We can obtain this probabilityPq as follows. The write back message

is sent when at least one computing node leave the state 10 or 25 by probabilityλ10 or λ25 and

change the state to 14 or 26 byPd. So, the probabilityPq is expressed as follows.

Pq = Pd(λ10 + λ25) (11)

4.3.2 Ring-NUMA architecture

Fig. 13 shows the state transition diagram of the Ring-NUMA architecture. Most of the state

transition and transition probabilities is same as the Ring-UMA architecture. So, we do not explain

about this architecture in detail. The important thing in the state transition diagram of Ring-NUMA

architecture is the residence time of state{15, 17, 32}. When a cache miss occurs, these states are

sure to transit, and at this state, the copy message is sent to home node. If the node that sends

the copy message is the home node, it only has to access to own shared memory. This probability

is M
M×N = 1

N . If the node that sends the copy message is not the home node, it has to wait for

receiving the cache line from the home node by probability1 − 1
N . Therefore, the residence time

of the state{15, 17, 32} is obtained as follows.

η15 = η17 = η32 = t2
1
N

+ τ(1 − 1
N

) (12)

whereτ is the time to round the ring once.

Moreover, we can also obtain the probabilityPB andPq in the same way described in section

4.3.1.

α2 =
l

C

∑

s∈Sb

Ps (13)

whereSb = {10, 15, 17, 21, 22, 23, 27, 32, 37} in Fig. 13. Therefore,PB is expressed as follows.

PB = 1 − (1 − α2)N−1 (14)

ThenPq is expressed as follows.

Pq = Pd(λ10 + λ27) (15)

39

COM

Waiting for the token

Verify the state of line
on local cache

update

Line is Dirty

Line is Invalid

Line is Clean

Line is Dirty

Request to
write back

Update the line and
Invalidation on other cache

Replace
the other line

Replace
the other line

Waiting for the token

Access is blocked
by other nodes

Lock
other nodes

Unlock
other nodes

Access is blocked
by other nodes

Line is Clean

Access is locked
by other nodes

Verify the state of line
on other cache

Waiting for the token

Access is blocked
by other nodesRead

Verify the state of line
on other cache

Access is locked
by other nodes

Line is Invalid

Line is Clean

Line is DirtyRequest to
write back

Replace
the other line

Access to
private data

Write back

Update other
shared memory

1 2

45

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

s/(1+Pq)

(1-PB)*(1-h)*w

h*w*(1-PB)

1-PB

PB

PdPc

1-Pc-Pd

Px

Px

PB

PB
1-PB

(1-PB)*(1-h)*r

Px

1-Px

1-Px

1-Px

Pd

Pc

1-Pc-Pd

1-Px

1-Px

Px

Px
Px

(1-s)/(1+Pq)

Pq/(1+Pq) Access to
shared data

3
PB*w

w

rw

23

h*r*(1-PB)

r

w

r

1-PB

PB*r

Figure 12: State transition diagram of Ring-UMA architecture.

40

COM

Waiting for the token

Verify the state of line
on local cache

update

Line is Dirty

Line is Invalid

Line is Clean

Line is Dirty

Request to
write back

Update the line and
Invalidation on other cache

Replace
the other line

Replace
the other line

Waiting for the token

Access is blocked
by other nodes

Lock
other nodes

Unlock
other nodes

Access to
shared data

Access is blocked
by other nodes

Line is Clean

Access is locked
by other nodes

Verify the state of line
on other cache

Waiting for the token

Access is blocked
by other nodesRead

Verify the state of line
on other cache

Access is locked
by other nodes

Line is Invalid

Line is Clean

Line is Dirty

Request to
write back

Replace
the other line

Access to
private data

Write back

Update other
shared memory

Line copy request

Line copy request

Line copy request

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

1-B

h*w*(1-B)

w

B*w

r

w

w

r

B

r

Px

1-Px 1-Pc-Pd

Pd

Pc

PB

1-PB

PB*r
h*r*(1-PB)

(1-PB)*(1-h)*w

(1-PB)*(1-h)*r

PB
1-PB

Px

1-Px

1-Px

Px

s/(1+Pq)

(1-s)/(1+Pq)

Pq/(1+Pq)

1-Pc-Pd

Pd

Pc

Figure 13: State transition diagram of Ring-NUMA architecture.

41

4.3.3 Mesh-NUMA architecture

Fig. 13 shows the state transition diagram of the Mesh-NUMA architecture. In this diagram, the

state 1 is also computation state and if a LOAD or a STORE instruction is executed, then state is

change to the state 2. Then the state changes according to the behavior we designed in section

3.3.3. When the state reaches at the state{4, 14}, the copy message or the invalidation message is

sent to a home node and enqueued by the probabilityα3,

α3 = (Pc + Pd)(λ4 + λ14). (16)

Therefore, when a message is sent to the home node, the average number of messagesK in the

queue is derived as

K =
N−1∑

i=1

i × (N−1Ciα3
i(1 − α3)N−1−i), (17)

and the average waiting time in the queuetq is expressed as follows.

tq = K × (η26 + η27)

= K × (η29 + η30)

= K × 2τ (18)

Therefore, the residence time at the state{4, 14} is derived as

η4 = η14 = τ + tq (19)

whereτ is propagation delay between the home node and the node which sends the message.

