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Abstract

In this paper we discuss the effects of symbiosis when
using an attractor selection model for multi-path routing in
an overlay network. Attractor selection is a biologically
inspired approach which is found in E. coli cells to self-
adaptively react to changes of a nutrient in the environment.
It is driven by noise and we present its application to select-
ing the paths in an overlay network for the transmission of
a packet. This selection is performed with randomization
to reduce the selfishness of each flow and to improve the
overall performance of the network. Our main focus in this
paper lies on showing the symbiotic behavior in the inter-
action of competing flows.

1 Introduction

Living organisms continuously face a fluctuating envi-
ronment and adaptation to these changing conditions is es-
sential for the survival of the species. However, due to
the high dimensionality of the habitat, each of the upcom-
ing environmental changes rarely repeats itself during the
lifetime of an individual organism. Therefore, the develop-
ment of adaptation rules is not always feasible since learn-
ing and evolutionary processes require multiple occurrences
of events to which the organisms adapt. Pattern-based learn-
ing like in artificial neural networks is only possible, if input
patterns and a desired target value exist. When no input pat-
terns are available, the adaptation to new situations is per-
formed in a more self-organized manner. For example, cells
can switch from one state to another depending on the avail-
ability of a nutrient [7]. These self-adaptive mechanisms
are not necessarily optimal from the viewpoint of overall
performance, but their main advantage lies in the robust-
ness and the sustainability to external influences. This is a
highly important feature for surviving in an unpredictable
and fluctuating environment.

In this paper we extend the model of adaptive response
by attractor selection (ARAS) which was introduced by

Kashiwagi et al. [7] and we apply it to multi-path rout-
ing. ARAS is originally a model for its host E. coli cells to
adapt to changes in the availability of a nutrient for which
no molecular machinery is available for signal transduction
from the environment to the DNA. We will use this self-
adaptive mechanism for determining the packet transmis-
sion probabilities over multiple paths in an overlay network.

Each source node of an overlay flow may have several
paths to the destination node and splits its traffic over each
path depending on the current condition of the network.
However, one of the paths is chosen as the primary path
over which the traffic will be routed with a higher proba-
bility, while the secondary paths are simply kept alive with
a small proportion of the traffic. The reason for using sec-
ondary paths is that we require measurements of the quality
of all paths to notice a change in the traffic conditions. By
considering inline measurements of the input metrics (e.g.
round trip delays, available bandwidths) derived from the
received acknowledgment packets, we could avoid active
measurements to reduce additional measurement overhead.
Attractor selection will be used to determine the primary
path for a given traffic condition. When the environment
conditions, hence link qualities, change such that the active
primary path is no longer appropriate, a new primary path
is automatically selected. The advantage of our proposal is
that there is no explicit routing rule for doing so, but every-
thing is implicitly performed in the differential equations
describing the dynamics of the system. Furthermore, we
use an inherent noise term to drive the system from one at-
tractor state to another, making the whole system also very
stable toward influences from noise.

The remainder of this paper is organized as follows. In
Section 2, we discuss related work found on the topic of
overlay network routing and selfishness. This is followed in
Section 3 by the mathematical model of the attractor selec-
tion mechanism and its application to multi-path routing. In
Section 4, we show with some simple numerical examples
that the system performs well and converges to symbiotic
solutions which are best for all involved flows. Finally, this
paper is concluded in Section 5 .



2 Related Work

Overlay networks have the appealing feature that their
routing can be configured in an application-specific man-
ner without modifying the underlying IP routing scheme.
Before we discuss some related work on routing in over-
lay networks, we will clarify the use of the term multi-path
routing. For each traffic flow, we consider multiple paths for
distributing the traffic among these paths. By splitting the
traffic flow, we introduce path diversity to routing and it be-
comes more robust to failures of individual links. However,
the main advantage of multi-path routing lies on its ability
to perform load balancing [3].

