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Abstract— TCP overlay networks that control data transmission quality
at the transport layer are being paid a lot of attentions as users’ demands for
diversified Internet services increase. They are expected to enhance the end—
to—end throughput of the TCP connection essentially because the round trip
times and the packet loss ratios of each split TCP connection are reduced.
However, performance degradation may occur due to undesired interactions
among the split TCP connections. In this paper, we introduce an analysis ap-
proach to estimate end-to—end throughput of data transmission with a TCP
proxy mechanism considering of performance degradation. Our analysis
results revealed that we confirmed the effect of the TCP proxy mechanism.
We also found that we cannot ignore performance degradations due to inter-
actions among split TCP connections especially when the congestion level of
the network they traverse is small. Further, we clarified that we should take
into account the packet loss ratios, performance degradations and propaga-
tion delays of the network when we consider the issue relating to the design
of TCP overlay networks.

I. Introduction

The tremendous Internet development has been greatly spurred
by access/backbone network technol ogies such asxDSL and op-
tical fiber. Aswell, users' demands for diversified services have
increased due to the rapid growth of the Internet population.
Some of these applications require high quality transport ser-
vicesin terms of end-to—end throughput, packet lossratio, delay,
and so on. However, datatransmission quality acrossthe present
Internet cannot be assured, essentially because of its best—effort
basis.

IntServ [1] and DiffServ [2] are possible solutions for the
problem by adding control mechanisms at the network layer. For
example, the Diffserv architecture is based on a simple model
where traffic entering a network is classified and possibly condi-
tioned at the boundaries of the network, and then assigned to
different behavior aggregates. However, they would be nec-
essary to deploy additiona mechanisms to al routers that all
traffic—flows traverse in order to provide sufficient benefit from
the introduction of IntServ/DiffServ to the network. Therefore,
because of aspects such as scalability and cost, we believe that
these schemes have almost no chance of being deployed to the
large-scale network.

There are other approaches for quality control mechanism,
which are located under/over IP layer. MPLS (Multi—Protocol
Label Switching) [3] and GMPLS (Generalized MPLS) [?] are
typical examples of the underlay approach. For example, MPLS
allows a particular packet stream to follow a pre-determined
path rather than a path computed by hop—by—hop destination
based routing. Although these approaches are well performed
intheinternal of an ISP (Internet Service Provider), they are not
applicable to data transmission passing through multiple 1SPs;
they need additional mechanisms such as bandwidth broker [4].
Therefore, they have the same shortcoming as IntServ/Diffserv
architectures in scalability and deployment.

Proxy cache servers in CDNs (Contents Delivery Networks)
[5] and media streaming in P2P (Peer to Peer) network [6] are
typical examples for overlay networking approach. In overlay
networks, packets from a sender host are forwarded to areceiver
host via some other hosts/nodes which exist there. The route
between the sender and receiver hosts these packets traverse is
composed of many virtual paths in the overlay networks. This

means that overlay networks can provide various services with-
out changes to the existing | P infrastructure even if overlay net-
works spread over multiple ISPs. The overlay networks con-
trol data transmission quality by using information of the un-
derlying IP network by means of monitoring and/or signaling
mechanisms. For example, application-ayer overlays in [7-9]
use RTTs (Round Trip Times) and hop—counts between overlay
nodesin order to configure the topology of the overlay networks
and select adequate paths between sender and receiver nodes.
The other researches on the overlay network for |P packet rout-
ing, such as RON (Resilient Overlay Network) [10] and FBR
(Feedback Based Routing) [11], obtain the functioning and qual -
ity of the Internet paths among overlay nodes and use this in-
formation to decide whether to route packets directly over the
Internet or by way of other overlay nodes. However, these over-
lay schemes need additional overheads such as signaling mes-
sages and redundant traffic for measuring the network perfor-
mance and exchanging information among overlay nodes. An-
other disadvantage is that they need some complicated control
mechanisms specific to each application, and that parameter set-
tings are very sensitive to various network factors.

In this paper, we introduce a TCP overlay network as a scal-
able and deployable overlay network. It controls data transmis-
sion qualities at the transport layer, meaning that the IP layer
remains providing only minimum fundamental functions such
as the routing and packet forwarding. It is fundamentally differ-
ent from IntServ/DiffServ that requires sophisticated facilitiesto
the network layer and RON/FBR that needs additional overheads
for measuring the network performance. One of the important
mechanisms of TCP overlay networks is to divide the end-to—
end TCP connection into multiple split TCP connections, as
shown in Fig. 1, to control transmission quality at the transport
layer. Inthis paper, we cal this splitting mechanism TCP Proxy.