When a node has the cache line inC state and the home node sends the invalidation message

to this node by the probabilityλ29. Therefore, the probabilityPA that this node receives the

invalidation message is expressed as follows,

PA = PCλ29. (20)

When a node has the cache line inD state and the other node accesses to the relative cache

line, the home node sends the invalidation message to this node by the probabilityλ26. Therefore,

the probabilityPE that this node receives the write back message is expressed as follows,

PE = PDλ26. (21)

42

When at least one node leaves the state{4, 14} and a cache line isC or D state in other shared

cache, the home node receives the copy message. Therefore, the probabilityPG that the home

node looks up directory for the cache coherency protocol processing is derived as,

PG = 1 − (1 − (PC + PD)(λ4 + λ14))N−1. (22)

Lastly, we show the residence time table at Table. 3

Table 3: The residence time table [µs].

State Ring-UMA Ring-NUMA Mesh-NUMA

1 0.002 0.002 0.002

2 0 0 t1

3 2τ 2τ 0

4 t1 t1 (1 − 1
N)τ

5 0 0 (1 − 1
N)τ

6 t1 0 τ

7 0 t1 τ

8 0.5τ 0.5τ τ

9 2τ 2τ τ

10 τ τ t1 + t2

11 0 0 τ

12 t2 0 t2

13 0 0 t1

14 0 2τ (1 − 1
N)τ

15 2τ 1
N t2 + (1 − 1

N)τ τ

16 t2 t2 τ

17 0.5τ 1
N t2 + (1 − 1

N)τ t1 + t2

18 2τ t2 τ

19 τ 0.5τ t2

20 τ 2τ t1

21 τ τ ht1 + (1 − h)(t1 + t2)

43

Table 3: The residence time table [µs].

State Ring-UMA Ring-NUMA Mesh-NUMA

22 2τ τ t1

23 0.5τ τ t3

24 2τ 2τ t1 + t2

25 τ 0.5τ t1 + t2

26 0 2τ τ

27 0 τ τ

28 0 0 t1 + t2

29 2τ 0 τ

30 t2 0 τ

31 t1 2τ t1 + t2

32 ht1 + (1 − h)(t1 + t2) 1
N t2 + (1 − 1

N)τ

33 t1 + t2 t2

34 2τ t1

35 ht1 + (1 − h)(t1 + t2)

36 t1 + t2

37 2τ

4.4 Analysis by using semi-Markov process

In this section we explain about the procedure to obtain steady state probabilities for the analysis

and we show some numerical results.

4.4.1 Analytic approach

We cannot obtain steady state probabilities directly by solving semi-Markov models described

in section 4.1. Because some of transition probabilities depend on steady state probabilities in a

semi-Markov model. Therefore, we achieve these probabilities by giving an appropriate initiate

value and iterating calculation until convergence. We show the procedure below.

44

COM

update

Home node sends
invalidation signal

Line copy request
to home node

Home node request
to write back the latest line

Home node receives
acknowledgements

Home node sends
requsted cache line

Home node receives
the latest line

Home node writes back
the latest line

Requet home node
to send invalidation siganls

Read

Line copy request
to home node

Home node request
to write back the latest line

Home node sends
requsted cache line

Home node receives
the latest line

Home node writes back
the latest line

Access to
private data

Look up
directory

Requested to
send the cache line

Requested to
invalidate the line

Requested to
send back the line

Invalidation

Send ack

Receive ack

Send invaidation signals

Request write back

Recieve line

Write back

Write hit

Access to
shared data

Send cache line

Send back line
1 2

3

4

5

9

10

11

1617

18

19

20

21

22

23

24

25

26

27

28

29

Replace
the other line

Replace
the other line

6

7

8
12

13

14

15

30

31

h*w

(1-h)*w

w

r

h*r
(1-h)*r

1-d

PA(1+PA+PE+PG)

s/(1+PA+PE+PG)

(1-s)/(1+PA+PE+PG)

PE/(1+PA+PE+PG)

PG/(1+PA+PE+PG)

Pd

Pd

Pc
1-Pc-Pd

Px

1-Px

1-Px

Px

Pd
1-Pd

Figure 14: State transition diagram of Mesh-NUMA architecture.

45

(a) Ring topology (b) Mesh topology

Figure 15: Ring topology in physical

(1) Initialize transition matrixp = (pi,j)

(2) Obtain the stationary distribution vectorπ = {πi} in discrete time Markov chain by solving

the equationπ = πp

(3) Obtain steady state probabilities by expression (1)

(4) Update transition probabilities by using{Pi}

(5) Return to 2 when the difference between the latest{Pi} and the previous{Pi} is larger than

given enough small value

4.4.2 Numerical analysis

We analyze our models by giving parameters appropriate values and show numerical results of

each architecture. At first, we explain about two scenarios we suppose.

Scenario 1 We built ring topology in physical onλ computing environment, then establish ring

topology (Ring-UMA architecture and Ring-NUMA architecture) or mesh topology (Mesh-

NUMA architecture) in logical. In this scenario, we give the length of optical ring as pa-

rameterL in advance, so the length of optical ring network is independent to the number of

computing nodes.

