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abstract We propose a new architecture, the
λ computing environment, that accomplishes high
speed data transmission over optical fibers. In the
λ computing environment, we can achieve highly
reliable high-speed communication by establishing
wavelength paths. In this paper, we use the Globus
Toolkit to build a Grid environment and establish
the λ computing environment using the AWG–STAR
system. Moreover, we implement the MPI library
using services of the Globus Toolkit and the shared
memory of the AWG-STAR system to exchange
data, and evaluate performance of distributed com-
putation in a λ computing environment. Our results
show that the performance depends on the number
of accesses to the shared memory and the size of
exchanged data.

1 Introduction

The Grid technology has been studied by many
researchers to perform large-scale scientific com-
putation. The Grid technology virtually enables
large scale computing with connecting distributed
computing nodes, storage and all kinds of devices.
This virtual computer is expected to have high per-
formance computation which single computer can-
not achieve, to perform large-scale scientific com-
putation, to push huge data made by high per-
formance observation equipments, and to visualize
large amount of data by rapid real-time calculation
in parallel.

In order to realize the Grid computing, one of the
most important issues is how to share and coop-
erate geographically/systematically distributed re-
sources. To solve that problem, some middlewares
are necessary. Nowadays, Globus Toolkit developed
by Globus Alliance is a de-facto standard for the
middleware of the Grid computing [1].

At the same time, researches into the optical
transmission technology as a lower layer of the Grid
have been also actively pursued. Researches into
WDM technologies that use multiplexed light wave-
length have been the main target for development,
and then technologies from new WDM research that
can use 1000 wavelength has also been advanced [2].
In recent years, IP over WDM network has been
studied and developed to provide high-speed trans-
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Figure 1: λ computing environment.

mission on the Internet based on WDM technology.
Moreover, standardization of the routing technol-
ogy of the Internet, called GMPLS [3], which is the
communication technology that uses various optical
technologies for a lower layer, has also been advanced
in IEIF. Further, aiming to realize the true IP com-
munication of a photonic network, researches into
optical packet switches based on the optical technol-
ogy have also begun [4-8]. However, many such tech-
nologies presuppose the existing Internet technology.
That is, an IP packet is treated as a information
units, and the target for research and development
is how to carry IP packets at high speed on a net-
work. Therefore we cannot realize high-speed and
high-reliable communication as long as we use the
architecture based on a packet exchange technology.

Then we propose a new architecture which we
call the λ computing environment that has virtual
channels utilizing optical fibers connecting comput-
ing nodes [9, 10]. In the conventional Grid environ-
ment, data are exchanged with the message pass-
ing using TCP/IP. In the λ computing environment,
communication between nodes on the Grid not by
conventional TCP/IP but by established wavelength
paths is realized, so that we can achieve highly reli-
able high-speed communication (see Figure 1).

Our target in this paper is to implement high-
speed distributed computation environment by
adopting the Globus Toolkit into the λ computing
environment. That is to say, when the λ computing
environment is adopted in a lower layer of the Globus



Toolkit, users can utilize the high-speed distributed
computation environment without changing their
conventional programs. In concrete terms, users exe-
cute MPI Applications on the Globus Toolkit, which
are actually communicated in the λ computing en-
vironment. In addition, we propose and implement
methods of access to the shared memory which each
node has. As an instance of the λ computing envi-
ronment, we utilize the AWG–STAR system devel-
oped by NTT Photonics Laboratory [11, 12]. AWG–
STAR system is one of instances that realize High-
Speed Channel Architecture, and is the information
sharing network system realized by data transmis-
sion using WDM technology and wavelength routing
using AWG (Array Waveguide Grating) router.

In this paper, we establish the λ computing en-
vironment utilizing AWG–STAR system, implement
an MPI library on the Globus Toolkit, and evaluate
the performances of the distributed computation.

