
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

Hierarchically Aggregated Fair Queueing (HAFQ) for

Per–flow Fair Bandwidth Allocation

Ichinoshin MAKI†, Hideyuki SHIMONISHI††, Tutomu MURASE††,
and Masayuki MURATA†, Members

SUMMARY Because of the development of recent broad-
band access technologies, fair service among users is becoming
more important goal. The most promising router mechanisms for
providing fair service is per–flow traffic management. However, it
is difficult to implement in high–speed core routers because per–
flow state management is prohibitively expensive; thus, a large
number of flows are aggregated into a small number of queues.
This is not an acceptable situation because fairness degrades as
the number of flows so aggregated increases. In this paper, we
propose a new traffic management scheme called Hierarchically
Aggregated Fair Queueing (HAFQ) to provide per–flow fair ser-
vice. Our scheme can adjust flow aggregation levels according
to the queue handling capability of various routers. This means
the proposed scheme scales well in high–speed networks. HAFQ
improves the fairness among aggregated flows by estimating the
number of flows aggregated in a queue and allocating bandwidth
to the queue proportionally. In addition, since HAFQ can identify
flows having higher arrival rates simultaneously while estimating
the number of flows, it enhances the fairness by preferentially
dropping their packets. We show that our scheme can provide
per–flow fair service through extensive simulation and experi-
ments using a network processor. Since the currently available
network processors (Intel IXP1200 in our case) are not high ca-
pacity, we also give extensive discussions on the applicability of
our scheme to the high–speed core routers.
key words: Fairness, Packet Scheduler, Scalability, Network
Processor

1. Introduction

Fair service among users is already one of the most
important goals of those concerned with the quality of
best effort traffic, and it is becoming more important as
broadband access technologies such as xDSL and opti-
cal fiber remove the limits on a user’s use of network re-
sources. This means aggressive users may utilize a large
amount of network resources and deteriorate quality of
other users extremely [1]. Therefore, it is important to
provide fair service for end users and many researches
are done in order to solve this problem.

There are two main traffic management schemes
for providing per–flow fair service as router mecha-
nisms. RED [2] and SRED [3] are represented as the

Manuscript received March 8, 2005.
Manuscript revised May 11, 2005.
Final manuscript received 0, 2005.

†The author is with the Department of Information Net-
working, Graduate School of Information Science and Tech-
nology, Osaka University

††The author is with the System Platforms Research Lab-
oratories, NEC corporation

first main traffic management scheme. These mecha-
nisms take an advantage of easy hardware implementa-
tion but parameter settings are very sensitive to various
network factors [2]. Therefore, it is difficult to provide
per–flow fair service for all users. As the second main
traffic management scheme, per–flow scheduling or per–
flow accounting are represented. For example, there
are a lot of packet scheduling algorithms but the DRR
scheme [4] should be one of the easiest to accomplish
the per–flow service. When the line speed of a router
is low enough that all flow states can be maintained in
large capacity memories, the router can employ per–
flow queueing. However, it is difficult to use per–flow
queueing in high–speed core routers because large ca-
pacity memories cannot operate so fast; thus, a large
number of flows are aggregated into a small number of
queues. This is not a preferable situation because the
more number of flows aggregated into a queue increases,
the worse fairness tends to become.

In this paper, we therefore propose a new traffic
management scheme called Hierarchically Aggregated
Fair Queueing (HAFQ) to provide per–flow fair ser-
vice. HAFQ improves the fairness among aggregated
flows by estimating the number of flows aggregated in
a queue and allocating bandwidth to the queue pro-
portionally. In addition, since our scheme can identify
flows having higher arrival rates simultaneously in es-
timating the number of active flows, it enhances the
fairness by preferentially dropping their packets.

Another advantage of our scheme is that it re-
quires no flow identification to assign a queue to a flow.
The assignment can be simply implemented by hash-
ing methods because it has only to guarantee that the
difference between the number of flows aggregated into
each queue is not extremely large. Flow identification is
not required even in edge routers performing near per–
flow queueing because our scheme allows two or more
flows to occasionally be aggregated in the same queue.

We evaluate the proposed scheme through exten-
sive simulation studies. First, we show that our scheme
can estimate the number of active flows precisely in
comparison to the traditional schemes. Second, we also
show that the proposed scheme can provide per–flow
fair service even when a large number of flows are ag-
gregated into the same queue.

In general, a scheduling complexity can be eval-

2
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

uated if the scheduling algorithm is given. However,
in today’s high–speed network environment, its quan-
titative complexity of hardware implementation can be
fully investigated neither by simulation nor by theo-
retical studies. We therefore implemented our scheme
on Intel IXP1200 network processor [5]. Since a net-
work processor is programmable and it can realize
many router mechanisms, we can evaluate the proposed
scheme in a nearly actual environment. Since the pro-
cessing capacity of the IXP1200 is not high, we examine
the results obtained in a relatively slow network envi-
ronment and discuss the applicability in a high–speed
network environment.

The remainder of the paper is structured as follows.
In the next section, we propose a new scalable traffic
management. In section III, we evaluate the scheme
through extensive simulation studies. In section IV,
we discuss the implementation design issues of the pro-
posed scheme on the network processor and evaluate its
scheduling complexity through experimental measure-
ments. Finally, we conclude in section V.

2. Hierarchically Aggregated Fair Queueing
(HAFQ)

2.1 Outline

The basic mechanism of our scheme is illustrated in
Fig. 1. When a packet arrives at the router, a 16-bit
CRC hashing function assigns it to a queue. It is be-
cause it can perform good load balancing [6]. Then, the
number of active (long–lived) flows in each queue is es-
timated. We are interested in fairness among long–lived
flows. Therefore, we do not consider short–lived flows in
this paper. The number of flows is estimated by using a
zombie list [3], which is a short history of newly arrived
flows and is prepared for each queue. This means that
the number of flows is estimated without maintaining
the states of all active flows. And because the zom-
bie list also helps identifying flows whose having high
packet arrival rates, fairness among aggregated flows
in the same queue can be improved by dropping those
packets preferentially.