Scenario 2 We built grid topology in physical onλ computing then establish ring topology (Ring-

UMA architecture and Ring-NUMA architecture) or mesh topology (Mesh-NUMA archi-

46

(a) Ring topology (b) Mesh topology

Figure 16: Mesh topology in physical

tecture) in logical. In this scenario, we give the distance between computing nodes as pa-

rameterL, so the length of ring in Ring-UMA and Ring-NUMA architecture is decided by

the number of computing nodes.

We also set various values in shared memory architecture for analysis. We show the values

at Table. 4. Moreover, a CPU uses LOAD instruction by 15 %, STORE instruction by 5 % and

other instructions by 80 %. Therefore, we set the parameterr to 0.75 andw to 0.25. Then, we

analyze by changing the parameterN ; the number of node,s; ratio of shared memory access, and

L; length of ring (in scenario 1) or distance between computing nodes (in scenario 2).

Fig. 17 through Fig. 19 show the distributions of the steady state probabilities of Ring-UMA

architecture. In Ring-UMA architecture,P19, P20, P21, which are the states of processing cache

coherency protocol, are the largest. As the length of ring become longer (See Fig. 17), these

probabilities become larger. On the contrary, especially,P32, which is the state of accessing to

the local memory, becomes smaller and smaller. This is because theη19, η20, η21, which are the

residence time, are decided by the length of ring, andP20, P21, P22 are derived by weighting each

residence time. Therefore, as the length of ring becomes longer, these steady state probabilities

become larger, and occupy the majority of the distribution of steady state probabilities. However,

the increase of these probabilities is relatively small, at most about 10 %, on the contrary, the

47

Table 4: Numerical values of parameters in models.

Clock frequency of a CPU 2 [GHz]

Access time between CPU–L2 cache 0.01 [µs]

Access time between L2 cache–Main memory 1 [µs]

Frame processing time at network interface 3 [µs]

Capacity of shared memory of each computing nodes1024 [MB]

Capacity of L2 cache memory 1024 [KB]

Cache line size 4 [KB]

Bandwidth of network 10 [Gbps]

Cache hit ratio 0.95

length of ring becomes a million times.

Next, we consider the case of increasing the number of computing nodes (See Fig. 18). Com-

pare the case ofN = 4 with the case ofN is around 10, by increasing the number of node,

P19, P20, P21 become larger. This is because, when the number of nodes increases, the amount of

cache line becomes large and the probability which more then two computing nodes access to the

same cache line becomes large. So, steady state probabilities that the node processes the cache co-

herency protocol become large. However, if the number of nodes become too large, the blocking

probability PB becomes large and influences on other steady state probabilities. Therefore, the

caseN ≥ 30, steady state probabilities processing the cache coherency protocol become small as

the blocking probability becomes large.

Then we explain about the influence of the change ofs (See Fig. 19). Whiles is large value

around10−1 or 10−2, steady state probabilities that are the state of processing cache coherency

protocol, are large. However, as the value ofs becomes smaller, these probabilities become smaller

andP1 andP32, which are the probabilities that these state compute and access to the local mem-

ory, become larger and total of these probabilities reaches about one and steady state probabilities

of the cache coherency protocol processing become small. Consequently, we consider thats can

have big impact on the performance of shared memory architecture.

48

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� � �

� �

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� � �

� �

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� �

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� �

(b) Scenario 2

Figure 17: Distribution of steady state probability of Ring-UMA architecture (N = 16, s = 10−2)

49

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � � � � �� � � ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � � � � �� � � ��

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � �� � � �� � � ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � �� � � �� � � ��

(b) Scenario 2

Figure 18: Distribution of steady state probability of Ring-UMA architecture (s = 10−2, L =1km)

50

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

(b) Scenario 2

Figure 19: Distribution of steady state probability of Ring-UMA architecture (N = 16, L =1 km)
51

In Ring-NUMA architecture, we can also find these trend described above. Because, there

is few difference between Ring-UMA architecture and Ring-NUMA architecture. One important

difference is that when cache miss occurred, a computing node may send the copy message. How-

ever, the probability that cache miss occurs is low by probability1 − h. Therefore, this difference

have little influence on the performance of Ring-NUMA architecture (See Fig. 20–Fig. 22).

Fig. 23 through Fig. 25 show the distributions of the steady state probabilities of Mesh-NUMA

architecture. In Fig. 24(a),P5, P6, P7, P8, which are the states of processing the cache coherency

protocol, are large. These states transit when computing nodes have a cache line inC state and

write access to the relative cache line occurs. It takes time that is decided by propagation delay

and a request processing time at each computing node to perform the cache coherency. Therefore,

residence times of these states are large and as a result, steady probabilities of these become large.

On the contrary, in Fig. 23(b), when the distance between computing nodes is 0.01 km and 0.1 km,

P21 is the largest. This is because, the propagation delay is very small. In addition, the number of

nodes passed by messages is lower than that of scenario 1. So, the total request processing time

also become lower. As a result,P21 becomes large. However, as the distance between computing

nodes becomes longer, the propagation delay becomes larger and this reduces the value ofP21,

and steady state probabilities of the cache coherency protocol processing become large.

When, the number of nodes increases, steady state probabilities for the cache coherency pro-

tocol processing (P5, P6, P7, P11) become large. Because, as the number of nodes increase, the

total number ofC state cache line and write access to cache lines are increase. As a result, for

keeping cache coherency, steady state probabilities for the cache coherency protocol processing

become larger andP21 becomes small. By keeping the value ofs in small,P21 can be kept to the

probability about 0.9.