The rest of the paper is organized as follows. In
section 2, we describe the overview of the AWG–
STAR system. In section 3, we explain the im-
plementation of MPI library in the λ computing
environment with the AWG–STAR system, and in
section 4, we evaluate our approach by using MPI
benchmark program. Finally, we conclude the pa-
per and describe future work in section 5.

2 AWG–STAR system

In this paper, we utilize the AWG–STAR system as
an instance of λ computing environment. In this
section, we explain that system.

2.1 Brief overview of the AWG–
STAR system

The AWG–STAR system is an information shar-
ing network platform realized by the WDM technol-
ogy and wavelength routing using the AWG routers.
Computing nodes connected to the AWG router con-
figure a star topology in physical, but does a ring
in logical (see Figure 2). The AWG router pro-
cesses optical signal without transforming into elec-
trical signal, which provides high-speed transmis-
sion. Each node is equipped with a shared memory
board (SMB). It has shared memory that can con-
tain the identical data at the same address over all
nodes by the AWG–STAR system. While conven-
tional systems need apparent instructions to trans-
mit, data in this system are automatically sent to the
optical ring network when they are written on the
shared memory, and the data on the other SMB of
all computing nodes are updated in real time. Fur-
thermore, to read the data from the shared memory
only needs to access their own SMB. This system
achieves high-speed data sharing because it runs in
the background at hardware level.

AWG
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Figure 2: Topology of the AWG–STAR system.

Table 1: Specification of the SMB.
Transmission speed of 2.152Gbps

the optical ring
Every transmission data size 1KByte
Processing time of 500ns

frame transmission
Transmission rate to SMB 64MBytes/s
Transmission rate from SMB 80MBytes/s

2.2 Access Delay Time of AWG–
STAR system

An access delay time from CPU to the shared mem-
ory is slower than that to the local memory because
SMB is equipped with computing nodes via a PCI
bus. It may largely affect the entire performance.
Also, data have to go around the optical ring to be
updated on all SMB. Table 1 shows the specification
of the SMB and the speed of access via PCI bus.

2.3 Application of AWG–STAR sys-
tem to the λ computing environ-
ment

There may be two models to realize the λ computing
environment. We utilize the optical ring network as
a shared memory, or as a high-speed channel. In the
first case, shared variables in a distributed-parallel
program are stored on the optical ring as the shared
memory, and each node reads/writes the shared data
from the shared memory. Since the data are shared
by all computing nodes, it takes one-round time to
update the data and the data sharing delay is in-
evitable. In another case, variables in a program are
stored not in the shared memory but in the local
memory of each computing node. The computing
nodes calculate separately, and they send the data
to the other by writing on the shared memory.

In this paper we adopt the latter model with the
AWG–STAR system, because it has higher affinity
with MPI and can shorten the delay.
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Figure 3: Utilization of the shared memory.

3 Proposed method of
Message-Passing utilizing
the Shared Memory

3.1 MPI Library: MPICH–G2

MPI (Message-Passing Interface) is a library spec-
ification for message-passing via network, sharing
data and synchronization of processes. There are
many implementations of MPI, which one of those
is MPICH–G2, grid-enabled MPI [13]. MPICH–G2
works on the Globus Toolkit and uses API for com-
munication and job management. To execute MPI
application in the λ computing environment, we im-
plement an MPI library using the Globus Toolkit
for job management and the AWG–STAR system
for message-passing, drawing upon MPICH–G2. We
use the term “process” to refer to a process run by
MPI application, and “sending (receiving) process”
to a MPI process which sends (receives) data.