As output operations, our scheme allocates band-
width to the queue according to the number of flows
aggregated into each queue. Then, our scheme forwards
a packet from the queues using the DRR scheduling.

2.2 Zombie List

A zombie list is a table of constant size in which is a
short history of newly arrived flows. Each row in this
table contains a flow ID and a packet counter, and the
list is revised every time a packet arrives at the router.
An entry in the zombie list is called zombie. When a
packet arrives at the router, it performs as below.

• Search into a zombie list.

� �

� � � �

� �

� � � �

� � � 	
 �

�

 �

� � � 	
 �

�

 �

� � � 	
 �

�

 �
� � � �

� � � � � �� � � � �

�

�
�

�

�
� �

�

� � �
 � � � � � � �
� � � � � � �
 �
 � � �
 � �

� � �
 � � � � � � �
� � � � � � �
 �
 � � �
 � � � � � � �
 �

	 � � �
 � � � � � � � � � �
 � �

Fig. 1 Outline of the proposed scheme.

flow ID

1 3

2 7

5

7

2

4

counterflow ID

1 3

2 7

5

7

2

4

counter

Prob: q

Prob: 1-q

(a)

(b)

(c)

flow ID

1 3

2 7

5

7

2

4

counterflow ID

1 3

2 7

5

7

2

4

counter

flow ID

1 3

2 8

5

7

2

4

counter

flow ID

1 3

3 1

5

7

2

4

counter

flow ID

1 3

2 7

5

7

2

4

counter

2

3

Miss

Hit

Fig. 2 Zombie list.

− When the flow ID of the packet matches a
flow ID in the list, the corresponding packet
counter is increased by one. This is called Hit.

− When no entry matches, a row is selected ran-
domly.

* With probability q, the flow ID of the new
packet is written into that row and the
corresponding packet counter is set to 1.
This is called Swap.

* Otherwise (i.e., with probability 1 − q),
nothing is done. This is called No-swap.

Fig. 2 shows an example in which the flow ID of an
arriving packet matches the second entry in the zom-
bie list and the corresponding packet counter is incre-
mented by 1 (Fig. 2(a)). It also shows examples of
what happens when the new flow ID does not match
any of the entries in the zombie list. With probabil-
ity q, the flow ID is written into a randomly selected
entry and the corresponding packet counter is reinitial-
ized (Fig. 2(b)). With probability 1− q, the zombie list
is not changed (Fig. 2(c)).

2.3 Estimating the Number of Flows

In [3], a scheme which estimates the number of flows
aggregated in a queue is proposed but the number of

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
3

active flows is estimated almost accurately only when
the arrival rates of all flows are equal. Otherwise, the
estimated number is too small.

We therefore propose a more accurate estimation
scheme that works appropriately even when the arrival
rates of flows differ, which is common in an actual sit-
uation. In the proposed scheme, the arrival rates of
incoming flows are estimated and their average is cal-
culated. The number of flows can be derived from the
average rate because there is the following relation be-
tween the average arrival rate λavg and the number of
flows N .

λavg =
∑N

i=1 λi

N

N =
∑N

i=1 λi

λavg
(1)

where λi is the arrival rate of flow i. The above equa-
tions indicate that the number of flows can be estimated
by dividing the total arrival rate by the average arrival
rate. Note that these equations hold when the arrival
rates of the flows differ.

Now we define Ri as the ratio of the arrival rate of
flow i to the total arrival rate for the same queue, i.e.,

Ri =
λi∑N
i=1 λi

(2)

In the following, we will estimate the number of flows
by deriving Ri using a zombie list. Here we assume
that the packet length is fixed, but the scheme is easily
extended to handle variable packet lengths.

Assume that a packet of flow i arrives at queue k
and that zombie list k is updated. Let M denote the
number of entries in a zombie list. If entry j (1 ≤ j
≤ M) is replaced by a newly arrived flow, the arrival
rate of the flow that had been registered in that entry
is estimated by using the packet counter value of the
entry before the entry is replaced. This is because the
maximum value of the packet counter is proportional
to the rate of the flow.

When we define P1 as the probability that a flow
in a entry is replaced before packets of the flow arrives
again (i.e., the probability that the maximum value of
the packet counter is 1), P1 is given by

P1 = (1 − Ri)a + (1 − Ri)(1 − a)(1 − Ri)a
+ {(1 − Ri)(1 − a)}2(1 − Ri)a
+ · · · + {(1 − Ri)(1 − a)}n(1 − Ri)a

=
(1 −∑M

j=1 RXj)
q
M

(1 −∑M
j=1 RXj)

q
M + Ri

where Xj denotes the flow ID registered in entry j and
a denotes the probability that an entry is replaced by a
newly arrived flow under the condition that an arrived
packet matches no entry. Namely,

a =
1 −∑M

j=1 RXj

1 − Ri
× q

M

In the same way, the probability Pn that the packet
counter is increased to n before the entry is replaced.
Pn is given by

Pn = Rn−1
i P1 + (1 − Ri)(1 − a)Rn−1

i P1

+ {(1 − Ri)(1 − a)}2Rn−1
i P1

+ · · · + {(1 − Ri)(1 − a)}nRn−1
i P1

=
Rn−1

i (1 −∑M
j=1 RXj)

q
M

{(1 −∑M
j=1 RXj)

q
M + Ri}n

Therefore, the expectation Ei for the maximum value
of the packet counter is given by