52

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�
�
��

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� � �

� �

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�
�
��

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� � �

� �

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� �

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� �

(b) Scenario 2

Figure 20: Distribution of steady state probability of Ring-NUMA architecture (N = 16, s =

10−2)

53

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � � � � �� � � ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � � � � �� � � ��

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

�
�

�
�

�
�

� �

� ��

� ��

� ��

� ��

� �

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � �� � � �� � � ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

�
�

�
�

�
�

�
�

� �

� ��

� ��

� ��

� ��

� �

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � �� � � �� � � ��

(b) Scenario 2

Figure 21: Distribution of steady state probability of Ring-NUMA architecture (s = 10−2, L =1

km)

54

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

(b) Scenario 2

Figure 22: Distribution of steady state probability of Ring-NUMA architecture (N = 16, L =1

km)

55

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� � �

� �

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

�
�� �
� �� � �� � �
� � �

� �

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� �

� �

� �

� �

� �

� �

�
��
�
�
�
��
��
��
��
	

�
�
�
�
�
��

�
 �
 � � � � � � � � �

�
�� �
� �� � �� � �
� �

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� �

� �

� �

� �

� �

� �

�
��
�
�
�
��
��
��
��
	

�
�
�
�
�
��

�
 �
 � � � � � � � � �

�
�� �
� �� � �� � �
� �

(b) Scenario 2

Figure 23: Distribution of steady state probability of Mesh-NUMA architecture (N = 16, s =

10−2)

56

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

�
�

� �

� ��

� �

� ��

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � � � � �� � � ��

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

�
�

� �

� ��

� �

� ��

� �

� ��

� �

� ��

� �

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � �� � � �� � � ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

�
�

� �

� ��

� �

� ��

� �

� ��

� �

� ��

� �

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � � � � �� � � �� � � ��

(b) Scenario 2

Figure 24: Distribution of steady state probability of Mesh-NUMA architecture (s = 10−2, L =1

km)

57

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

(a) Scenario 1

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

� �

� �

� �

� �

� �

� �

� �

� �

� 	

�

�
��
�
�
�
��
��
��
��
	

�
�
�
�

��
�

�
 �
 � � � � � � � �

� � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ��� � � �
� � ���

(b) Scenario 2

Figure 25: Distribution of steady state probability of Mesh-NUMA architecture (N = 16, L =1

km)

58

5 Evaluation

In this section, we evaluate each shared memory architecture by using the result of numerical

analysis obtained in section 4. Here we evaluate three performance measures, that is, network

utilization, average memory access time, and computation throughput.

5.1 Network utilization

We define the network utilization by following expression.

Network utilization= N ×
∑

v∈V

(
Dv

B × ηv
Pv) (23)

whereV is the set of states where some data are sent, andDv is size of data transmitted at the

statev. From this expression, we find that a residence time of each state can influence on network

utilization. That is, if a residence time of a state is high, network utilization becomes low. In this

study, data is the message (32 byte) or the cache line (4 KByte). We showV andDv in each

architecture below.

• Ring-UMA architecture

V = {10, 15, 19, 20, 21, 25, 29, 34}

D10 = D15 = D19 = D20 = D21 = D25 = D29 = 32 bit

D34 = 32 + 4 × 8 × 103 bit

• Ring-NUMA architecture

V = {10, 14, 15, 17, 21, 22, 23, 27, 31, 32, 37}

D10 = D14 = D21 = D22 = D23 = D27 = D31 = 32 bit

D15 = D17 = D32 = D37 = 32 + 4 × 8 × 103 bit

• Mesh-NUMA architecture

V = {4, 14, 23, 24, 26, 31}

D4 = D14 = D23 = D26 = 32 bit

D24 = D31 = 32 + 4 × 8 × 103 bit

We find that network utilization is extremely low and less than10−9 in each scenario, in

all architecture. This is because, computing nodes use network when the processing of cache

59

coherency protocol is needed. However, the cache coherency protocol is bursty performed because

cache hit ratio is high and most of accesses to the shared memory are read access. Thus, an access

to the shared memory end up to be read hit and the read hit access does not require processing

of the cache coherency protocol. Moreover, as the length of ring or distance between computing

nodes become longer, network utilization becomes low because the propagation delay becomes

large.

Compare with case of Ring-UMA architecture and Ring-NUMA architecture in both scenario,

network utilization of Ring-UMA architecture is higher than that of Ring-NUMA architecture.

The reason is considered as follows. The copy message makes the network utilization relatively

small when we think about the entire execution time. That is, the steady state probability of the

state where the node sends the copy message makes other steady state probabilities small and this

influence on network utilization.

In Mesh-NUMA architecture, network utilization is lower than that of Ring-UMA/NUMA ar-

chitecture. In Ring-UMA/NUMA architecture, that we designed, transmitted data has to round

ring once and source node has to wait the data rounding optical ring. However, in Mesh-NUMA

architecture, computing nodes can directly communicate with each other and does not have to wait

the message for rounding the optical ring. So average propagation delay of Mesh-NUMA archi-

tecture is lower than that of Ring-UMA/NUMA architecture. As a result, the network utilization

of Mesh-NUMA architecture becomes higher than Ring-UMA/NUMA architecture. Comparing

with the case of scenario 1 and 2, the average propagation delay of scenario 1 is higher than that

of scenario 2. So, network utilization of scenario 1 is lower than the case of scenario 2.