The advantage of TCP overlay networks is the improvement
of TCP throughput achieved by TCP proxy, where data packets
are relayed from the sender host to the receiver host via the split
TCP connections. Since the shorter TCP loops enable usto real-
ize ashorter RTT and lower packet loss ratio, the TCP through-
put can be increased by TCP proxy. Furthermore, the shorter
RTT and lower packet loss ratio also make it easy to control the
performance of TCP connections. For example, by introducing
the TCP proxy mechanism, differences in the network environ-
ment can be concealed from users; if the network between sender
and recelver hosts includes a wireless network, the end-to—end
throughput of the TCP connection generally deteriorates due to
the high packet loss ratio and large propagation delay within the
wireless network. In this case, performance degradation can be
minimized by splitting the TCP connection at both the ingress
and egress edges of the wireless network. Then, data transfer in
the wireless network becomes isolated from that of other parts
of the network, and vice versa.

By using the TCP overlay network for data transmission, the
upper—ayer application by itself does not need to decide paths
among overlay nodes. The paths are selected by TCP proxy
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nodes, using information obtained from TCP connections be-
tween TCP proxy nodes. Therefore, the application can omit
annoying tasks such as the measurement of |P network. Further-
more, it is expected that the application exposes good perfor-
mance by obtaining better information from the transport layer.
TCP throughput is a typical example which can not be obtained
by the approaches in [10, 11], and we consider it would reflect
the performance of the upper—ayer application.

TCP overlay networks has quite a high applicability to the
deployable network. That is, it is not necessary to introduce
the TCP proxy mechanism to al routers in the network, while
IntServ/DiffServ needs to deploy additional mechanisms to all
routers, due to the end—to—end principle of TCP. The advantage
of the TCP proxy mechanism can be exhibited even when only
one proxy exists in the network, and the larger the number of
the TCP proxy nodes becomes, the larger performance gain can
be obtained. It means that the data transfers traversing multi-
ple 1SPs can be easily enhanced by a TCP proxy mechanism.
Furthermore, there is no need to modify the end user’s protocol
stack, since our TCP proxy mechanism automatically splits the
user’s TCP connection.

The idea of TCP proxy is not a new idea. In previous re-
ports [?12-15], some schemes have been proposed to improve
data transfer throughput by splitting TCP connections. Some
researches have focused on specific networks such as wireless
and satellite [12-14]. Other reports have clarified the advan-
tage of improvements of data transfer throughput [?15] but do
not take account of the serious problems involved in splitting
TCP connections and relaying data packets. However, we be-
lieve that we should not limit to apply to TCP proxy mechanism
only to specific networks, and that the merit of TCP overlay net-
works described above becomes apparent when we consider its
deployment to general networks. In fact we cannot expect that
the TCP proxy mechanism will provide the drastic improvement
in end-to—end throughput described in some previous reports.
Aswe will discuss later, various kinds of performance degrada-
tions may occur in splitting TCP connections, due to undesired
interactions among the split TCP connections. Those problems
become more obvious when we try to minimize the degree of
modification of the current system in introducing the TCP proxy
mechanism.

In this paper, we introduce an analysis approach to estimate
the end-to—end throughput of data transmission with a TCP
proxy mechanism. We take into account the problems that may
occur in introducing the TCP proxy mechanism on the analy-
sis approach. From this analysis, we confirm the effect of the
TCP proxy mechanism in various kinds of the networks, and
ascertain the degree of the performance degradation. Further-
more, by using the analysis results we show a simple solution
to performance degradation, which sets the proper size of the
send/receive socket buffer size. Finally, we discuss the issue of
the design of TCP overlay networks with a TCP proxy mecha
nism.

The rest of this paper is organized as follows. Section Il de-
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scribes the TCP proxy mechanism that is a fundamental mech-
anism in TCP overlay networks and shows a very rough es-
timation of the effect of TCP proxy without any performance
degradation problems. We then point out some problems related
with the TCP proxy mechanism. Section |11 describes our new
analysis approach to estimate end—to—end throughput of data
transmission with the TCP proxy mechanism considering per-
formance degradation. Section IV discusses the effectiveness of
the TCP proxy mechanism using our analysis results, the degree
of performance degradation, and the issue of the design of TCP
overlay networks. Finally, in Section V we present our conclu-
sions and note future works.

