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Abstract. In this paper we propose a resilient scheme for multi-path
routing using a biologically-inspired attractor selection method. The
main advantage of this approach is that it is highly noise-tolerant and
capable of operating in a very robust manner under changing environ-
ment conditions. We will apply an enhanced attractor selection model to
multi-path routing in overlay networks and discuss some general proper-
ties of this approach based on numerical simulations. Furthermore, our
proposal considers randomization in the path selection which reduces the
selfishness and improves the overall network-wide performance.

1 Introduction

It is a well known fact that mechanisms found in biological systems are very
robust and can handle changes in the environment very well. Therefore, many
methods have been implemented in information science which mimic certain
behavior found in nature. Some well known techniques like artificial neural net-
works, simulated annealing, or genetic algorithms are capable of performing well
for certain problem types, especially in the presence of incomplete or fuzzy in-
put data. In artificial neural networks, the concept of attractors is often used,
which are equilibrium points or curves in the solution space to which the sys-
tem converges depending on its initial condition. Attractors are a key issue in
chaos theory and are often applied in mathematical models found in physics and
bioinformatics.

Living organisms in nature continuously face a fluctuating environment and
adaptation to these changing conditions is essential for the survival of the species.
However, due to the high dimensionality of the habitat, each of the upcoming
environmental changes rarely repeats itself during the lifetime of an individual
organism. Therefore, the development of adaptation rules is not always feasible
since learning and evolutionary processes require multiple occurrences of events
to which the organisms adapt. Applying pattern-based learning techniques like
in artificial neural networks is only possible, if input patterns and a desired target
value exist. When no such input patterns exist, the adaptation to new situations
is performed in a more self-organized manner. For example, cells can switch from
one state to another depending on the availability of a nutrient [1]. These self-
adaptive mechanisms are not necessarily optimal from the viewpoint of overall



performance, but their main advantages lie in robustness and sustainability. This
is a highly important feature for surviving in an unpredictable and fluctuating
environment.

In this paper we extend the model of adaptive response by attractor selection

(ARAS) which was introduced in [1] and apply it to the problem of multi-path
routing. ARAS is originally a model for its host E. coli cells to adapt to changes
in the availability of a nutrient for which no molecular machinery is available
for signal transduction from the environment to the DNA. We will use this
mechanism for switching between paths in a multi-path routing environment in
communication networks. We consider an underlying IP layer with an overlay
network in which an application specific routing is performed. This facilitates the
implementation, as no modification to the existing IP layer is necessary. Each
source may have several paths to the destination and splits its traffic depending
on the current condition of the network over each path. However, one of the paths
is chosen as primary path over which the majority of traffic will be routed, while
the secondary paths are simply kept alive with a small proportion of the traffic.
Attractor selection will be applied here to determine the primary path for a given
traffic condition. When the environment, hence link qualities, changes such that
the primary path is no longer appropriate, a new primary path is automatically
selected. The advantage of our proposal is that there is no explicit routing rule
for doing so, but everything is implicitly included in the differential equations
describing the dynamics of the system. Furthermore, we use an inherent noise
term to drive the system from one attractor to another, making the whole system
also very stable to influences from noise.

The reason why we choose a dynamic system for self-adaptive routing instead
of simple rule-based mechanisms is because our focus is on adaptiveness and
stability of the system. Unlike most other routing papers like [2] which define a
target function and perform an offline optimization of the OSPF weights using
linear programming, we prefer a highly distributed sub-optimal solution, which
is robust in the presence of fluctuations of environment conditions.

The remainder of this paper is organized as follows. In Section 2 we will briefly
discuss the problem of multi-path routing in overlay networks and relevant work
that is related to this topic. Then, in Section 3 we introduce the biological
attractor selection model and extend the original model from M = 2 to a higher
dimension. In Section 4 we illustrate how to use this proposed model for multi-
path routing in overlay networks and we perform some simple simulations and
discuss the results in Section 5. Finally, in Section 6 this paper is concluded with
a short outlook on future work.