Ei =
∞∑

i=1

i Pi =
Ri

(1 −∑M
j=1 RXj)

q
M

+ 1 (3)

Now let Ri be unknown and let R̃i denote the esti-
mation for Ri. If we assume that the packet counter
value reaches Ẽi before the entry is replaced, R̃i can be
derived using Eq. (3) as follows:

R̃i =

⎛⎝1 −
M∑

j=1

RXj

⎞⎠ q

M
(Ẽi − 1)

If we assume that no entries in the zombie list are
swapped, the probability p that incoming packets
match one of the entries (i.e., the probability of a Hit)
approaches the sum of the rates of the flows in the zom-
bie list:

∑M
j=1 RXj . Therefore, if we choose the smaller

value for the swapping probability q, the sum of RXj

can be approximated by the probability p. Thus, R̃i

can be derived by the following equation:

R̃i = (1 − p)
q

M
(Ẽi − 1) (4)

Then, the scheme computes the average of R̃i. Since
a flow having a higher arrival rate is counted to the
average arriving rate more frequently than other flows,
the average is overestimated if some of the flows have
higher arrival rates. Since flow i is registered in the
zombie list R̃i/Ẽi times per unit time, R̃i should be
counted into the average with the weight (R̃i/Ẽi)−1.
Therefore, the average R̃avg is given by

R̃avg =

{
1 − β

(
Ẽi

R̃i

)}
R̃′

avg + β

(
Ẽi

R̃i

)
R̃i

=

{
1 − α

1 − p
· Ẽi

Ẽi − 1

}
R̃′

avg + βẼi

where α is a predetermined value which is βM
q and β

is a smoothing parameter for the average. Finally, the
estimated number of flows accommodated in the queue

4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

is calculated by 1/R̃avg using Eqs. (1) and (2).

N =
1

R̃avg

(5)

If the number of flows is no more than the number of
entries in a zombie list and all incoming packets are
matched with one of the entries, the packet counter
can increase infinitely. Therefore, we introduced an-
other mechanism to deal with this problem but do not
describe it in this paper because of the space limitation.

2.4 Preferential Packet Dropping Using Packet Coun-
ters

Our scheme improves fairness among flows aggregated
in the same queue by detecting the flows having higher
arrival rates and preferentially dropping the packets
of these flows. Since Eq. (4) shows that the packet
counter value is proportional to the packet arrival rate,
the packets of flows having higher arrival rates can be
detected easily. The proposed scheme therefore drops
the incoming packet if the packet counter value is more
than the average of the packet counter value and the
queue length is greater than half of the buffer capacity.

We incorporate a shared buffer; this means that
the maximum size of each queue is not fixed. There-
fore, there is no serious performance degradation even
when the number of flows accommodated in each queue
considerably differs. If the maximum size of each queue
is fixed in such a case, our scheme may be as good as
the tail drop for buffer control. In this paper, the size
of shared buffer equals to the value of bandwidth–delay
product.

3. Simulation Results

In simulation, we used the single–bottleneck network
topology shown in Fig. 3. We assumed that the band-
width of the access links and the bottleneck link is 155
Mbps, and the propagation delays of these links are re-
spectively 0.1 and 1 ms. All hosts use TCP or UDP
(3.2 Mbps) and they have an infinite amount of data to
transmit. The number of entries in one zombie list is
four. All simulations were run using the NS simulator
[7].

3.1 Estimated Number of Flows

We evaluated the flow number estimation of our scheme
and compared it with the estimation of SRED. Fig-
ures 4(a)–(c) show the estimated number of flows ag-
gregated in a queue and the number of active flows. In
these figures, “HAFQ w/o DROP” denotes our scheme
without the preferential packet–dropping using packet
counters and “HAFQ” denotes our scheme with the
packet–dropping. We assumed that one flow starts to
transmit at time 0, that the number of flows doubles

Sender hosts Receiver hosts

Router

Bottleneck
S1

Sn

R1

Rn

All links : 155 Mbps

Router

Fig. 3 Single-link model.

every 2 seconds until it reaches 64 and that all these
flows are aggregated in one queue.

In Fig. 4(a), all flows are TCP flows and their
RTTs are same. In this case, all three schemes give
approximately correct numbers. In Fig. 4(b), half of
the access links have 1 ms propagation delays and the
other half have 0.1 ms propagation delays. This fig-
ure shows that RTTs have little influence on the es-
timated number of flows. In Fig. 4(c), half the flows
are TCP flows and the other half are UDP flows. In
this case, the number of flows estimated by SRED are
much smaller than the correct values. Since the ar-
rival rates of UDP flows are much higher than those
of TCP flows, SRED counts flows as if the only flows
in the network are UDP flows. In our scheme without
the packet–dropping, however, the estimated numbers
of flows are only slightly less than the correct values.
With the packet–dropping, the estimation is improved
and the error is less than 15%. This is because packets
of UDP flows are preferentially dropped and the arrival
rates of all flows become more uniform.

According to [8], the number of active flows in
backbone networks reaches about several tens of thou-
sands. However, we think we do not need to run sim-
ulations in such a case because the number of flows
accommodated to a queue is expected to be small. As
shown in Subsection 4.3.4, our scheme would be able to
have 1K queues in backbone routers. This means that
the number of flows accommodated to a queue would be
about several tens even in backbone routers. We there-
fore think our simulation is very reasonable to evaluate
the flow number estimation. In addition, the estimated
number of flows has relation to the average arrival rate
of flows accommodated to a queue as shown in Eq. 5.
Therefore, our scheme shows good estimation indepen-
dently of the number of active flows. In Subsection 3.2
and 3.3, we run simulation when the number of active
flows is small as well as in this subsection. This reason
is shown as described above.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
5

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(a) TCP flows in a homogeneous en-
vironment

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(b) TCP flows in a heterogeneous
environment

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(c) TCP and UDP flows in a homo-
geneous environment

Fig. 4 The estimated number of flows in SRED and the proposed scheme.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(a) TCP flows in a homogeneous en-
vironment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(b) TCP flows in a heterogeneous
environment

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
DRR

SRED
HAFQ w/o DROP

HAFQ

(c) TCP and UDP flows in a homo-
geneous environment

Fig. 5 Throughput of TCP and UDP flows.