Il. TCP proxy mechanism

A. Overview

In TCP overlay networks, a TCP proxy is afundamental mecha
nism which splits a TCP connection between sender and receiver
hosts into multiple TCP connections at some network nodes.
Fig. 2 illustrates how data packets are transferred from a sender
host to a receiver host by split TCP connections when a TCP
connection is divided at both TCP proxy A (H(M 4)) and B
(H(Mp)) as shown in Fig. 1. Here, we define each split TCP
connection as C'4, C'g, and C from the sender host. When a
packet from the sender host arrivesat H(M 4) viaCa, H(M4)
relays them to C' . Similarly, H (M) relays packets from C'
to Cc. In the TCP overlay networks discussed in this paper,
we use alocal ACK packet [16]; a TCP proxy node sends back
a pseudo ACK packet to the upward sender/proxy when it re-
ceives a data packet, without waiting to receive an ACK packet
from the downward receiver/proxy, as shown in Fig. 2. By using
local ACK packets, the sender host can transfer new data packets
without waiting for ACK packetsto bereceived from thereceiver
host. This is expected to improve data transfer throughput of
the connection C 4 by shortening the RTT value. Similarly, the
throughputs of both C' g and C'¢ are also improved, which results
in the improvement of end-to—end throughput between sender
and receiver hosts. Furthermore, a TCP proxy has send/receive
socket buffersfor storing data packets, just asaregular TCP host
does. Therefore, when adata packet islost between H (M ) and
the receiver host, C' can retransmit the dropped packets from
H(Mp) instead of the sender host. It is also expected to im-
prove data transfer performance compared to that of a regular
TCP connection.

In a strict sense, this proxy mechanism violates TCP seman-
tics. That is, by using local ACK packets, the sender host re-
ceives ACK packets for data packets before the receiver host re-
ceives them, which may deteriorate reliable data transmission
of TCP. However, we believe that reliability can be maintained
since each split TCP connection has the same rdiability as a
regular TCP connection. Another reason is that a TCP proxy
node forwards SYN and FIN packets, which are used in con-
nection establishing and termination, in an norma manner with-
out using local ACK packets. In TCP overlay networks, split-
ting is performed at TCP proxy nodes where both SYN and



TABLEI
THE EFFECTIVENESS OF TCP PROXY MECHANISM.

Number of Split Connections | Normalized Throughput
2 2.823370
4 7.977354
8 22.550680
16 63.764141
32 180.320358

SYN/ACK packets are passed through. Even if packets from a
sender host are forwarded to areceiver host in different routes, a
TCP proxy mechanism operates successfully because datatrans-
fer is performed via split TCP connections among TCP proxy
nodes. However, we assume that all packets invariably traverse
the edge proxy nodes, which are the nearest proxy nodes from
the sender/receiver hosts. This is because we want not to mod-
ify the sender/receiver TCP implementations. We consider the
following two methods to overcome this problem; one is that
the first and last hop TCP proxy nodes should be located at the
focal points of the network. The other is that a TCP proxy soft-
ware is installed to TCP sender/receiver hosts, so that the TCP
sender/receiver hosts virtually behave the first and last hop TCP
proxy nodes.

B. Simple throughput estimation

As stated above, improvements of data transfer throughput are
expected from the introduction of the TCP proxy mechanism.
This is because a TCP connection is divided into multiple split
TCP connections and each split connection forwards packets
with shorter control loops. We therefore consider that the ex-
pected end-to—end throughput p can be calculated as follows.

p = min p(i)
k3

This expression shows that end—to—end throughput equals the
smallest throughput p(i) of each split TCP connection i. The
average throughput p of a TCP connection can be estimated by
using Eq.(1), which is described in [17]:

1
g % 3b
RTT,/?” + T, -min <1,3,/?p> p(1 + 32p2)
= TCP_RHO(RTT,p,T,,b) )

Here, we denote b as the option of the delayed ACK, where the
receiver host replies to one ACK packet every b ACK packets.
p, RTT, and T, are the packet loss ratio, round trip time, and
time duration of the initia timeout, respectively. Table | shows
the effectiveness of the TCP proxy mechanism in a 32 hop net-
work using the above estimation. Inthistable, thefirst row isthe
number of split TCP connections, each of which has identical
hop counts; and the second row is the normalized throughput,
which is defined as the ratio of the throughput when using TCP
proxies to that without TCP proxies. We also set the link band-
widths, the packet loss ratios and the propagation delays of each
hop as 100 [Mbps], 0.0005 and 0.01 [g], respectively. From this
table, we can observe that end—to—end throughput is greatly im-
proved as the number of split TCP connections becomes large.
This is because both of the RTTs and packet loss ratios of each
split TCP connection become small.