2 Related Work on Overlay Routing

Overlay networks have the appealing feature that their routing can be configured
in an application-specific manner without modifying the underlying IP routing
scheme. Before we discuss some related work, we would like to clarify the term
of multi-path routing as we will use it in the following. The term multi-path



routing has been used with different connotations. In all of them multiple paths
are used from the source to destination over which traffic is transported. One
interpretation of multi-path routing is to increase the resilience of the network,
by simultaneously transmitting duplicates of the same packet over each path.
This technique is often used in wireless ad-hoc networks [3] and it is sometimes
referred to as redundant multi-path routing. Another way of using multiple paths
is by distributing the traffic volume over these paths. Although by introducing
this path diversity the routing is made more robust to failures of individual
links, its main purpose is rather on performing load balancing [4]. We will use
the latter notion of multi-path routing in our paper. An important issue in this
type of multi-path routing which we will not address here is the topic of packet

reordering, as some packets may overtake each other on different paths. The
destination node must buffer the received packets and place them in the right
order before delivering them to higher layers.

The issue of routing in overlay networks has been discussed, e.g. for resilient

overlay networks (RON) [5], as an overlay network architecture which is able
to improve the loss rate and throughput over conventional BGP routing due to
its faster reaction to path outages. However, end-to-end route selection schemes
as employed in overlay routing are of a highly selfish nature, as they greedily
choose paths that offer the highest performance, regardless of the implications
on the performance and stability of the whole network.

Several publications have investigated selfish routing using a game theoreti-
cal approach, e.g. [6, 7]. However, routing optimization is often performed with
a global view of the network and its solution is computed by linear program-
ming techniques. In our paper we wish to only consider the limited scope of
information that a node can obtain from measurements of its links. In such a
case, Seshadri and Katz [8] make suggestions to improve the overall stability of
the system by imposing some restraints on the degree of selfishness of each flow.
Randomization in path selection is one of such possibilities which we will also
adopt in our approach. Another way to improve the overall system stability is
to use a hysteresis threshold when updating the path decision.

User-optimal or selfish routing achieves a Wardrop equilibrium [9], which
states that users do not have the incentives to unilaterally change their routes.
Xie et al. [10] present a routing scheme which takes into account the user-optimal
routing and network-optimal routing, where the former converges to the Wardrop
equilibria and the latter to the minimum latency. In [11] an analytical model is
constructed for multi-path routing which leads to an optimal number of links
over which dynamic multi-path routing should be conducted. Su and de Veciana
[11] propose a policy of routing the traffic to the set of least loaded links and
show that this is especially suitable for high speed networks carrying bursty
traffic flows.

An adaptive multi-path routing algorithm is proposed by Gojmerac et al. [12]
that operates with simple data structures and is independent of the underlying
network layer routing protocol. This is achieved by local signaling and load bal-
ancing resulting in the reduction of signaling overhead. Another measurement
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Fig. 1. General concept of attractor selection

based multi-path routing scheme is given by Güven et al. [13]. This method
is similar to the work by Elwalid et al. [14], but does not require the explicit
knowledge of the cost derivatives and due to stochastic approximation theory
they use noisy estimates from measurements for estimating the cost derivatives.
Other papers have dealt with improving the performance by sharing any unused
other paths between different users. Approaches to MPLS [15] and WDM net-
works [16] have been proposed where the backoff capacity is shared, resulting
in a better performance especially when supporting quality of service sensitive
applications.

3 Biological Attractor-Selection Scheme

In this section we will give an outline of the principle of attractor-selection which
is the key component in our method. The original model for adaptive response
by attractor-selection is given by Kashiwagi et al. [1] and a first application
to multi-path routing is performed in [17]. We will briefly summarize the basic
method in an abstract problem formulation in this section, before introducing
our extensions and discussing the proposed application to multi-path routing.