60

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=8

N=16
N=32

(a)s = 10−2

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=8

N=16
N=32

(b) s = 10−6

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 26: Network utilization of Ring-UMA architecture in scenario 1.

61

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=16
N=36
N=64

(a)s = 10−2

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=16
N=36
N=64

(b) s = 10−6

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 27: Network utilization of Ring-UMA architecture in scenario 2.

62

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=8

N=16
N=32

(a)s = 10−2

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=8

N=16
N=32

(b) s = 10−6

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 28: Network utilization of Ring-NUMA architecture in scenario 1.

63

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=16
N=36
N=64

(a)s = 10−2

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=16
N=36
N=64

(b) s = 10−6

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 36

Figure 29: Network utilization of Ring-NUMA architecture in scenario 2.

64

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=8

N=16
N=32

(a)s = 10−2

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=8

N=16
N=32

(b) s = 10−6

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 1e-18

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 0.01 0.1 1 10 100

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 30: Network utilization of Mesh-NUMA architecture in scenario 1.

65

 1e-13

 1e-12

 1e-11

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=16
N=36
N=64

(a)s = 10−2

 1e-17

 1e-16

 1e-15

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

N=4
N=16
N=36
N=64

(b) s = 10−6

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 1e-17

 1e-16

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 0.01 0.1 1 10

N
et

w
or

k
U

til
iz

at
io

n

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 36

Figure 31: Network utilization of Mesh-NUMA architecture in scenario 2.

66

5.2 Average memory access time to the shared memory

We define the average memory access time, denoted astshare, to the shared memory as following

expression.

tshare = r × tsr + w × tsw (24)

tsr = h ×
∑

u∈Rh

δuηu + (1 − h) ×
∑

v∈Rm

δvηv (25)

tsw = h ×
∑

u∈Wh

δuηu + (1 − h) ×
∑

v∈Wm

δvηv (26)

wheretsr is the average memory access time of read access,tsw is the average memory access

time of write access.Rh is the set of states which they can transit when the read access is cache

hit, Rm is the set of state which they can transit when the read access is cache miss.Wh is the set

of states where they can transit when the write access is cache hit,Wm is the set of state which

they can transit when the write access is cache miss.δu is the probability, that the stateu is passed

by the probabilityδu.

We showtsr andtsw of each architecture below.

• Ring-UMA architecture

tsr = η2 + PBη22 + hη31

+(1 − h)(η23 + PBη24 + η25 + Pd(η26 + η29) + Pcη27 + (1 − Pc − Pd)η28 + Pxη30 + η31)

tsw = η2 + PBη3 + h(η4 + w(η5 + η6) + r(η7 + η17 + Bη18 + η19 + η20 + η21))

+(1 − h)(η8 + PBη9 + η10 + (1 − c − d)(η11 + Pxη12 + η6)

+ c(η13 + Pxη16 + η19 + η20 + η21)

+ d(η14 + η15 + Pxη16 + η19 + η20 + η21))

• Ring-NUMA architecture

tsr = η2 + PBη24 + hη34

+(1 − h)(η25 + PBη26 + η27 + Pd(η28 + η31) + Pcη29

+ (1 − Pc − Pd)η30 + η32+Pxη33 + η34)

tsw = η2 + PBη3 + h(η4 + w(η5 + η7) + r(η6 + η19 + PBη20 + η21 + η22 + η23))

+(1 − h)(η8 + PBη9 + η10 + (1 − c − d)(η11 + η17 + Pxη18 + η5 + η7)

67

+ c(η12 + η15 + Pxη16 + η21 + η22 + η23)

+ d(η13 + η14 + η15 + Pxη16 + η21 + η22 + η23))

• Mesh-NUMA architecture

tsr = h(η2 + η20)

+(1 − h)Pd(η14 + η15 + η16 + η17 + η18 + Pxη19 + η20)

+(1 − h)(1 − Pd)(η14 + η18 + Pxη19 + η20)

tsw = h(η2 + η3 + η13 + r(η5 + η6 + η7 + η11 + Pxη12))

+(1 − h)Pd(η2 + η4 + η8 + η9 + η10 + η11 + Pxη12 + η13

+(1 − h)Pc(η2 + η4 + η6 + η7 + η11 + Pxη12 + η13

+(1 − h)(1 − Pc − Pd)(η2 + η4 + η6 + η7 + η11 + Pxη12 + η13)

From these expressions, we can find that average memory access time is determined by residence

time of states in model. So, the length of ring (in scenario 1) or the distance between computing

nodes (in scenario 2) have big impact on average memory access time because the residence time

is decided by them.

Fig. 32–Fig. 37 shows average memory access time of each architecture and each scenario.

As mentioned before, as the length of ring or the distance between computing nodes become

longer, average memory access time remarkably become larger. However, in Ring-UMA/NUMA

architecture, while the length of ring is small (less than 1 km), average memory access time is

larger than propagation delay. The reason is frame processing time at the network interface. We

set this value at 3µs by referring our implemented prototype system. This value is large and while

the length of ring is short, total frame processing delay at each computing nodes occupies the most

of average memory access time.