3.2 Throughput of Each Flow on the Middle Aggre-
gation Level

We next evaluated our scheme using 64 queues and de-
termining the ones that flows were stored in by hashing
the flow IDs, in comparison with the FIFO scheme us-
ing tail drop for buffer control. In this evaluation, the
number of flows was 256. We run each simulation dur-
ing 10 sec.

Fig. 5(a) shows the individual throughput of all
TCP flows. This figure shows that the throughput of
the FIFO scheme differs and the proposed scheme im-
proves fairness among flows. In Fig. 5(b), half of the
TCP flows have longer RTTs as evaluated in Fig. 4(b).
The FIFO scheme gives TCP flows with shorter RTTs
more bandwidth than those with longer RTTs, and our
scheme decreases the difference between flows with dif-
ferent RTTs.

In Fig. 5(c), half of the flows are TCP flows and
the other half are UDP flows (1.2 Mbps). In this sim-
ulation, our scheme was also compared with DRR and
SRED scheme. In the DRR scheme, each flow is accom-
modated in its own queue if the number of active flows
is less than 64; otherwise the extra flows are accom-
modated in one of the queues by hashing the flow IDs.

Since UDP flows do not have congestion control mecha-
nism, we consider serious unfairness between TCP and
UDP flows. We therefore evaluate the effectiveness of
our scheme comparison to traditional schemes. The
FIFO scheme gives UDP flows much more bandwidth
than TCP flows and our scheme improves fairness be-
tween TCP and UDP flows. DRR and SRED scheme
improve fairness between TCP and UDP flows but they
cannot achieve good fairness comparison to our scheme
with the packet–dropping. This is because, in the DRR
scheme, there is a difference in the number of flows ag-
gregated in one queue, while the same amount of the
bandwidth is allocated to each queue, and the SRED
scheme cannot estimate the number of active flows cor-
rectly. In these three cases, the packet–dropping of our
new scheme further improves fairness among flows.

3.3 Fairness Index on the High Aggregation Level

The throughput of a large number of flows was next
examined in order to evaluate a fairness property of our
scheme in a large–scale–network environment. In this
evaluation, our scheme was compared with the FIFO
scheme and with a DRR per–flow scheduling scheme.
Based on a core router environment, we suppose that
both our new scheme and the DRR scheme have 64

6
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 4 16 64 256 1024

F
ai

rn
es

s
in

de
x

Number of flows

FIFO,TailDrop
DRR

HAFQ w/o DROP
HAFQ

(a) Only TCP flows

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 16 64 256 1024

F
ai

rn
es

s
in

de
x

Number of flows

FIFO,TailDrop
DRR

SRED
RED

FRED
HAFQ w/o DROP

HAFQ

(b) TCP and UDP flows

Fig. 6 Fairness index versus the number of flows.

queues. Here we use a Fairness Index as the fairness
measure. Its value f is near 1 if the throughputs of
all flows are equal, and it gets smaller as differences in
throughput increase. It is calculated as follows

f(x1, x2, x3, · · · , xN) =
(
∑N

i=1 xi)2

N
∑N

i=1 xi
2

(6)

where xi is the throughput of flow i, and N be the total
number of flows.

Figures 6(a) and 6(b) show the fairness index plot-
ted against the number of flows. In Fig. 6(a) all flows
are TCP flows, and in Fig. 6(b) half of the flows are
UDP flows. In Fig. 6(b), our scheme was also com-
pared with the modified versions of RED, SRED, and
FRED [9] scheme. For example, the RED scheme is
the same as the modified version of “HAFQ w/o drop”
with buffer control of RED scheme. The fairness of
FIFO scheme becomes worst as the number of flows in-
creases and, compared to the other schemes, its fairness
is worst in any situations. The DRR scheme provides
excellent fairness if the number of flows is less than
the number of queues (i.e., 64), but it becomes increas-
ingly less fair as the number of flows increases beyond
64. This is because there is a difference in the num-
ber of flows aggregated in one queue, while the same
amount of the bandwidth is allocated to each queue.
On the other hand, since our scheme dynamically allo-
cates bandwidth in proportion to the estimated number
of flows, its fairness index decreases only gradually as
the number of flows increases. RED, SRED, and FRED
scheme show less fair than HAFQ scheme. In these
schemes, parameter settings are very sensitive to vari-
ous network factors. Therefore, it is difficult to provide
good fairness for all flows.

When the number of flows is 64, the fairness index
of our scheme is worse than that of the DRR scheme.
This is because exactly one flow is accommodated in
one queue in the DRR scheme, whereas flows are ac-
commodated in the queues randomly in our scheme.

For most numbers of flows, however, our scheme pro-
vides better fairness and its fairness is less sensitive
to the number of flows. These figures show that the
packet–dropping is especially effective when there are
many ill–behaved flows in the network.

4. Implementation Design Issues of HAFQ on
the IXP1200 Network Processor

In this section, we discuss the implementation design
issues of HAFQ on the IXP1200 network processor [5],
which has six microengines for packet forwarding oper-
ations, each of which can deal with four threads (con-
texts) concurrently. See also Fig. 7. A microengine is
a 32–bit RISC programmable data engine and a thread
can realize multiple control streams in one program. In
addition, it provides (1) an SDRAM unit to access low
cost, high bandwidth memory for mass data, (2) an
SRAM unit for very high bandwidth memory to store
lookup tables and other data for packet processing, and
(3) a scratch pad memory which is an embedded mem-
ory unit.