3.2 Proposed method for implemen-
tation of MPI library utilizing the
AWG–STAR system

To realize message-passing using the AWG–STAR
system, queues to send and receive data are pre-
pared on the shared memory. To be specified, let
the number of processes be n, the shared memory is
divided into n2 areas and each process utilizes each
area as a queue, which is for transmission between a
pair of sending and receiving processes. That is to
say, when process rank i sends data to process rank
j, the sending process writes the data on the area
[i, j]. When transmitting, sending data is written
on the next address where previous data is located,
and the last address of every queue is stored in the
local memory of each computing node. On the other
hand, the receiving process reads new data from the
shared memory to the local memory. At this time,

to notify the receiving process that the sending pro-
cess wrote data on the shared memory, we use a sig-
nal function provided by the AWG–STAR system.
It means that after writing the data on the shared
memory, the sending process sends a signal to the
receiving process. The process which received the
signal reads the data from the shared memory. Fig-
ure 3 shows the utilization of the shared memory. By
implementing queues on the shared memory, we can
enable to combine the operations of both the local
memory and the network socket which are apart in
MPICH–G2.

Also, drawing upon MPICH–G2, we implement
two queues called “posted queue” and “unexpected
queue” on the local memory of each process, because
the timing when the process receives the data and
when the receiving function is called may be differ-
ent. That is to say, in the case that the process
calls receiving function, but that the data to be re-
ceived are not on the shared memory yet, it has to
buffer the reception request until the data are actu-
ally received. Where the reception request is stored
is “posted queue”. In a similar way, in the case that
the process receives the data from the shared mem-
ory, but that the function to receive the data is not
yet called, it has to buffer the data until the func-
tion is called, so the data go to “Unexpected queue”.
Consistency between receiving data and requests are
determined with the header of them.

3.3 Comparison between MPICH–
G2 and proposed method

Figure 4 shows MPI application execution methods
with both MPICH–G2 and AWG–STAR system. In
both methods, the authentication of the comput-
ing nodes and the job execution request for pro-
cesses are communicated with API of the Globus
Toolkit. Message-passing during MPI application of
MPICH–G2 also utilize API of the Globus Toolkit,
that is, data are copied from the local memory to
the socket buffer by system call of OS, then trans-
mitted from the socket buffer to the memory on NIC,
next divided into MAC frames, and lastly transmit-
ted through Ethernet. On the other hand, in the
method of the AWG–STAR system, data are copied
from the local memory to the shared memory via
PCI bus, transmitted to the network. We consider
that communication by the AWG–STAR system has
less overhead of the memory copy and the packet
generation.

4 Evaluation

In this section, we evaluate the proposed method
to access the shared memory system by executing
Himeno Benchmark program, one of the MPI ap-
plication benchmarks [14]. We assume that every
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Figure 4: Comparison between MPICH–G2 and our
method.

Table 2: The Specification of computing nodes.

CPU Xeon 2.80 GHz
Main memory SDRAM 512MB
Primary cache 512KB
Secondary cache 512KB
NIC Intel PRO/100MT
PCI bus 64 bit/66MHz
PCI transmission speed 533MBytes/sec
OS Redhat Linux 7.3
Compiler gcc 2.96
Middleware of the Globus Toolkit 2.4

Grid environment

computing node executes one MPI process, that is
because the SMB of the current AWG–STAR system
can not be shared with the multiple processes or ap-
plications. For comparison purpose, we also show
the cases for MPICH–G2.

4.1 Environment for Evaluation

Table 2 shows the specifications of the computing
node for evaluation. The numbers of the computing
nodes are from one to four, and all nodes are the
same specifications. In this evaluation, we change
the length of the optical ring depending on the num-
ber of the computing nodes. That is to say, let the
number of the computing nodes be N , the length of
the optical ring is 10Nm. In the case for MPICH-
G2, we use 1Gbps Ethernet and the length of each
Ethernet cable is 10 m.