C. Problemsin TCP proxy mechanism

The above calculationis for an ideal case, where we do not con-
sider any bad effects from splitting the TCP connections. In
apractical case, however, some performance degradations may
occur due to undesired interactions among the split TCP connec-
tions. Here, we introduce two major problems causing degra-
dation of the data transfer throughput, especialy in regard to
buffering at the TCP proxy nodes. Fig. 3(a) illustrates one prob-
lem caused by temporary congestion at a split TCP connection
A. When a packet loss occurs at the split TCP connection A due
to network congestion, the TCP proxy temporarily stopsrelaying
data packets from the receive buffer of the split TCP connection
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A to the send buffer of the split TCP connection B until the lost
packet is retransmitted and arrives at the proxy. Thisis because
a TCP receiver deds with the received data in an in—order fash-
ion. Then, the send buffer of connection B may become empty
since connection B continues sending packets. As a result, the
throughput of connection B deteriorates. This problem does not
occur when we do not use a TCP proxy since al incoming pack-
ets are immediately forwarded by the normal router regardless
of the order of the arriving packets.

Fig. 3(b) depicts another problem where the throughput of the
split TCP connection B deteriorates when it experiences network
congestion. We consider the situation where connection B tem-
porarily cannot send data packets from the send buffer at the
TCP proxy B due to network congestion. When the duration of
the congestion is long, the buffers at the TCP proxy B (the send
buffer for connection B and the receive buffer for connection A)
becomefull since split TCP connection A continues transmitting
packetsto the TCP proxy B. When thereis no remaining spacein
the receive buffer, TCP proxy B sends local ACK packets with
zero size of the advertised window. This causes connection A
to stop sending data packets for a while. Then, the buffers at
proxy B become empty when the connection B recovers from
the congestion and starts sending packets again. Therefore, the
throughput of connection B may deteriorate.

Those problems are caused by the introduction of aTCP proxy
mechanism in the network, meaning that we put TCP endpoints
in the network routers, in addition to the sender/receiver hosts.
Therefore, we should take them into account when eval uating the
performance of the TCP overlay network. However, we consider
the problem shown in Fig. 3(b) is not so serious in an actual net-
work. Thisis because major operating systems including Linux
and FreeBSD have a mechanism to avoid performance degrada-
tion from a zero advertised window [18, 19]; when the received
dataisretrieved from the receive socket buffer to the application
buffer and there becomes some available space in the receive
buffer, the receiver—side TCP sends an additional ACK packet
to the sender to inform the new value of the advertised window.
In the next section, we consider the problem in Fig. 3(a) as the
major reason for performance degradation in splitting TCP con-
nections.

I11. Throughput analysis

A. Model and assumptions

We use the network model as shown in Fig. 4 in our analysis.
We focus on a TCP connection which traverses n + 1 nodes
from the sender host H (0) to the receiver host H(n). We de-
fine link bandwidth, packet loss ratio, and propagation delay of
alink as L(h)(1 < h < n) asb(h), p(h), and d(h), respec-
tively. We assume that the TCP connection is divided into m
split TCP connections at m — 1 TCP proxy nodes. A split TCP
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Fig. 4. Anaysis model.

connection C(1 < k < m) is established between the TCP
proxy H(Mjy_1) and the TCP proxy H (M), where My, is the
position of the TCP proxy. H (M) has the receive socket buffer
for C},, the size of whichis RBy,, and the send socket buffer for
Ch+1, thesize of whichis SBy41. Thegoa of our analysisisto
estimate the average end-to—end throughput p of the data trans-
fer from H(0) to H(n), considering the performance problem
depicted in Fig. 3(a). Since our analysis is based on the analy-
sis of the average throughput of a TCP connection in [17], we
use the same assumptions as those in [17]. We further introduce
a new assumption that a TCP proxy sends a local ACK packet
when it receives a data packet from the upward sender/proxy.
We do not consider a processing overhead at TCP proxy nodes
because we are interested in the average end—to—end throughput
in this paper. However, the processing overhead should be taken
into account especially when we evaluate transfer delays of the
fixed-sized data. We are now investigating the effect of process-
ing overhead and we will show the results in the final—version

paper.