The issue of routing in overlay networks has been widely
discussed e.g. for resilient overlay networks (RON) [2] as
an overlay network architecture which is able to improve
the loss rate and throughput over conventional BGP rout-
ing due to its faster reaction to path outages. End-to-end
route selection schemes as employed in overlay routing are
however of a highly selfish nature, as they greedily choose
paths that offer the highest performance, regardless of the
implications on the performance and stability of the whole
system. Several publications have investigated selfish rout-
ing using a game theoretical approach, cf. [11, 12]. The
papers dealing with routing optimization often consider a
global view of the network and optimal solutions are com-
puted by linear programming techniques. In our paper we
restrict ourselves to the limited scope of information that a
node can obtain from measurements of its links. In such
a case, Seshadri and Katz [13] provide suggestions to im-
prove the overall stability of the system by imposing some
restraints on the degree of selfishness. Using randomization
in path selection and a hysteresis for path updates are such
possibilities which we will also adopt in our approach.

Xie et al. [15] propose a routing scheme which takes into
account the user-optimal routing and network-optimal rout-
ing, where the former converges to the Wardrop equilibria
and the latter to the minimum latency solutions. In [14] an
analytical model is constructed for multi-path routing which
leads to an optimal number of links over which dynamic
multi-path routing should be conducted. Su and de Veciana
[14] propose a policy of routing the traffic to a set of links
with loads within a factor of the least loaded and show that
this is especially suitable for high speed networks carrying
bursty traffic flows. An adaptive multi-path routing algo-
rithm is proposed by Gojmerac et al. [5] that operates with
simple data structures and is independent of the underlying
network layer routing protocol. This is achieved by local
signaling and load balancing resulting in the reduction of
signaling overhead. A further measurement based multi-
path routing scheme is proposed by Güven et al. [6].

Another well known, biologically-inspired method that
is efficient for routing is AntNet [4], which uses mobile
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Figure 1. General attractor selection concept

agents that mimic the behavior of ant colonies. It operates
by sending forward ants to probe routes and backward ants
to update the routing tables at each intermediate node. Traf-
fic is then routed along the paths with certain probabilities.
The problem considered in our paper differs from that ap-
proach, in that it focuses on the adaptive selection of already
determined paths.

3 Mathematical Model of ARAS

Attractors are a key issue in chaos theory and are often
used in mathematical models found in physics and bioin-
formatics. Basically, we can outline the attractor selection
method as follows. We describe the dynamics of an M -
dimensional system by a set of differential equations as in
Eqn. (1) for i = 1, . . . ,M .

dmi

dt
=

syn(α)

1 + m2
max − m2

i

− deg(α)mi + ηi (1)

In the original model in [7], the functions syn(α) and
deg(α) are the rate coefficients of mRNA synthesis and
degradation, respectively, and with mmax we denote the
maximum value of all mi. Each differential equation has
a stochastic influence from an inherent Gaussian noise term
ηi. The system solution converges to an attractor which is
an equilibrium point in the M -dimensional state space. The
attractors are completely defined by the terms in Eqn. (1).
Additionally, the dynamic behavior of the system is influ-
enced by the cell activity or vigor α. In the normal operation
case, α does not have an effect on the convergence to one
of the attractors. On the other hand, when the environment
conditions change by lack of a certain nutrient, α changes
its value and the random noise term dominates the system
evolution. This essentially causes a random walk which is
relaxed once a suitable solution is found and convergence
to the attractor representing that solution is achieved, see
Fig. 1. The random walk phase can therefore be viewed as
a random search for a new solution state. This behavior is
similar to the well known simulated annealing [1] method,
with the main difference that the temperature is not only
cooled down, but dynamically adapted by the activity term



whenever the environment changes. For this reason, the ac-
tivity α is defined over another differential equation which
takes into account the input values (nutrients) and is adapted
based on how appropriate the current system state is with
respect to these input values, see Section 3.2.

3.1 Equilibrium Points

The equilibrium points of Eqn. (1) can be easily com-
puted and have the condition

dmi

dt
= 0 ∀i = 1, . . . ,M.