4.2 Application program

We use a benchmark program to evaluate the perfor-
mance of our method. One of such programs is Hi-
meno Benchmark program. Himeno Benchmark pro-
gram was developed by Dr. Ryutaro Himeno in the
Institute of Physical and Chemical Research to eval-
uate the performance of incompressible fluid analysis
code on various computers. The code solves Pois-
son’s equation by the Jacobi iterative method. The

benchmark measures the computational time of the
main loop in the code and reports the correspond-
ing performance in MFLOPS. The Jacobi method
can be parallelized by domain decomposition which
partitions a three dimensional array into smaller ar-
rays and assigns every smaller array to a processor.
Parallel version of Himeno Benchmark program with
MPI is also provided. The problem size of origi-
nal Himeno Benchmark program is fixed to small,
medium, large, or extra large. However, we change
the problem size to some other size.

4.3 Evaluation by Comparison to
MPICH–G2

We compare the performance of computation utiliz-
ing the AWG–STAR system with MPICH–G2. Fig-
ure 5 shows the performance comparison executed
with two processes and figure 6 shows with four.
The Y axis represents performance in MFLOPS and
the X axis represents the size of 3-dimensional ar-
ray. The data size of one message-passing is pro-
portional to the array size, and the number of
message-passings is in inverse proportion. Also, fig-
ure 7 shows the ratio of the calculating-time and the
communicating-time among whole the processing-
time. The Y axis represents the ratio of time, and
X axis represents the array size.

As shown in figures 5 and 6, when the array size
is small, the performance is rather low. The reason
is due to the delay time of the shared memory, be-
cause the small size problem causes many accesses to
the shared memory and that is the bottleneck. This
is also shown in figure 7, that the communicating-
time takes a fair percentage of the processing-time.
As the array size increases and the number of ac-
cesses decreases, the delay time becomes shorter and
the performances become better. Compared to the
MPICH–G2, however, the performance of the AWG–
STAR system is much lower, so the improvement of
the access speed from CPU to the SMB is needed.

4.4 Evaluation by the number of pro-
cesses

Figure 8 shows the performance of the same array
size executed by the different numbers of processes.
At first we compare with one process and two pro-
cesses. Performance is higher by one processes when
array size is smaller than 129×129×257. This is be-
cause no message-passing occurs by one process, so
there is no overhead of message-passing. But as the
array size becomes larger, differences get smaller,
and when the size is 161×161×321, two processes
compute faster than one process. This is because
as the size becomes larger, the number of message-
passing and its overhead decrease. Secondary we
compare with two processes and four processes. Per-
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Figure 6: Performance with four processes.

formance is higher by two processes. This is also
caused by the overhead of message-passing.

In the case when the array size is larger than
193×193×385, application can not be executed by
one process because of too large size. In the same
reason, two processes can not calculate the problem
of array size 225×225×449. That is, large size prob-
lems which can not be performed by single process
can be solved by parallelizing and distributing with
multiple nodes.

4.5 Evaluation by the Decomposition

In Himeno Benchmark program, the problem is par-
allelized by domain decomposition, and a process
transfers the data to the another which share the
boundary region. The size of the data is almost
proportional to the size of the boundary region. It
means that, in the case when the domain decomposi-
tion is 1× 4× 1, one process transmit twice the size
of the case when that is 1 × 1 × 4 (see figure 9).
Figure 10 shows the performance of the program
of which domain decomposition are 1 × 4 × 1 and
1 × 1 × 4. The performance at the smaller exchang-
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Figure 8: Comparison with the number of the pro-
cesses.

ing data size is better than the larger by the speed
from 1.3 to 1.6 times, and it is clear that the perfor-
mances are largely affected by the size. So we can
conclude that the slowness of access to the SMB is
the bottleneck.

5 Conclusion

In this paper, we have established the λ computing
environment by the AWG–STAR system. Adding
that, we implemented an MPI library and evalu-
ated the performance of distributed-parallel compu-
tation in the λ computing environment. As a result,
we confirmed that the performance depends on the
transmitting data size and the number of accesses
to the shared memory, which is due to the slow ac-
cesses to the SMB. The new architecture of SMB
is now investigated, by which we expect to attain
higher throughput for distributed computation uti-
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lizing wavelength paths of optical networks
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