B. Analysis

Our analysis makes an iterative calculation. First, we calculate
the average throughput p,[0] of C}, without consideration of the
interaction among split TCP connections. That is, p[0] is the
average throughput of C';, where we do not consider the interac-
tion between C}, and Cj.—1, and between C}, and Cy41. Then,
we define p[0] = minj<k<m pr[0], which is the first value of
the iterative calculation. In the i—th iteration, we calculate p [i]
and pli] based on p[0], px[i — 1] and p[i — 1] considering the
performance degradation problem. The iteration stops when the
following condition becomes satisfied, and then we consider p[i]
as the average throughput p.

|pli — 1] — pld]]
— <€ 2
- 1] @
pi[0] is determined by three factors; (A) the throughput given
by using Eq.(1), (B) the bandwidth—-delay product of the network
between H (My_,) and H(Mj},), and (C) the receive buffer size
of Cy, RBy, . Inthe case of (A), the average throughput of C', is
derived from Eq.(1) asfollows:
pil0] = TCP_RHO(RT Ty, py, Ty, b)
Here, T, pi. (packet loss ratio of C) and RTTy, (RTT of Cy)
are calculated asfollows:

T, = 4-RTTy 3
pr = 1—=(1—=—pMy_1+1))-(1—-p(My—1+2))-
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Fig. 5. Performance degradation by undesired interactions among split TCP
connections.

Eq.(3) isavery rough estimation of RTO (Retransmission Time-
Out) presented in[20]. Inthe case of (B), the average throughput
of Cy, eguals the minimum link bandwidth of the traversing net-
work;

"

pl0] = a2 b(h)
In the case of (C), it is calculated as follows:
1 _ RBk

Therefore, pi[0] and p[0] in the first iteration are calculated as
follows:

pil0] = min (0], o1 [0], o1 [0])

pl0] = min p[0] (4)

1<k<m

We then calculate the average throughput of the i—th iteration.
We calculate py[4], the throughput of split TCP connections C'y,
Cy, - -+, Cy, inthis order, and we assume that p,, ] equals p[i].
When we take into account the interactions among split TCP
connections, we should consider the remaining space in the re-
ceive buffer, which depends on the throughputs of both C';, and
Cr11. Here, we model packet arrival/departure at/from the re-
ceive buffer as M/M/1/K queuing model, where K = RB},. We
consider p[i — 1] asthe average packet arrival rate at the receive
buffer of Cy and p»[0] as the average service rate in the send
buffer of C. The remaining space RR B, in the receive buffer
of C isthen calculated as follows;

ST 'K 'K+1
RRB, =min | RB,, K~ 1=K+ Doy i )
(1=p)(1—py )

where K = RB, + SB, and p; = p[i — 1]/p2[0]. Therefore,
we can calculate the average throughput of C'; asfollows:

pi[i] = min (TCP_RHO(RTTl,pl, T,,b),

. RRB;
Mo+15h< M, (b(h)’ RTT, ))

In order to calculate pi[i] (2 < k < m), we take into account
undesired interactions between C';, and C,_, and between C,
and Cy41. See Fig. 5. We consider the time duration between
two successive packet drops in C';,—1, which we define as one
cycle. We denote pi(j) as the probability that the number of
packets stored in the send buffer of C isj (0 < j < SBg) a
the beginning of the cycle. We also denote p{j} asthe average
throughput of C, when there are j packets in the send buffer of
C'.. We can therefore calculate the average throughput of C', in
the i—th iterative calcul ation;

S By

i 1= pr(d) - pili} ()
j=0

Inwhat follows, we explain the derivation of py,(j) and pi{j}.
We model the behavior in the send buffer of C';, as M/M/T/K
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queue to calculate p(j). We consider p,._4[i] as the average
packet arrival rate to the send buffer of C, and py[0] asthe aver-
age serviceratein the send buffer of C'.. pr(j) isthen calculated
asfollows:

py’ (1 — /);;) Z

kit P F 1

()= 1 I ptt
K+1 pr =1
where K = SBy, and p, = pi_1[i]/pr[0]. The packet ar-

rival rate at the send buffer of C'(2 < k < m) depends on the
throughput of an upward connection in current iteration while
the packet arrival rate at the send buffer of C'; does not so. We
therefore use py,—1[i], which is different from the packet arriva
rate p[i — 1] at the send buffer of C, as the packet arrival rate
at the send buffer of C,. We consider the cycle is divided into
two parts; the time from the beginning of the cycle to the arrival
of the retransmitted packet at H (M_1), and the time from that
to the end of the cycle. We denote T'y as the average time dura-
tion of the former part and IV ; as the average number of packets
which C}, transmitsin T';. T; and N, are also defined as those of
the latter part. If there are remaining packets in the send buffer
when the retransmitted packet arrives, no performance degra-
dation occurs as shown in Fig. 6. Therefore, we can calculate
pr{j} inthat case asfollows:

pi{d}t = pel0] (T - pk[0] < j)
Otherwise, we can calculate it as follows:
Ny + N,
—_— 6
Ty +7T, ©)
Inthe following, we discuss the derivation of N ¢, T, N; and T;
by using Fig. 6. IV is the number of packets stored in the send

buffer of C', when a packet loss occurs in C, ;. Therefore, N
is calculated asfollows:

prii} =

Np=j
Ty isthe time duration for the retransmission of the lost packet.
It depends on whether the retransmission is caused by fast re-
transmit or timeout in TCP mechanism [21]. It is a reasonable
assumption that it takes about RT'T,_; in fast retransmit, and
RTO (Retransmission TimeOut) in timeout. Therefore, T'; iscal-
culated asfollows:

7 = (1-min (152 ) ) BT

3 1
in|1l, ——— T,+ =RTTj_
+mm<’w(k—1)><0+2R k1>

Here, we denote w(k — 1) as the average window size of C},
when a packet loss occurs and min(1,3/w(k — 1)) isthe prob-
ability that the lost packet is detected by the timeout. These two
values can befound in[17]. N, isthe average number of packets
which C, transmits between two successive packet drops. Then,

1
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T, is the time duration for C}, to transmit N; packets. It is as-
sumed that when the retransmitted packet arrives at H(My_1),
C', has enough packets in the send buffer. We therefore can cal-
culate T; asfollows:

1

_ Pr—1
min(pk-1i], px[0])
By using these N, Ty, N; and T}, we can calculate pi{j} in
Eq.(6). We then obtain p;, " [i] in Eq.(5).
Furthermore, pi[¢] may belimited by RR By, the bandwidth—
delay product of the networks, as is in the case of C';. Then,
pi[i] iscalculated as follows:

A{1—(K+1)pK+KpK+!
RRBy =min | RBy, K — Vo Ko )
(1 =p)A=p )
L . . RRB,
prli] =min (pkl[l]apk, [Z]7Mk_1ﬂlgh§Mk (b(h), RTTk»

where K = RBj, + SBj1 and p, = pli —1]/pg+1[0]. Wethen
obtain end—to—end throughput p[i] of the i—th iteration, consid-
ering the performance degradation that occursin introducing the
TCP proxy mechanism as follows.

pli] = pmli]

We continue this iterative calculations until Eq.(2) is satisfied,
and finally derive the analysisresults p as p[i] when the iteration
stops.

C. Numerical examples

In this subsection, we confirm the correctness of our analysis
approach by comparing the ssmulation results. All simulations
were run using NS simulator [22]. We compare analysis results
to simulation results in some cases. All results show the cor-
rectness of our analysis approach. We do not show all results
because of the space limitation. In this paper, we investigate the
basic performance of the TCP overlay network by using a small
simulation model. However, it is qualitatively obvious that the
TCP overlay network shows good performance in a large scale
network. In future investigations, we need to evaluate the per-
formance of the TCP overlay network in such a case.

We use the network topology shown in Fig. 7. The net-
work topology is composed of three networks; LAN1, WAN and
LAN2. The TCP proxy is deployed at the edge of each net-
work and a TCP connection between sender and receiver hosts
is divided into three split TCP connections (Cran1, Cwan,
CrLans) a two TCP proxies on R1 and R2. We used TCP
Reno version which is the most popular in the Internet. Other
versions of TCP such as SACK, NewReno, and Vegas can be
applicablein a TCP proxy mechanism, but the degree of the per-
formance gain remains almost the same since it is independent
of the details of the congestion control algorithm of TCP. We de-
note Dy an1, Dwan, D an2 asthe propagationdelay, Pr, an1,
Pw an, Ppano asthe packet loss ratio, BWpan1, BWwan,
BW7p an2 as the link bandwidth of each network. BW i an1,
BWw an and BW, 42 areenough to not limit the performance
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Fig. 8. Confirmation of the analysis results.

of the TCP connection. We use 0.01 as the value of € in Eq.(2).
Note that the other values of e make no differencein the simula-
tion results. In the following numerical examples, we show the
results when the packet lossratio and propagation delay between
a TCP proxy on R2 and the receiver host is large. It means that
we assume that users access the Internet via satellite or wireless
networks. Note that the correctness of our analysis approach is
proved to be aimost identica in other cases.