Let us assume without restriction of generality that mi is
maximal for an index i = k. Inserting this into Eqn. (1) we
obtain M resulting vectors of the type

x(k) =
[

x
(k)
1 , . . . , x

(k)
M

]T

k = 1, . . . ,M

with component values

x
(k)
i =

{

ϕ(α) i = k

1
2

[

√

4 + ϕ(α)2 − ϕ(α)
]

i 6= k
(2)

where for the sake of simplicity we have defined

ϕ(α) =
syn(α)

deg(α)
. (3)

The resulting equilibrium points all have the structure

x(k) = [L, . . . , L,H,L, . . . , L] (4)

with a single high value H at the k-th entry and all others are
low values L. Note that at ϕ∗ = 1√

2
we have a special point,

as the solutions x(k) are only defined when ϕ(α) ≥ ϕ∗. For
ϕ(α) = ϕ∗ we obtain a single solution x with H = L.

The eigenvalues of the Jacobian matrix at the solutions
x(k) always reveal negative values, leading to stable attrac-
tors [9]. To fully define the model, we will describe in the
following section the basic dynamic behavior of the activity
α and the functions syn(α) and deg(α).

3.2 Determination of the Activity Dynamics

The structure of solution vectors is extremely useful to
indicate that the k-th path is chosen as primary path from
the possible M paths or there is no specific primary path
and the traffic is equally split among all paths. In our model,
the latter case will only be used in a transitional phase dur-
ing the search for solutions as in Eqn. (4). Therefore, we
use for ϕ(α) an increasing function in the interval [1,2]

with ϕ(1) = ϕ∗ given in (5) by the functions syn(α) and
deg(α).

syn(α) = α
[√

α − 1 + ϕ∗
]

deg(α) = α (5)

Let us now discuss the desired behavior of α. In order
to specify its behavior, we must define what should be rep-
resented by activity. In this paper, we consider a generic
path metric for routing which is obtained by the load on
each path. We measure the current load condition of each
link and derive the path metric from it. In the following nu-
merical examples, we use a very simple load balancing case
where the initial load of each link is equal and the load of
the path is defined as the maximum load of each link it con-
tains, so a “better” path is characterized by a smaller value
of its metric value li.

The output values mi are the normalized to probabili-
ties for selecting path i and should reflect the li values by
preferably choosing their minimum values. Hence, when
lmin = lk is the minimum of all input values, we wish that
the system obtains mk maximally. Furthermore, we intro-
duce with ∆ a hysteresis threshold in order to limit unneces-
sary switching between paths to increase the stability of the
system. The use of such a hysteresis beside randomization
of path selection was reported in [13] to reduce the selfish-
ness and help improve the overall system performance.

dα

dt
= δ

(

M
∏

i=1

[(

mi

mmax

lmin

li + ∆

)n

+ 1

]

− α

)

(6)

The formulation of the dynamic behavior of α is given in
Eqn. (6). The factor δ is the rate of adaptation and can also
be used to modify the sensitivity of the algorithm and n is
simply a scaling factor.

3.3 Application to Multi-Path Routing

We use the attractor selection model to self-adaptively
determine the path for each packet with a certain probabil-
ity, which is obtained from mi by normalization. The main
problem is that for a source-destination pair, exactly one
path is chosen as primary path based on the current environ-
ment condition. When the situation changes and the current
primary path is no longer the best choice, the scheme adapts
to selecting a different primary path which is better suited.
The desired behavior is shown in Fig. 2. There are M paths
from source s to destination d and one of these is the pri-
mary path over which the traffic is transported. If a link
or node fails on this path, the primary path is automatically
switched to the best secondary path. The switching of paths
should not only occur in such drastic conditions as link fail-
ures, but also of course when due to changed load condi-
tions one of the secondary paths seems more appropriate as
primary path.
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Figure 2. Desired behavior of routing method

Let us assume an overlay network where each node has
no exact knowledge of the topology. The routing algorithm
consists of two major steps: (i) route setup phase and (ii) the
route maintenance phase. In the route setup phase we use a
decentralized method similarly like in AODV routing [10].
The route setup phase is initiated when the transmission
request to an unknown node arrives at the source. Probe
packets are broadcast to the neighbors who in turn forward
these packets to their neighbors until a path to the destina-
tion is found. As soon as the first path is set up, transmission
over this route will start. In such a way up to M routes are
gradually collected and the route maintenance phase with
the attractor selection algorithm will proceed with these M

paths. After the setup phase, the route maintenance phase is
entered, in which the scheme will mostly operate using the
previously described attractor selection method. However,
in the case that paths are lost in the course of that phase and
a minimum threshold of Mmin is reached, route setup for
additional paths is invoked again.