Basically, we can outline the attractor selection method as follows. Using
a set of differential equations, we describe the dynamics of an M -dimensional
system. Each differential equation has a stochastic influence from an inherent
Gaussian noise term. Additionally, we introduce an activity α which changes the
influences from the noise terms. For example, if α → 1 the system behaves rather
deterministic and converges to attractor states defined by the structure of the
differential equations, see Fig. 1. However, for α → 0 the noise term dominates
the behavior of the system and essentially a random walk is performed. When the
input values (nutrients) require the system to react to the modified environment
conditions, activity α changes accordingly causing the system to search for a
more suitable state (dotted line in Fig. 1). This can also involve that α causes
the previously stable attractor to become unstable.

The random walk phase can be viewed as a random search for a new solution
state and when it is found, α decreases and the system settles in this solution.
This behavior is similar to the well known simulated annealing [18] optimization



method, with the main difference that the temperature is not only cooled down,
but also increased again when the environment changes.

3.1 Basic Biological Model

The biological model describes two mutually inhibitory operons where m1 and
m2 are the concentrations of the mRNA that react to certain changes of nutrient
in a cell. The basic functional behavior is described by a system of differential
equations, see Eqns. (1).

dm1

dt
=

syn(α)

1 + m2
2

− deg(α)m1 + η1

dm2

dt
=

syn(α)

1 + m2
1

− deg(α)m2 + η2

(1)

The functions syn(α) and deg(α) are the rate coefficients of mRNA synthesis
and degradation, respectively. They are both functions of α, which represents
cell activity or vigor. The terms ηi are independent white noise inherent in gene
expression.

The dynamic behavior of the activity α is given as:

dα

dt
=

prod
M
∏

i=1

[(

nutr threadi

mi+nutrienti

)ni

+ 1
]

− cons α, (2)

where prod and cons are the rate coefficients of the production and consumption
of α. The term nutrienti represents the external supplementation of nutrient i

and nutr threadi and ni are the threshold of the nutrient to the production of
α and the sensitivity of nutrient i, respectively.

A crucial issue is the definition of the proper syn(α) and deg(α) functions.
In our case, the ratio between syn(α) and deg(α) must be greater than 2 to have
two different solutions of Eqn. (1) when there is a lack of one of the nutrients.

When syn(α)
deg(α) = 2, there is only a single solution at m1 = m2 = 1. The functions

syn(α) and deg(α) as given in [1] are shown in Eqn. (3).

syn(α) =
6α

2 + α
deg(α) = α (3)

The system reacts to changes in the environment in such a way that when
it lacks a certain nutrient i, it compensates for this loss by increasing the corre-
sponding mi value. This is done by modifying the influence of the random term
ηi through α, see Fig. 2. When α is near 1, the equation system operates in a
deterministic fashion. However, when α approaches 0, the system is dominated
by the random terms ηi and it performs a random walk.

In Fig. 2 an example is given over 20000 time steps. We can recognize the
following behavior. When both mi values are equal, the activity is highest and
α = 1. As soon as there is a lack of the first nutrient (2000 ≤ t < 8000), m1
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Fig. 2. Biological attractor selection model

compensates this by increasing its level. When both nutrient terms are fully
available again (8000 < t ≤ 10000), the activity α becomes 1 again. An interest-
ing feature of this method can be observed between 10000 < t < 13000. Here,
the random walk causes the system to search for a new solution, however, it first
follows a wrong “direction” causing α to become nearly 0 and the noise influence
is highest. As soon as the system approaches the direction toward the correct
solution again, α recovers and the system gets stable again. Such phases may
always occur in the random search phase.