4.1 Implementation Outline

The microengines #1 through #4 perform packet input
operations including packet header verification, des-
tination address lookup, header modification of IPv4
packets and HAFQ ingress operations of IPv4 packets.
Then, the microengines #5 and #6 perform packet out-
put operations including determination of the transmit-
ting queue by the DRR scheduling and dynamic band-
width allocation. This “2–to–1 allocation” is based on
the suggestion described in [10]. We use the SDRAM
unit to deploy packet data as a shared buffer pool.
Since it has larger memory capacity and higher mem-
ory bandwidth than the SRAM unit, it is suitable to
the shared packet buffer pool. On the other hand, the
SRAM unit holds the routing table, zombie list, and

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
7

! � " # � $

� % &

! # � $

� % &

! � ' � � � �

� �

! � " # � $! # � $

(� (� (� (�

� � �) � � � � � � � � �

� � � ' � �
 � �

(* (+

! � � � � �
 � �

� � �) � � �
 � � � � � � � � ' � �
 � �

� � � � ' � � � '
 �
 � � �
 � �
� �
 �
 � � �
 � � � � ' �

 �
 � � ' � �
� � � � ' � � �
 �
 � � �
 � �
� � & , �
 � � ' �

 � � � � ' � �
 � �

$
 � ' � � - � �
 � �

� . / � � 0 0

! � � ' � � � � �) � � � 	 � � � � ' �

� � � �

� � �
 � � � � � 	 � �

/ � �) � �

 � � � �

/ � �) � �

� � � � � �

$ � 1

�.
"2
�

�
�%
&

/ � ' �

, � � � �

 �
 � '
 � � � ' � � � 	 � �

� � � 3

� � � 3

Fig. 7 Our task assignment on a network processor.

Routing Table
SRAM

M QM Q

Q

Q

Queue Length The Number of Flows Allocated Bandwidth

01112232431

Total of Packet Counter Average Arrival Rate Miss Probability

78192031

Pointer Packet Counter Flow Key

1112212231

0

0
32 bit

Queue Descriptor

Fig. 8 Memory map on the SRAM unit.

other states which are needed in performing HAFQ op-
erations.

4.2 Memory Model

A memory capacity is severely limited in high–speed
routers. Thus, we carefully designed the memory model
of HAFQ. Fig. 8 shows the memory model for HAFQ
operations. The bit allocations for each variable are not
explained in this paper because of the space limitation
but they are based on the assumption that the number
of active flows in each line interface reaches several tens
of thousands, and at least a few dozens of queues can be
maintained in the router. We assume that parameters
{q, M} are {0.01, 4} to determine the bit allocations
for packet counters.

Based on these bit allocations, the required mem-
ory capacity for the zombie lists is determined by
M × Q × 32 bit, where Q and M represent the num-
ber of queues and the number of entries in a zombie
list, respectively. Both of the required memory capac-
ity for the flow count estimation and packet scheduling
are Q × 32 bit. Therefore, the total required memory
capacity for implementing HAFQ is

M×Q×32+Q×32+Q×32 = 32·Q·(2+M) [bit](7)

0

50

100

150

200

16 32 48 64 80 96

F
or

w
ar

di
ng

 R
at

e
[K

P
P

S
]

Number of flows

HAFQ (Input)
DRR(Input)

HAFQ (Output)
DRR(Output)

Fig. 9 Packet forwarding rate.

The memory capacity that edge routers can have in
the case of using an off–chip memory is up to 4 Mbytes
in the current memory technologies. Since our scheme
can have about 512K queues, it would be possible to
provide per–flow scheduling. On the other hand, core
routers use an on–chip memory because the line speed
is very high in backbone networks. Since its memory
capacity is about 32 Kbytes, our scheme can have 1K
queues from Eq. (7).

4.3 Implementation Evaluation

We use the IXP1200 Developer Workbench [11] for sim-
ulation. We suppose the network model shown in Fig. 3.
96 sender hosts and 96 receiver hosts are connected
through the router, and each sender host generates IP
packets whose length is a fixed size of 512 byte. Each
sender host generates packet at 100 Mbps (constant bit
rate), and those sender hosts have an infinite amount
of data to transmit. We note that our current experi-
mental implementation does not perform packet header
modification or routing table look–up, because we in-
tend to evaluate the overhead of the proposed scheme.

4.3.1 Evaluation on Packet Processing Capacity

In this subsection, we investigate the packet processing
capacity of the proposed scheme by comparing to that
of the DRR scheme. These two schemes have 16 queues,
and additionally HAFQ has two entries in each zombie
list.

Fig. 9 shows a packet processing capability of
packet input operations and output operations. In
packet input operations, the processing capability of
HAFQ is about 5 percent lower than that of DRR. This
is because HAFQ operations require additional instruc-
tions such as searching the zombie list and estimating
the number of flows. As for packet output operations,
although the processing capability of HAFQ is lower
than that of DRR, the performance degradation is lim-
ited.

8
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

4.3.2 Fairness Comparison for Different Number of
Flows

In this subsection, we evaluate a fairness property of our
scheme and the DRR scheme as the number of flows in-
creases. In this evaluation, we use the Fairness Index
as the fairness measure (See Eq. (6)). Both our scheme
and the DRR scheme have 16 queues, and the num-
ber of entries in each zombie list is two in our scheme.
In the DRR scheme, each flow is accommodated in its
own queue if the number of active flows is less than 16;

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 16 32 48 64 80 96

F
ai

rn
es

s
In

de
x

Number of flows

HAFQ
DRR

Fig. 10 Fairness in the case of the different number of flows.

otherwise, the extra flows are accommodated in one of
the queues randomly. On the other hand, our scheme
determines the accommodated queue randomly, even if
the number of flows is less than 16.