As the number of increase, the number of nodes passed by data rounding optical ring become

large in scenario 2. So, in scenario 2, the case ofN = 64, the length of ring reaches 640 km and

this is very long. Therefore, Ring-UMA/NUMA architecture in scenario 2 takes time to access to

the shred memory longer than that of in scenario 1.

On the contrary, in Mesh-NUMA architecture (Fig. 36, Fig. 37), average memory access time

is smaller than that of Ring-UMA/NUMA architecture. This is because a CPU does not have to

68

 0

 100

 200

 300

 400

 500

 600

 700

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

N=4
N=8

N=16
N=32

(a)s = 10−2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

N=4
N=8

N=16
N=32

(b) s = 10−6

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 32: Average memory access time of Ring-UMA architecture in scenario 1.

wait the data rounding optical ring, that is broadcasting, and can communicate each other directly.

So the propagation delay becomes smaller than that of Ring-UMA/NUMA architecture and aver-

age memory access time becomes small. Especially in scenario 2, the physical topology is grid

topology. So, average propagation delay become lower than that of scenario 1 that organize ring

topology in physical. Therefore, average memory access time in scenario 2 is lower than that of

scenario 1.

69

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

N=4
N=16
N=32
N=64

(a)s = 10−2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

N=4
N=16
N=32
N=64

(b) s = 10−6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 36

Figure 33: Average memory access time of Ring-UMA architecture in scenario 2.

70

 0

 100

 200

 300

 400

 500

 600

 700

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

N=4
N=8

N=16
N=32

(a)s = 10−2

 0

 100

 200

 300

 400

 500

 600

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

N=4
N=8

N=16
N=32

(b) s = 10−6

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 100

 200

 300

 400

 500

 600

 700

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 34: Average memory access time of Ring-NUMA architecture in scenario 1.

71

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

N=4
N=16
N=32
N=64

(a)s = 10−2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

N=4
N=16
N=32
N=64

(b) s = 10−6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 36

Figure 35: Average memory access time of Ring-NUMA architecture in scenario 2.

72

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

N=4
N=8

N=16
N=32

(a)s = 10−2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

N=4
N=8

N=16
N=32

(b) s = 10−6

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 150

 200

 250

 300

 350

 400

 0.01 0.1 1 10 100

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Length of ring [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 32

Figure 36: Average memory access time of Mesh-NUMA architecture in scenario 1.

73

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

N=4
N=16
N=32
N=64

(a)s = 10−2

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

N=4
N=16
N=32
N=64

(b) s = 10−6

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(c) N = 16

 5

 10

 15

 20

 25

 30

 35

 40

 0.01 0.1 1 10

A
ve

ra
ge

 M
em

or
y

A
cc

es
s

Ti
m

e
[u

s]

Distance beween computing nodes [km]

s=10^(-2)
s=10^(-4)
s=10^(-6)

(d) N = 36

Figure 37: Average memory access time of Mesh-NUMA architecture in scenario 2.

74

5.3 Computation throughput

We define the computation throughput by following expression. In this study, we use the compu-

tation throughput as MIPS (Million Instruction Per Second).

MIPS =
N

0.8 × η1 + 0.2 × s × tshare + 0.2 × (1 − s) × tprivate
(27)

wheretprivate is the average memory access time to the local memory. We obtaintprivate as

follows.

tprivate = h × t1 + (1 − h) × (t1 + t2) (28)

Fig. 38–Fig. 43 show the computation throughput of each architecture. We assume that the

frequency of a CPU is 2 GHz. So, if a CPI (Clock Per Instruction) of this CPU is 10, this CPU

achieves 200 MIPS. Therefore, we set our first goal to achieve over 200 MIPS. Second goal is to

achieve 1000 MIPS.

In Ring-UMA architecture, as the value ofs become lower, we can achieve high throughput,

on the contrary, whiles is large, we can not achieve our goal. The case ofs is large, the cache

coherency protocol is performed and calculation is stalled. Moreover, the things thats has large

value is that a CPU accesses to the shared memory many time. This means that data is frequently

rounding optical ring and it takes time to propagation delay. Therefore, whiles is large, the length

of ring can also influence on the computation throughput badly. On the contrary, whiles is low, the

length of ring influence on the computation throughput so much and we can achieve our second

goal. In scenario 1 and the case ofs = 10−6, the difference between the case ofL = 100 km and

L =1 km are less than 1 %. These facts described above can be found in scenario 2.

Ring-NUMA architecture has similar trend to Ring-UMA architecture in both scenario. In

Ring-NUMA architecture, the computation throughput decreases slightly compare to the Ring-

UMA architecture. This is because the accesses to the home memory can be processed when

cache miss occurs. However, the access to the home node rarely occurs because cache hit ratio is

high. Therefore, the computation throughput is not remarkably decreased.

We can found that Mesh-NUMA architecture achieves the high computation throughput and

this is about to reach 10000 MIPS. In scenario 1, the trend is similar to the case of Ring-UMA/NUMA

architecture of scenario 1. This is because they organize ring topology in physical. However,

Mesh-NUMA architecture organize mesh topology in logical, the average propagation delay is

75

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(a)L = 1km

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(b) L = 100km

 1

 10

 100

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=1km

L=100km

(c) s = 10−2

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=1km

L=100km

(d) s = 10−6

Figure 38: Computation throughput of Ring-UMA architecture in scenario 1.

lower than that of Ring-UMA/NUMA architecture. Therefore, we can achieve high computation

throughput, which is about to over 10000 MIPS, than that of Ring-UMA/NUMA architecture.