3.2 Multi-Dimensional Attractor Selection Model

In its original form, the attractor selection model only takes a dimension of
M = 2 into account. Let us now consider a system of M > 2 equations as shown
in Eqn. (4). The difference to Eqn. (1) is that we now have in the denominator the
difference of the mi value from its maximum m̂ = maxj mj . This does not fully
have the direct mutual inhibitory effect anymore like in the original biological
model, but makes it easier to extend.

dmi

dt
=

syn(α)

1 + m̂2 − m2
i

− deg(α)mi + ηi i = 1, . . . ,M (4)

Furthermore, for the sake of simplicity we define in the following:

ϕ(α) =
syn(α)

deg(α)
. (5)

Equilibrium Points The equilibrium points have the condition

dmi

dt
= 0 ∀i = 1, . . . ,M



and can be easily computed from (4) when we assume without restriction of
generality that mi is maximal for an index i = k. Inserting this into Eqn. (4) we
obtain M resulting vectors of the type

x(k) =
[

x
(k)
1 , . . . , x

(k)
M

]T

k = 1, . . . ,M

with components

x
(k)
i =

{

ϕ(α) i = k

1
2

[

√

4 + ϕ(α)2 − ϕ(α)
]

i 6= k
(6)

These results are all of the type

x(k) = [L, . . . , L,H,L, . . . , L]

with a single high value H at the k-th entry and all others are a low value L.
Note that at

ϕ∗ =
1√
2

(7)

we have a special point, as the solutions x(k) are only defined when ϕ(α) ≥ ϕ∗.
For ϕ(α) = ϕ∗ we obtain a single solution x with the same entries.

x = [x1, . . . , xM ] with xi = ϕ(α) ∀i = 1, . . . ,M.

This structure of solution vectors is extremely useful to indicate that from all
possible M paths, the k-th path is chosen as primary path or there is no specific
primary path and the traffic is equally split among all paths.

Determination of the Activity Dynamics To fully specify the model, we
need to define the basic dynamic behavior of the activity α and the functions
syn(α) and deg(α). The eigenvalues of the Jacobian matrix at the solutions x(k)

always reveal negative values, leading to stable attractors [19].
Recalling the original biological model, we could identify three distinct stages

during the convergence process: there was case (i) when all mi were nearly equal
due to a balanced condition at α = 1. Then, there was case (ii) with one mi

taking a high value and the other mj with j 6= i a low value. In this case we had
different attractor locations and the activity α was fixed at some level between
0 and 1. Finally, in case (iii) with activity α = 0, we only had random influence.

In the following, we will slightly modify this general behavior. Our goal is
to almost always perform a selection of a primary path out of the M possible
paths. We will therefore definitely need case (ii) stated above. However, we
merge cases (i) and (iii) to consider the scenario when all paths are nearly equal
and we don’t have a preference; we still choose one of them rather randomly as a
primary path. Therefore, this modified method will always yield a primary path



except for the time when a new solution is searched. Additionally, we shift the
domain for α to the interval [1, 2], since at α = 1, we have the lowest absolute
value of α and the highest influence from noise. On the other hand, all mi are
at the same value ϕ(α) which helps to recover from this state of equality among
the paths and quickly drives one path to become the primary path.

Based on the above mentioned constraints, the quotient ϕ(α) should be a
increasing function in [1, 2] with ϕ(1) = ϕ∗. We use the following function given
in (8).

syn(α) = α
[

(α − 1)
2

+ ϕ∗

]

deg(α) = α (8)

Let us now discuss the desired behavior of α. In order to specify its behavior,
we must define what activity should indicate. In this paper, we consider the
transmission delay on path i as performance metric li, so a “better” path is
characterized by a smaller value of li. The output values mi should reflect them
by considering the minimum values of li. Hence, when an ľ = lk is the minimum
of all input values, we wish that the system obtains mk maximally. The dynamics
of the activity behavior is shown in Eqn. (9). We introduce with ∆ a hysteresis
threshold in order to limit unnecessary oscillations between paths. The use of
such a hysteresis was reported in [8] to reduce the selfishness and help improve
the overall system performance.

dα

dt
= δ





[

M
∏

i=1

(

(

mi

m̂

ľ

li + ∆

)n

+ 1

)]β

− α



 (9)

Like in the original model, the rate δ corresponds to the growth (prod) and
decay (cons) rate of α, which we choose to be equal at δ = 0.01. The parameter
n given here, is an exponent which must be selected very large, e.g. n = 100 in
order to “filter out” any unwanted intermediate values. Furthermore, we scale
the output levels for H and L with the exponent β. A value of β = 1.75 has
proven to be most effective. Within the product in (9) we could also add further
input parameters for evaluating the current system condition in greater detail.