Fig. 10 shows the fairness index against the number
of active flows. The same tendency can be observed as
in the simulation experiments presented in Subsection
3.3. We can confirm that the DRR scheme provides
excellent fairness if the number of flows is equal to the
number of queues, but it provides degraded fairness as
the number of flows increases. In our scheme, on the
other hand, although the fairness index decreases grad-
ually as the number of flows increases, its high fairness
can be provided.

4.3.3 Fairness Comparison for Memory Requirements

We evaluate the effect of required memory capacity, i.e.,
implementation cost, on the fairness property. Fig. 11
shows the fairness index against the required memory
capacity. The number of active flows is 96. In the DRR
scheme, the number of queue is changed from 32 to 96;
thus, its memory requirement ranges from 128 byte to
384 byte. Now, recalling that 4 byte is necessary for
managing one queue. In the HAFQ scheme labeled by
“HAFQ / queue”, the number of entries is fixed at two
in each zombie list and the number of queues is changed
as 8, 16, and 24; thus, required memory capacity is 128,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 160 192 224 256 288 320 352 384

F
ai

rn
es

s
In

de
x

Memory Capacity [Bytes]

HAFQ / queue
HAFQ / zombie

DRR

Fig. 11 Fairness in the case of the different memory capacity.

256, and 384 bytes. Also, in the HAFQ scheme labeled
by “HAFQ / zombie”, the number of entries in a zombie
list is changed from 2, 3, · · ·, 10 while the number of
queues is fixed at eight; thus the memory requirement
ranges from 128 byte to 384 byte.

Fig. 11 shows that the fairness of the HAFQ
scheme is better than that of the DRR scheme and
HAFQ requires only one third of the memory capac-
ity compared to the DRR scheme to achieve the same
fairness level. The fairness index is improved as the
available memory capacity becomes large. This is be-
cause the number of flows aggregated in one queue is
small when the number of queues is large, therefore, ac-
curacies for both flow count estimation and preferential
packet dropping are improved.

In the two HAFQ schemes, HAFQ/zombie pro-
vides better fairness than HAFQ/queue. This means
that the memory capacity should be used for the larger
zombie lists rather than increasing the queue num-
ber. However, the computational cost for the search
increases as the zombie list becomes large; thus, there
would be specific limits for the zombie list size in spe-
cific environments. This is a design choice for the trade–
off between memory capacity and processing perfor-
mance.

In general, there is a difference in the memory ca-
pacity between edge routers and core routers. There-
fore, a scalable packet scheduling scheme must be able
to minimize the performance degradation as the mem-
ory capacity becomes small. Our scheme provides more
excellent fairness than the DRR scheme as the memory
capacity becomes limited. In other words, our scheme
provides a more scalable packet scheduling than the
DRR scheme.

4.3.4 Applicability to High–Speed Routers

The processing capacity of the IXP1200 is not high,
and packet processing capacity is limited up to about
200 KPPS in our experiments. However, the router
with a 10 Gbps line interface should have 100 times
larger packet processing capacity than that of IXP1200.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
9

Therefore, we last discuss the capability of our scheme
for 10 Gbps line interfaces.

Whether packet scheduling schemes can accommo-
date 10 Gbps line interfaces or not greatly depends on
the processing capacity and memory access bandwidth
of routers. With such high–speed lines, routers can
spend only 40 ns in processing one packet, and complex
operations would easily lead to the performance degra-
dation. However, the processing capacity has been
rapidly improved and this problem can be expected to
be solved in the near future. On the other hand, the
memory access bandwidth seems to be an obstacle even
in the future. Our scheme requires 13 memory accesses
and the DRR scheme requires 7 memory accesses in
packet input / output operations. Therefore, they re-
quire 325M and 175M memory accesses in 10 Gbps line
interfaces. Thus, those schemes must not use an off–
chip memory but an on–chip memory. If we use the
on–chip memory, the memory access bandwidth is not
a problem, but the memory capacity is very limited.
However, even in such a circumstance, our scheme can
accommodate many active flows in the practical num-
ber of flows keeping fairness on some level in case of
the limited memory usage; for example, if our scheme
has six entries in each zombie list and 1K queues, the
required memory capacity is 32 Kbytes as can be esti-
mated from Eq. (7). That is, our scheme can use an
on–chip memory. On the other hand, the DRR scheme
requires 6 Mbyte memory capacity for 192,000 queues
for achieving the same fairness index.

5. Conclusion

The new scalable queue management scheme described
in this paper provides fair per–flow service in backbone
networks. The scheme estimates the number of flows
aggregated in a queue and allocates the bandwidth
to the queue proportionally. It also improves fairness
among flows in the same queue by preferentially dis-
carding the packets of flows having higher arrival rates.
We have shown the effectiveness of our scheme through
extensive simulation and experiments.

For future works, we will evaluate the performance
of the HAFQ algorithm in the other situations. We also
evaluate its performance by actual experiments.

References

[1] R. Mahajan and S. Floyd, “Controlling high bandwidth
flows at the congested router,” ACM International Con-
ference on Nework Protocols (ICNP), Nov. 2001.

[2] S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions
on Networking, vol.1, no.4, pp.397–413, Aug. 1993.

[3] T.J. Ott, T. Lakshman, and L. Wong, “SRED: Stabilized
RED,” Proceedings of IEEE INFOCOM 1999, pp.1346–
1355, March 1999.