Fig. 8 shows end-to—end throughput when Dy 4 is 5, 50,
500 [mg]. In this figure, the achievable throughput is very high
when Dy 4 iS5 and 50 [ms] and Py 4 isless than 0.01. In
these regions, we can find that throughput equalsthat of C' ;4 N2,
although the throughput of C', 4n2 is the smallest among the
three connections. This confirms the effective of the TCP proxy,
which eliminates the adverse impact caused by an increase of
Py an. On the other hand, when Py 4 v islarger than 0.01, the
throughput of C'w 4y is the smallest among the three connec-
tions. Therefore, the larger Py 4 is, the smaller the end-to—
end throughput is. This phenomenon also occurs when Py an
is larger than 0.0001 and Dy 4n is 500 [ms]. From this figure,
the analysis results give a reasonable estimation of end-to—end
throughput. However, when Dy 4 n issmall and Py 4 v islarge,
and Dy 4 islarge and Py an is small, there is a significant
difference between analysis and simulation results. Fromour in-
vestigation, this difference is not caused by our analysis, but by
the analysisin [17]. The authors in [17] said that the accuracy
of the analysisin [17] is not assured when packet loss ratio is
less than 0.001 or RTT value is less than 0.1 sec. Another rea-
sonisthat theanalysisin [17] does not consider thetime spent in
slow start phase, it cannot give good throughput estimation when
packet loss ratio is large and/or RTT valueisrelatively large.

IV. Performance evaluation

In this section, we examine the performance of the TCP proxy
mechanism using the analysis results, and investigate its effec-
tiveness. We first discuss performance gain obtained by intro-
ducing the TCP proxy mechanism. We then discuss the degree
of performance degradation caused by the problems described in
Subsection I1-C, and the network characteristics where the per-
formance degradation is large. We next detail a simple solution
to avoid performance degradation and show its effectiveness. Fi-
nally, we discusstheissue of the design of TCP overlay networks
with a TCP proxy mechanism from the point of view of perfor-
mance.

We usethe network model depictedinFig. 7and set BW , an»
to 10 [Gbps]. We compare the following two cases; oneis when
the end—to—end connection is established between sender and re-
ceiver hosts (case 1), the other is when one end—to-end connec-
tion is split at two proxies (case 2). In case 1, the average end—
to—end throughpuit is calculated by using Eq.(1). Incase 2, it is
calculated by using the proposed analysis methods described in
Section |11 and performance degradation depictedin Fig. 3(a) oc-
curs. Fig. 9 showsthe change of performanceratiowhen P an»
and Dy, 4 - are set to various values. Here, we define the per-
formance ratio as the ratio of average end-to—end throughput in
case 2 to that in case 1. From thisfigure, we can observe that the
ratio isaways larger than 1 independent of thevalues of Py 4 v
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Fig. 9. Theeffectivenessin introducing aTCP proxy mechanism.

and Dy, 4 N2 and the degree of performance improvement is up
to about 3 times. It means that a TCP proxy mechanism is very
useful even if we consider performance degradation among split
TCP connections.

In order to examine the characteristics of performance degra-
dation, we use the same network topology as in Section Ill,
where we set Pran1 t0 0.01, Dpany to 0.05 [g], Pwan to
0.01 and Dw 4n to 0.05 [s]. Fig. 10 shows the ratio of the
performance degradation as a function of Py sne and Dpans.
Here, the ratio is defined as the throughput obtained in the anal-
ysisin Section |11, divided by the expected throughput shown in
Eq.(4) without performance degradation. From thisfigure, when
Pr 42 is about 0.01 and Dy 4n2 is about 0.05, performance
degradation tends to become large. That is, when the differ-
ence of the network congestion level between WAN and LAN2
issmall, there is serious performance degradation. In such a sit-
uation, since the average number of packets stored in the send
buffer of the split TCP connection is small, performance degra-
dation frequently takes place, as explained in Section Ill. The
degree of performance degradation is up to about 40% of the ex-
pected throughput in this example, which means that we cannot
ignore problems caused by splitting the TCP connection.