4 Application to Multi-Path Routing

The main problem that we focus on here is that for a certain source-destination
pair, exactly one path is chosen as primary path based on the current environ-
ment condition. When the situation changes and the current primary path is
no longer the best choice, the scheme adapts to selecting a different primary
path which is better suited. The desired behavior is shown in Fig. 3. There
are M paths from source s to destination d and one of these is the primary
path over which the main traffic volume is transported. If a link or node fails
on this path, the primary path is automatically switched to the best secondary
path. The switching of paths should not only occur in such drastic conditions as
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link failures, but also of course when due to changed load conditions one of the
secondary paths seems more appropriate as primary path.

The basic sequence of the routing algorithm consists of two steps: (i) route
setup phase and (ii) the route maintenance phase. In the following sections we
will discuss the operation of both of these phases.

4.1 Route Setup Phase

In the route setup phase we use a decentralized method similarly like in AODV
routing. When a request for a new route to a destination arrives at the source
node, it broadcasts route request (RREQ) packets to the overlay network. When
a neighboring node receives an RREQ message and it has no route to the des-
tination, it continues broadcasting the packet to its neighbors. However, if it
receives an RREQ message that it has already processed, the request is dis-
carded. In case the RREQ packet arrives at the destination node or another
node which already has a route to the destination stored in its table, it replies
with a route reply (RREP) packet to the source node requesting the route. As
soon as the first RREP message arrives at the source it will have knowledge of a
route to the destination node and will start using this route in its transmission.
In such a way up to M routes are collected gradually and the route maintenance
phase with the attractor selection algorithm will proceed with these M paths.

The route setup phase is initiated when the transmission request to an un-
known node arrives at the source. After that the route maintenance phase is
entered, in which the scheme will operate most of the time. However, in the case
that paths are lost in the course of that phase and a minimum threshold of Mmin

is reached, route setup for additional paths is again invoked to add new paths.

4.2 Route Maintenance Phase

Once the first path from source to destination has been established, the route
maintenance phase is performed. In this phase, the attractor selection model in-
troduced in Section 3 is used to select the primary path for transmitting packets.
This selection is done according to the metric values of each path. We assume
that the transmission delay obtained from measurements of the round trip time



(RTT) of each packet can be captured by inline measurements to reduce any
overhead from active delay measurements.

The main problem in overlay network routing is that the best path is often
chosen in an entirely selfish manner and the overall system performance is ne-
glected. This may lead to undesired instability and oscillation in the network
load. Seshadri and Katz [8] have studied this issue and suggest three restraints
on this greedy behavior to improve the overall system-wide performance: (i) ran-
domization in the route selections, (ii) route changes performed with a hysteresis
threshold, and (iii) increase of the time interval between route changes. They
present three extensions of simple greedy routing where the route selection for
each packet is performed with randomization: ARAND, GRAND, and SRAND.
The basic operation of these three methods is sketched below. Further details
can be found in [8].

ARAND: The path is randomly selected from the set of potential path with
probabilities proportional to their metric.

GRAND: The path is randomly selected from the best K potential paths.
SRAND: A subset of K paths is chosen from the potential paths among which

the path with the highest metric is selected.

We can integrate randomization of path selections easily in our model, by
using path transmission probabilities pi which are obtained as normalized values
of mi.

pi =
mi

M
∑

j=1

mj

i = 1, . . . ,M (10)

For this reason we will consider two variants of ARAS distinguishing between
a probabilistic version and a deterministic version.

P-ARAS: The path is chosen with probabilities pi.
D-ARAS: The path with the highest mi level is selected.