[4] M. Shreedhar and G. Varghese, “Efficient fair queueing us-
ing deficit round robin,” IEEE/ACM Transactions on Net-

working, vol.4, no.3, pp.375–385, June 1996.
[5] “Intel IXP1200.” available at http://developer.intel.

com/design/network/products/npfamily/ixp1200.htm.
[6] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing–

based schemes for Internet load balancing,” Proceedings of
IEEE INFOCOM 2000, pp.332–341, March 2000.

[7] “UCB/LBNL/VINT network simulator - ns (version 2).”
available at http://www-mash.cs.berkeley.edu/ns/.

[8] K. Claffy, H.W. Braun, and G. Polyzos, “A parameteriz-
able methodology for Internet traffic flow profiling,” IEEE
Journals on Selected Areas in Communication, vol.13, no.8,
pp.1481–1494, March 1995.

[9] D. Lin and R. Moriss, “Dynamics of random early de-
tection,” Proceedings of ACM SIGCOMM’97, pp.127–137,
Sept. 1997.

[10] T. Spalink, S. Karlin, and L. Peterson, “Evaluating network
processors in IP forwarding,” tech. rep., Technical Report
TR-626-00, Department of Computer Science, Princeton
University, Nov. 2000.

[11] “IXP1200 Developer Workbench.” available at http://www.
intel.com/design/network/products/npfamily/sdk2.htm.

Ichinoshin Maki Ichinoshin Maki received his M.E. degree
from Graduate School of Engineering Science, Osaka University
in 2002. Since April 2002, he has been currently an assistant
professor of Graduate School of Information Science and Tech-
nology, Osaka University. His research interests are in the area
of traffic management in high–speed networks. He is a member
of IEICE.

Hideyuki Shimonishi Hideyuki Shimonishi received his
M.E. and PhD degree from Graduate School of Engineering Sci-
ence, Osaka University, Osaka, Japan, in 1996 and 2002, respec-
tively. He joined NEC Corporation in 1996 and has been en-
gaged in research on traffic management in high-speed networks,
switch and router architectures including cell/packet scheduling
algorithms and buffer management mechanisms, and traffic con-
trol protocols. He was a visiting scholar at Computer Science
Department, University of California at Los Angeles, to study
next generation transport protocols. He is a member of ACM
and IEICE.

Tutomu Murase Tutomu Murase was born in Kyoto, Japan
in 1961. He received his M.E. degree from Graduate School of
Engineering Science, Osaka University, Japan, in 1986. He also
received his PhD degree from Graduate School of Information
Science and Technology, Osaka University in 2004. He joined
NEC Corporation in 1986 and has been engaged in research on
traffic management for high-quality and high-speed internet. His
current interests include TCP session layer traffic control, net-
work traffic traceability and network security. He is a member
of IEICE. He was a secretary and has been a member of steering
committee of Communication Quality Technical Group in IE-
ICE. He is also a member of steering committee of Information
Network Technical Group in IEICE. He is a vice chair person of
Next Generation Network working group in 163rd Committee on
Internet Technology (ITRC).

10
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Masayuki Murata Masayuki Murata received the M.E. and
D.E. degrees in Information and Computer Sciences from Os-
aka University, Japan, in 1984 and 1988, respectively. In April,
1984, he joined Tokyo Research Laboratory, IBM Japan, as a Re-
searcher. From 14 September 1987 to January 1989, he was an
Assistant Professor with Computation Center, Osaka University.
In February 1989, he moved to the Department of Information
and Computer Sciences, Faculty of Engineering Science, Osaka
University. From 1992 to 1999, he was an Associate Professor in
the Graduate School of Engineering Science, Osaka University,
and from April 1999, he has been a Professor of Osaka Univer-
sity. He moved to Advanced Networked Environment Division,
Cybermedia Center, Osaka University in April 2000. He has more
than two hundred papers of international and domestic journals
and conferences. His research interests include computer com-
munication networks, performance modeling and evaluation. He
is a member of IEEE, ACM, The Internet Society, IEICE and
IPSJ.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
11

� �

� � � �

� �

� � � �

� � � 	
 �

�

 �

� � � 	
 �

�

 �

� � � 	
 �

�

 �
� � � �

� � � � � �� � � � �

�

�
�

�

�
� �

�

� � �
 � � � � � � �
� � � � � � �
 �
 � � �
 � �

� � �
 � � � � � � �
� � � � � � �
 �
 � � �
 � � � � � � �
 �

	 � � �
 � � � � � � � � � �
 � �

Fig. 1 Outline of the proposed scheme.

12
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

flow ID

1 3

2 7

5

7

2

4

counterflow ID

1 3

2 7

5

7

2

4

counter

Prob: q

Prob: 1-q

(a)

(b)

(c)

flow ID

1 3

2 7

5

7

2

4

counterflow ID

1 3

2 7

5

7

2

4

counter

flow ID

1 3

2 8

5

7

2

4

counter

flow ID

1 3

3 1

5

7

2

4

counter

flow ID

1 3

2 7

5

7

2

4

counter

2

3

Miss

Hit

Fig. 2 Zombie list.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
13

Sender hosts Receiver hosts

Router

Bottleneck
S1

Sn

R1

Rn

All links : 155 Mbps

Router

Fig. 3 Single-link model.

14
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(a) TCP flows in a homogeneous en-
vironment

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(b) TCP flows in a heterogeneous
environment

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

N
um

be
r

of
 fl

ow
s

Time (s)

SRED
HAFQ w/o DROP

HAFQ
Active flows

(c) TCP and UDP flows in a homo-
geneous environment

Fig. 4 The estimated number of flows in SRED and the proposed scheme.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(a) TCP flows in a homogeneous en-
vironment

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 100 150 200 250

T
hr

ou
gh

pu
t [

M
bp

s]

flow ID

FIFO,TailDrop
HAFQ w/o DROP

HAFQ

(b) TCP flows in a heterogeneous
environment

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250
T

hr
ou

gh
pu

t [
M

bp
s]

flow ID

FIFO,TailDrop
DRR

SRED
HAFQ w/o DROP

HAFQ

(c) TCP and UDP flows in a homo-
geneous environment

Fig. 5 Throughput of TCP and UDP flows.