Asexplained above, performance degradation occurssincethe
number of packets stored in the send buffer of the TCP proxy
becomes zero. Therefore, one may expect that we can avoid
performance degradation by enlarging the send buffer size. To
show effectiveness of this, we show another simulation result
where we again use the simulation modd depicted in Fig. 7 and
Pwan and Pran- are 0.01, and Dwan and D ane2 are 0.05,
respectively. These parameters are the values when performance
degradation is maximum in Fig. 10. Fig. 11 shows the ratio of
performance degradation to the expected throughput as functions
of send/receive buffer sizes at TCP proxy on R2. From thisfig-
ure, we find that performance degradation becomes smaller by
enlarging the send buffer size. This is because the probability
that the number of packets stored in the send buffer is zero be-
comes small. In this example, when we do not consider per-
formance degradation, end-to—end throughput should become
about 800 Kbps, corresponding to 1.0 of the y—axisin Fig. 11.
To obtain this throughput value, a TCP connection requires 10
[KBytes] for its send/receive buffer size. Thisvalueisrelatively
small compared with the default values assigned to send/receive
buffersin the currently operating systems. That is, we can expect
800 [kbps] throughput when we do not consider the performance
degradation with a TCP proxy. However, Fig. 11 tells us that a
TCP proxy needs to allocate more than about 512 [Kbytes] for
the send buffer to aleviate throughput degradation. On the other
hand, we can also find from Fig. 11 that the receive socket buffer
size has little effect on performance. Therefore, we set the re-
ceive socket buffer size based on the bandwidth—delay product
of the traversing network.

Finally, we discuss the appropriate position of the TCP proxy
using the network topology in Fig. 12. We consider that a
TCP connection between sender and receiver hosts is divided
once at TCP proxies on R1, R2 or R3. The second row of
Table 11 shows the average end-to—end throughput when the
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network congestion levels of each network is homogeneous
(Pranvt = Pwani = Pwan2 = Pran2 = 0.00001,
Dranvit = Dwani = Dwane = Dpane = 0.005 [s]). From
this row, we find that we obtain the largest throughput when the
TCP connection is divided at TCP proxy on R2. This means
that we should divide the TCP connection so that the RTTs of
the split connections become equa. The third row of Table |1
showsthe average throughput when the network congestion level
is heterogeneous (Pran1 = Pwan1t = Pwan2 = 0.00001,
Ppan2 = 0.01, Dpant = Dwant = Dwana = Dpans =
0.005[s]). From this row, we find that we cannot achieve the
largest throughput when we divide the TCP connection based on
RTT values of the network. This is because the throughput is
greatly affected on that of the split TCP connection between a
TCP proxy on R2 and the receiver host, where the packet loss
ratio is very high. In this case, the throughput becomes largest
when the TCP connection is divided at TCP proxy on R3 so that
the congested network isisolated from the other networks. From
these results, we conclude that we must take account of not only
the RTTs of each split TCP connection but also packet |ossratios
and performance degradations caused by undesired interactions
from the introduction of the TCP proxy.

V. Conclusions and future works

Inthis paper, weinitially pointed out the problemsthat will occur
in introducing the TCP proxy mechanism. We have then intro-
duced an analysis approach to estimate end—to—end throughput
of data transmission with a TCP proxy mechanism considering
these various problems. From our analysis results, we confirmed
the effect of the TCP proxy mechanism. Furthermore, we found
that we cannot ignore performance degradation caused by these
problems, especially when the congestion level of the network
where the split TCP connections traverse is small. We have
shown that performance degradation can be minimized by en-
larging the send buffer size of the split TCP connection, and that
the required size is much larger than the size for a normal end—
to—end TCP connection. Finally, we clarified that we need to
take account of packet loss ratios and performance degradation,
as presented in this paper, as well as propagation delays within
the network.

In future investigations, we need to evaluate the performance
of the TCP proxy mechanism considering the handling of mul-
tiple TCP connections, focusing on the processing overhead of
incoming packets, and so on. We also need to investigate the
performance of the TCP proxy mechanism when it handles Web
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Fig. 12. Simulation model 2.
TABLE I
EFFECT OF THE TCP PROXY IN THE CASE OF A
HETEROGENEOUS/HOMOGENEOUS NETWORK .

DLAN?

LAN2

Receiver

st
4

Split Point | Homogeneous Case | Heterogeneous Case
R1 59.494 [Mbps 1.860m [Mbps]
R2 108.53 [Mbps 2.299 [Mbps]
R3 59.494 [Mbps 3.008 [Mbps

traffic, where its file transfer delay is severely affected by the
processing delays of a TCP proxy. Further, we intend to discuss
issues relating to the design of TCP overlay networks in large
scaled networks.
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