An example of the input metric generated by a Wiener process is shown
in Fig. 4(a) for each path and the resulting transmission probabilities for the
P-ARAS method are given in Fig. 4(b). It can be seen that the transmission
probabilities map well to the input metrics by choosing the path with minimum
delay. At about time step 2000 the primary path is switched from path B to
A. It can also be seen that although the path with best input metric oscillates
between paths A and B around time step 6000, our method maintains path A
as its primary path.

Using only a single metric value like in this case, makes the problem easy
to tackle if we simply use a greedy approach, since there is an obvious mapping
between input and output values. It should be emphasized, however, that our
objective is not only to attempt to optimize the transmission delay of each
individual user (as is done in the greedy case). By using randomization in the
path selection we accept a slightly worse subjective performance in favor of an
improved overall performance.
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5 Numerical Results

In this section we will some discuss numerical results of our proposed method.
The main performance metric we consider is the average rate of path changes.
The average transmission delay would account only for the subjective perfor-
mance, but we are more interested in observing the overall objective behavior.
However, we will later also consider this metric.

Packets are generated in each slot with a certain probability parr which cor-
responds to a geometric time between arrival instants. For each packet arrival
occurring at time t, the path over which it is transmitted is chosen by ARAS.
If a path is selected that differs from the path used for the previous packet, we
consider this a path change. Its total number is divided by the duration of each
simulation run to obtain the path selection rate. A high value is, however, not
necessarily an indicator for bad performance, since we assume that the paths
have already been set up and there is no additional overhead for switching a
path. It can be rather regarded as an indicator for the degree of path diversity.
Clearly, a too high diversity results in a bad subjective performance since many
“bad” paths are used and packet reordering may become necessary. On the other
hand, a too small value indicates that the system operates rather deterministi-
cally. The whole problem narrows down to finding a good tradeoff between the
user’s subjective quality and the objective overall network performance.

Each simulation run has a duration of 10000 time steps and is repeated 1000
times. Since the confidence intervals are very small, we omit plotting them. We
will focus our study on some of the parameter settings for the randomized version
P-ARAS. The simulation scenario which we consider consists of a single source
destination pair having M = 6 paths with metrics varying over time, see Fig. 5.
The background traffic is modeled by initially uniformy distributed random path
latencies and the evolution is performed by a Wiener process characterized by
its standard deviation σ. Note that we will sometimes refer to this value simply
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as variation of background traffic. We restrict the possible values of the path
latency to be between a lower limit of 10 and an upper limit of 500.

5.1 Influence of Parameter Settings

Let us consider at first the hysteresis threshold for switching paths. This para-
meter influences the reaction to sudden changes of the best path. However, when
∆ is too large, the system becomes too slow in response to the metric changes
and the performance degrades. The ratio of path changes is shown in Fig. 6(a)
as a function of ∆.

The purpose of introducing the hysteresis threshold is to reduce the greedi-
ness by keeping the current primary path in spite of another one being slightly
better. Using hysteresis shows a great advantage, especially when high oscilla-
tions among paths are observed . This is illustrated in Fig. 6(a) where the rate
of path changes per packet is shown as a decreasing function over ∆. The slope
of decrease becomes larger when σ is large.

In general, the hysteresis threshold should be selected depending on the vari-
ation of traffic, but the influence of an improper setting is not very crucial in the
operation of our method. An algorithm for automatically selecting the hysteresis
is proposed by the authors of [8] which could also be applied to our approach.

Next, we examine how the packet arrival rate influences the rate of path
changes. Since we consider a discrete time system, we use a packet arrival prob-
ability parr in the simulation with geometrically distributed interarrival times.
This corresponds to a Poisson arrival process with exponential interarrival time
in the continuous time domain. We assume that the time steps are larger than
the transmission time of the packets, leaving no direct interaction between the
packets in this simulation scenario. Therefore, there is no influence of parr on
the simulated average delay. The influence of parr on the rate of path changes is
shown in Fig. 6(b).