In scenario 2, we can achieve higher throughput than that of Ring-UMA/NUMA architecture of

scenario 2. The reason is the average propagation delay is small compare to the case of Ring-

UMA/NUMA architecture of scenario 2. They can establish the shortest wavelength path among

computing nodes. Therefore, in spite ofs is large, the influence of the distance between comput-

ing nodes is low and we can get higher computation throughput than that of Ring-UMA/NUMA

architecture. Especially the case ofs = 10−6, the computation throughput is beyond 10000 MIPS.

76

 10

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(a)L = 1km

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(b) L = 10km

 1

 10

 100

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=0.1km

L=1km
L=10km

(c) s = 10−2

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=0.1km

L=1km
L=10km

(d) s = 10−6

Figure 39: Computation throughput of Ring-UMA architecture in scenario 2.

77

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(a)L = 1km

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(b) L = 100km

 1

 10

 100

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01km
L=1km

L=10km

(c) s = 10−2

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=1km

L=100km

(d) s = 10−6

Figure 40: Computation throughput of Ring-NUMA architecture in scenario 1.

78

 10

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(a)L = 1km

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(b) L = 10km

 1

 10

 100

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=0.1km

L=1km
L=10km

(c) s = 10−2

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=0.1km

L=1km
L=10km

(d) s = 10−6

Figure 41: Computation throughput of Ring-NUMA architecture in scenario 2.

79

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(a)L = 1km

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(b) L = 100km

 1

 10

 100

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01km
L=1km

L=10km

(c) s = 10−2

 1000

 10000

 5 10 15 20 25 30 35

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01km
L=1km

L=100km

(d) s = 10−6

Figure 42: Computation throughput of Mesh-NUMA architecture in scenario 1.

80

 100

 1000

 10000

 100000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(a)L = 1km

 10

 100

 1000

 10000

 100000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

s=10^(-2)
s=10^(-4)
s=10^(-6)

(b) L = 10km

 10

 100

 1000

 10000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=0.1km

L=1km
L=10km

(c) s = 10−2

 1000

 10000

 100000

 10 20 30 40 50 60

M
ill

io
n

In
st

ru
ct

io
n

pe
r S

ec
on

d

Number of node

L=0.01 km
L=0.1km

L=1km
L=10km

(d) s = 10−6

Figure 43: Computation throughput of Mesh-NUMA architecture in scenario 2.

81

6 Conclusion

In this thesis, we designed and evaluated some shared memory architectures inλ computing en-

vironment that we proposed as new distributed computing environment. We confirm that shared

memory architecture inλ computing environment have good performance.

We designed three architecture; Ring-UMA architecture, Ring-NUMA architecture and Mesh-

NUMA architecture in section 3. We investigated the characteristic factors that influence on the

performance of shared memory architecture and picked up four factors; topology, memory access

model, cache coherency protocol, and realization method for cache coherency protocol. By taking

these factors into account, we designed control messages and behavior of the shared memory

architecture.

Then we modeled and analyzed shared memory architectures we designed. We utilized semi-

Markov process for modeling and analyzing. By modeling these architecture, we made state

transition diagrams of each architecture. And by using these state transition diagrams, we analyzed

and obtained the distribution of the steady state probability.

At last, by utilizing steady state probabilities, we evaluated shared memory architectures we

designed. As a result, we found that network utilization was very low in all architecture. So,

congestion or packet loss which often happens on the Internet does not occur. Therefore, we

confirm that we can provide high reliability communication line to computing nodes. On the other

hand, the average memory access times is relatively large and we found that this may be influenced

on the network. However, we can achieve high computation throughput in each architecture by

keeping the ratio of access to the shared memory low. Especially, we can achieve high computation

throughput in Mesh-NUMA architecture.

While Mesh-NUMA architecture can achieve the high computation throughput, we do not

take into account about the number of wavelength for designing. That is, we assume that we

can freely use wavelength path with no restriction. However, the wavelength is actually limited

resources and the number of wavelength which each computing node can use is restricted. So, we

have to investigate a new architecture by taking into account this. In addition, we do not consider

about the synchronization among computing nodes. However, synchronization among computing

nodes is very important. So, a new synchronization method suitable forλ computing is required.

Moreover, keeping the ratio of access to the shared memory is realizable but it requires for the

82

assistance of application level. In order to realize this problem, we investigate and develop a new

compiler which is suitable forλ computing and supports parallel application.

83

Acknowledgements

I would like to express my deepest gratitude to my supervisor Professor Masayuki Murata at

Osaka University, who introduced me to the area of computer networks including the subjects in

this thesis and support my studies. His excellent guidance and thoughtful advice that I could have

through my studies are irreplaceable and invaluable my fortune and will help me in my life.

I am most grateful to Associate Professor Ken-ichi Baba at Osaka University for his much

appreciated comments and support. All of my works would not have been possible without his

worthwhile suggestions and encouragement.

I wish to express my sincere appreciation to Professors Koso Murakami, Makoto Imase, Teruo

Higashino, Hirotaka Nakano, and Tetsuji Satoh of Osaka University, for their appropriate guid-

ance.