4 Numerical Results

The layout of the considered network for our simulation
studies is shown in Fig. 3. Let us consider two flows with
sources s1 and s2 and their respective destinations are d1

and d2. Each link is numbered in this example and the paths
for flow 1 are highlighted in Fig. 3. The paths for each flow
are summarized in Tab. 1 and we denote them with pi,j ,
where i is the flow number and j is the number of the path.

Thus, there are two links, 2 and 5, which are shared
among the flows. Initially all links are equally loaded. In
order to investigate the resilience of our proposed method,
we assume that at time t = 5000, link 8 has a sudden dras-
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Figure 3. Considered network topology

Table 1. Paths in considered layout
path 1 path 2

flow 1 p1,1: 1 → 2 → 3 p1,2: 7 → 5 → 10
flow 2 p2,1: 8 → 2 → 9 p2,2: 4 → 5 → 6

tic increase in its load caused by some external influence.
Then, in the case that flow 2 is using the path which con-
tains link 8 as its primary path, it will switch to the path
p2,1, see Fig. 4(b). If flow 2 had initially chosen path p2,1

as its primary path, it would maintain it and there would be
no change. The path change of flow 2 increases the load at
link 5. Since this link was also used by path p1,2 of flow 1,
see Fig. 4(a), it reacts to this change by moving its primary
path to path p1,1.

The system returns to a stable condition and we again
introduce an external influence which causes link 3 to in-
crease its load at t = 7500. Since the main objective is to
choose the path with the lowest link metric, the system re-
acts again by making flow 1 switch back to path p1,2. As
this path change involves again that link 5 is shared for the
primary paths of flow 1 and 2. This is a solution which is ac-
cepted rather “reluctantly” which is indicated by the lower
probabilities. The result, however, is a symbiotic solution
which is best for both interacting flows.

Note that in this example the affected links are still avail-
able after the described events, however, with a drastically
higher load. If they were to fail instead, the proposed ap-
proach would also react to it, by simply removing the failed
path from the computation. In this simple example with two
flows and two paths each, it is a trivial case, so we don’t
consider it here. Further discussions on the resilience in the
presence of link failures can also be found in [8].

5 Conclusion

In this paper we presented an application of adaptive re-
sponse by attractor selection to multi-path routing in over-
lay networks. It is based on a biologically-inspired method
and is robust to sudden changes in the environment. The
method converges to attractor solutions in the phase space
and the selection of the appropriate attractor is driven by the
activity term α. We have seen that by adequately defining
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Figure 4. Path transmission probabilities for
flows 1 and 2

the dynamic behavior of α, we are able to map the input
metric to the selection probability of a primary path in a
self-adaptive way. Additionally, we use randomization and
a hysteresis for path changes to reduce the selfishness of in-
dividual flows and improve the overall system performance.

One of the main advantages of the proposed method is
that it does not use any explicit rules for the selection of
the paths, but contains the relationship between input and
output parameters in the dynamic behavior of the activity
α. By modifying this dynamic behavior, other performance
metrics can be taken into account as well. Suitable choices
for the input values in an overlay network could be taken
from measurements of the end-to-end delays of packets or
available bandwidths of the paths. On the other hand, in a
wireless ad-hoc network we could consider also RF signal
strength or interference levels. Finding suitable relation-
ships between measured input values and the activity are an
important issue that we will investigate in the future. The
simple network structure in this paper only served to show
the general behavior of our approach. Large scale simu-
lation studies with more complex network topologies still
need to be conducted to fully demonstrate the benefits of
our approach.
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