The highest packet arrival probability causes also the highest path switch-
ing rate, as the arrival instants are more frequent and the sensitivity to traffic
variations becomes larger. However, the curves flatten for large values of σ. This
means that after the traffic variation reaches a certain level, it hardly influences
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the frequency of path switches. Although, the packet arrival probability does
not influence the delay in our scenario, it does have an effect on the rate of path
changes.

In this study we only consider a single flow from a source node to a destination
node. When we extend our evaluation to a whole network with interacting flows
in the future, we expect that the packet arrival rate will show some greater effect
on the performance of our method.

5.2 Comparison of ARAS with Randomized Routing Methods

In the following we will compare the performance of D-ARAS and P-ARAS to
the other methods introduced in Section 4. In general, there are two types of path
selection methods, those with randomization and those without. While Greedy
and D-ARAS are deterministic methods, all others use randomization for path
selection. The subjective performance of the deterministic methods is naturally
expected to be best, but they operate selfishly and thus are not efficient when
considering the overall network performance.

Fig. 7(a) shows the average packet delay for each considered method in the
presence of variation of the background traffic process. We use a packet arrival
probability of parr = 0.5 and a hysteresis value of ∆ = 5. Greedy shows the ex-
pected best subjective performance with lowest delays. D-ARAS is only slightly
higher, since it has a more delayed reaction than Greedy when choosing the
paths. Of the randomized methods, P-ARAS is very efficient as it yields only
slightly higher average delays than the deterministic algorithms. However, ran-
domization clearly worsens the subjective performance experienced by the user’s
average end-to-end packet delay.

In Fig. 7(b) the rate of path changes is depicted. Obviously, the purpose of
randomization is to balance the traffic among each path, so these methods yield
a higher ratio. The Greedy method and D-ARAS have a very small ratio which
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Fig. 7. Comparison of ARAS with other methods

is caused by paths often staying best paths despite the presence of high variation
of the others. Of the randomized methods again P-ARAS has the smallest path
switching rate, whereas ARAND, GRAND, and SRAND stay nearly unaffected
of the traffic variation. Clearly the highest path diversity is achieved by ARAND
due to the proportional splitting of the traffic flow.

In general, we can show that P-ARAS is a good candidate for selecting paths,
especially when we compare the results to the other randomized approaches. Its
subjective performance reaches nearly that of the deterministic approaches while
showing a high degree of path diversity.

6 Conclusion and Outlook

In this paper we presented an application of adaptive response by attractor selec-
tion (ARAS) to multi-path routing in overlay networks. ARAS is a biologically-
inspired method and is robust to changes in the environment. The method con-
verges to attractor solutions in the phase space and the selection of the appropri-
ate attractor is driven by an activity term α. We have seen that by adequately
defining the dynamic behavior of the activity α, we are able to map the input
values to the selection of a primary path in an overlay network in a self-adaptive
way.

Although the results suggested that the greedy approach appeared to show
a good performance, the main drawback of using greedy path selection lies in
the instability it introduces to the network. Whenever a new path appears more
suitable, traffic flows are shifted and result in route flapping. For this reason, we
implemented randomization of the path selections to reduce the greediness of
each individual source-destination flow, while still achieving a good performance
in terms of average packet delay. Furthermore, we investigated the influence of
the key parameters of our model, such as the hysteresis threshold for switching
paths under different levels of variation of the background traffic. Comparisons



to other randomized methods showed the effectiveness of our approach. The
main advantage of our proposal is that it operates without explicit rules and is
simply implemented by numerical evaluation of the differential equations.

In the future, we wish to focus more on a network-wide view with large scale
evaluations of the whole network. When evaluating the network in whole, we
expect that our approach will be superior to the greedy method in performance.
So far we considered only a single source-destination pair and the path selection
was influenced only by the background traffic without any interaction from other
flows operating with our method. As a main goal of further studies, we need to
investigate and quantify the benefits of our proposed mechanism in the presence
of interacting traffic. In such a way, the activity could be extended by some
overall network performance metric resulting in a symbiotic selection of paths
for each flow which is best for the whole network.
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