I appreciate Associate Professor Noriyuki Fujimoto at Osaka University, Dr. Akira Okada

at NTT Photonics Laboratory and Dr. Hiroaki Harai at National Institute of Information and

Communications Technology for their useful advices and discussion.

I am also indebted to Associate Professor Naoki Wakamiya, Associate Professor Go Hasegawa,

Assistant Professor Shin’ichi Arakawa and Assistant Professor Masahiro Sasabe at Osaka Univer-

sity for their helpful comments.

I want to heartily thank my friends and colleagues in the Department of Information Network-

ing of Osaka University.

Finally, I wish to express my warmest thanks to my parents, grandparents and sisters for their

unconditional love, support, patience and understanding.

84

References

[1] Lou Berger Ed., “Generalized Multi-Protocol Label Switching (GMPLS) Signaling Func-

tional Description,”IETF RFC3471, Jan. 2003.

[2] Hirohisa Nakamoto, Ken-ichi Baba, and Masayuki Murata, “Proposal and Evaluation of

Realization Approach for a Shared Memory System inλ Computing Environment,” inPro-

ceedings of the forth International Conference on Optical Internet (COIN2005), pp. 90–95,

May 2005.

[3] Eiji Taniguchi, Ken-ichi Baba, and Masayuki Murata, “Implementation and Evaluation of

Shared Memory System for Establishingλ Computing Environment,” inProceedings of 10th

OptoElectronics and Communications Conference (OECC2005), pp. 20–21, July 2005.

[4] Message Passing Interface available athttp://www-unix.mcs.anl.gov/mpi/ .

[5] Mai Imoto, Eiji Taniguchi, Ken-ich Baba, and Masayuki Murata, “Implementation and Eval-

uation of MPI Library with Globus Toolkit for Establishingλ Computing Environment,” in

Proceedings of 6th Asia-Pacific Symposium of Information and Telecommunication Tech-

nologies (APSITT 2005), pp. 421–426, Nov. 2005.

[6] Hideharu Amano,Parallel Computers. Shokodo, 1996. (in Japanese).

[7] Oudewijn R. Haverkort,PERFORMANCE OF COMPUTER COMMUNICATION SYS-

TEMS. WILEY, 1998.

[8] Masaaki Harada,Probability Model. McGraw–Hill, 1977. (in Japanese).

[9] Kazuki Joe and Jun Naito, “An Analytic Model for the Performance of the ASURA Cluster

using a Semi–Markov Processing,”Technical Report of IPSJ(ARC–1992–097), pp. 65–72,

1992. (in Japanese).

[10] John L. Hennessy and David A. Patterson,Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, 1996.

[11] Gary S. Delp and David J. Farber and Ronald G. Minnich and Jonathan M. Smith and Ming-

Chit Tam, “Memory As A Network Abstraction,”IEEE Network Magazine, 1991.

85

[12] Hirohisa Nakamoto, “Proposal and Evaluation of Realization Approach for a Shared Mem-

ory System inλ Computing Environment,” Master’s thesis, Osaka University, 2005.

[13] Gary S. Delp, Adarshpal S. Sethi, and David J.Farber, “An Analysis of Memnet: An Ex-

periment in High-Speed Shared-Memory Local Networking,” inACM SIGCOMM Computer

Communication Review, vol. 18, pp. 165–174, ACM Press, 1988.

[14] Hirohisa Nakamoto, Ken-ichi Baba, and Masayuki Murata, “Shared memory access method

for a lambda computing environment,” inProceedings of Optical Netwrok and Technology

Conference 2004 (OpNeTech2004), pp. 210–217, Oct. 2004.

[15] William A. Wulf and Sally A. McKee, “Hitting the Memory Wall: Implications of the Obvi-

ous,”Computer Architecture News, vol. 23, no. 1, pp. 20–24, 1995.

[16] Norihisa Suzuki, Shigenori Simizu, and Nagatsugu Yamanouchi,An Implementation of a

Shared Memory Multiprocessor. CORONA PUBLISHING, 1993. (in Japanese).

[17] Kiyofumi Tanaka, Takashi Matsumoto, and Kei Hiraki, “Quantitative Eavaluation of Scal-

able Directory Schemes in Hardware Distribured Shared Memory,”Technical Report of IPSJ

(ARC–2000–129), pp. 7–12, 2000. (in Japanese).

[18] Akira Okada, Hiromasa Tanobe, and Morito Matsuoka, “Dynamically reconfigurable real–

time information–sharing network system based on a cyclic–frequencyAWG and tunable–

wavelength lasers,” inProceedings of 29th European Conference on Optical Communication

(ECOC2003), 2003.

[19] Hiromi Okada,Information Network. Baifukan, 1994. (in Japanese).

[20] Akihiro Hashimoto,Computer Architecture. Shokodo, 1995. (in Japanese).

[21] Hideo Miyahara and Yuji Oie,Computer Network. Kyoritsu Shuppan, 1999. (in Japanese).

[22] Thomas DeFanti, Maxine Brown, Jason Leigh, Oliver Yu, Eric He, Joel Mambretti, David

Lillethun, and Jeremy Weinberger, “Optical Switching Middleware for the OptIPter,”IEICE

Transaction on Communication, vol. E86-B, pp. 2263–2272, Aug. 2003.

86