16
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 4 16 64 256 1024

F
ai

rn
es

s
in

de
x

Number of flows

FIFO,TailDrop
DRR

HAFQ w/o DROP
HAFQ

(a) Only TCP flows

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 16 64 256 1024

F
ai

rn
es

s
in

de
x

Number of flows

FIFO,TailDrop
DRR

SRED
RED

FRED
HAFQ w/o DROP

HAFQ

(b) TCP and UDP flows

Fig. 6 Fairness index versus the number of flows.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
17

! � " # � $

� % &

! # � $

� % &

! � ' � � � �

� �

! � " # � $! # � $

(� (� (� (�

� � �) � � � � � � � � �

� � � ' � �
 � �

(* (+

! � � � � �
 � �

� � �) � � �
 � � � � � � � � ' � �
 � �

� � � � ' � � � '
 �
 � � �
 � �
� �
 �
 � � �
 � � � � ' �

 �
 � � ' � �
� � � � ' � � �
 �
 � � �
 � �
� � & , �
 � � ' �

 � � � � ' � �
 � �

$
 � ' � � - � �
 � �

� . / � � 0 0

! � � ' � � � � �) � � � 	 � � � � ' �

� � � �

� � �
 � � � � � 	 � �

/ � �) � �

 � � � �

/ � �) � �

� � � � � �

$ � 1

�.
"2
�

�
�%
&

/ � ' �

, � � � �

 �
 � '
 � � � ' � � � 	 � �

� � � 3

� � � 3

Fig. 7 Our task assignment on a network processor.

18
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Routing Table
SRAM

M QM Q

Q

Q

Queue Length The Number of Flows Allocated Bandwidth

01112232431

Total of Packet Counter Average Arrival Rate Miss Probability

78192031

Pointer Packet Counter Flow Key

1112212231

0

0
32 bit

Queue Descriptor

Fig. 8 Memory map on the SRAM unit.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
19

0

50

100

150

200

16 32 48 64 80 96

F
or

w
ar

di
ng

 R
at

e
[K

P
P

S
]

Number of flows

HAFQ (Input)
DRR(Input)

HAFQ (Output)
DRR(Output)

Fig. 9 Packet forwarding rate.

20
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 16 32 48 64 80 96

F
ai

rn
es

s
In

de
x

Number of flows

HAFQ
DRR

Fig. 10 Fairness in the case of the different number of flows.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
21

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

128 160 192 224 256 288 320 352 384

F
ai

rn
es

s
In

de
x

Memory Capacity [Bytes]

HAFQ / queue
HAFQ / zombie

DRR

Fig. 11 Fairness in the case of the different memory capacity.

22
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Ichinoshin Maki Ichinoshin Maki received his M.E. degree
from Graduate School of Engineering Science, Osaka University
in 2002. Since April 2002, he has been currently an assistant
professor of Graduate School of Information Science and Tech-
nology, Osaka University. His research interests are in the area
of traffic management in high–speed networks. He is a member
of IEICE.

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
23

Hideyuki Shimonishi Hideyuki Shimonishi received his
M.E. and PhD degree from Graduate School of Engineering Sci-
ence, Osaka University, Osaka, Japan, in 1996 and 2002, respec-
tively. He joined NEC Corporation in 1996 and has been en-
gaged in research on traffic management in high-speed networks,
switch and router architectures including cell/packet scheduling
algorithms and buffer management mechanisms, and traffic con-
trol protocols. He was a visiting scholar at Computer Science
Department, University of California at Los Angeles, to study
next generation transport protocols. He is a member of ACM
and IEICE.

24
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Tutomu Murase Tutomu Murase was born in Kyoto, Japan
in 1961. He received his M.E. degree from Graduate School of
Engineering Science, Osaka University, Japan, in 1986. He also
received his PhD degree from Graduate School of Information
Science and Technology, Osaka University in 2004. He joined
NEC Corporation in 1986 and has been engaged in research on
traffic management for high-quality and high-speed internet. His
current interests include TCP session layer traffic control, net-
work traffic traceability and network security. He is a member
of IEICE. He was a secretary and has been a member of steering
committee of Communication Quality Technical Group in IE-
ICE. He is also a member of steering committee of Information
Network Technical Group in IEICE. He is a vice chair person of
Next Generation Network working group in 163rd Committee on
Internet Technology (ITRC).

MAKI et al.: HIERARCHICALLY AGGREGATED FAIR QUEUEING (HAFQ) FOR PER–FLOW FAIR BANDWIDTH ALLOCATION
25

Masayuki Murata Masayuki Murata received the M.E. and
D.E. degrees in Information and Computer Sciences from Os-
aka University, Japan, in 1984 and 1988, respectively. In April,
1984, he joined Tokyo Research Laboratory, IBM Japan, as a Re-
searcher. From 14 September 1987 to January 1989, he was an
Assistant Professor with Computation Center, Osaka University.
In February 1989, he moved to the Department of Information
and Computer Sciences, Faculty of Engineering Science, Osaka
University. From 1992 to 1999, he was an Associate Professor in
the Graduate School of Engineering Science, Osaka University,
and from April 1999, he has been a Professor of Osaka Univer-
sity. He moved to Advanced Networked Environment Division,
Cybermedia Center, Osaka University in April 2000. He has more
than two hundred papers of international and domestic journals
and conferences. His research interests include computer com-
munication networks, performance modeling and evaluation. He
is a member of IEEE, ACM, The Internet Society, IEICE and
IPSJ.

