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Preface

With the growth of computing power and the proliferation of the Internet, media

distribution services have widely diffused. However, with the current Internet, the

major transport mechanism is still only the best effort service without no guaran-

tees of communication qualities. Furthermore, the media streaming introduces much

load into the network compared with other typical applications based on HyperText

Transfer Protocol (HTTP) or File Transfer Protocol (FTP). From the viewpoint of

users, high levels of Quality of Service (QoS), such as high-quality and continuous

media play-out, are requested to the services. In addition, media qualities requested

by users are heterogeneous and media popularity becomes diverse in the current Inter-

net. Therefore, an effective media distribution system must be accomplished, which

can provide users with media streams in a continuous way while suppressing load on

the system.

To accomplish effective media streaming, routers and/or end systems require some

control mechanisms. Integrated Services (IntServ) and Differentiated Services (Diff-

Serv) are mechanisms to provide users with QoS guarantees of end-to-end commu-

nications. Multicast enables a server to distribute a media stream to many users

simultaneously. However, the current Internet does not sufficiently support these

mechanisms due to the deployment problem of routers that enable such functions.

On the other hand, rate control of sending data, such as TCP Friendly Rate Con-

trol (TFRC), and caching of media data can be categorized as mechanisms at end
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systems. We can easily employ these mechanisms because they do not rely on such

network equipments. Furthermore, they can flexibly adapt to requirements of each

user and its application.

In this thesis, we focus on the caching mechanisms to accomplish media streaming

that can adapt to heterogeneity of user demands and network changes. At first,

we discuss proxy caching mechanisms with a media quality adjustment in a client-

server architecture. After introducing the overview of our system, we propose three

mechanisms: media retrieval mechanism, media prefetching mechanism, and cache

replacement mechanism. Through several simulation experiments, we evaluate our

proposed mechanisms in terms of required cache buffer size, play-out delay, and media

quality. Simulation results show that our system is effective in suppressing the play-

out delay and reducing the required cache buffer size with a media stream of the

desired quality. Specifically, waiting time for media play-out is less than 8 seconds

even under a severe situation where the cache buffer size is limited to 20 Gbits. We

further implement our proposed mechanisms on a real system. Through experiments,

it is shown that our implemented system can continuously provide users with a high-

quality and low-delay media service in accordance with the network condition.

Next, we examine the media streaming on unstructured Peer-to-Peer (P2P) net-

works where there is no server. There are several issues to resolve in accomplish-

ing effective media streaming on unstructured P2P networks: scalability, continuous

media play-out, adaptability to changes of system conditions. We first describe con-

tinuous and scalable media streaming on unstructured P2P networks. We propose

scalable media search methods taking into account temporal order of reference to

media data that means users usually play out a media stream from the beginning to

the end. Then, we also propose media retrieval methods to accomplish continuous

media play-out. Through several simulation experiments, we show that the proposed

methods can provide users with continuous media play-out for popular media streams
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while reducing search traffic to 1
6

compared with a traditional method.

Then, we discuss adaptive and robust P2P media streaming. First, we pro-

pose a novel cache replacement algorithm that considers balance between supply

and demand for media streams. Next, to improve the adaptability and robustness

against changes of system conditions, such as network conditions, and peer depar-

tures, we further propose an adaptive media retrieval method and a robust media

search method. Simulation results show that our proposed cache replacement algo-

rithm can accomplish continuous media play-out independent of media popularity

and adapt to changes in media popularity. Furthermore, we demonstrate that the

adaptive media retrieval method can provide users with more continuous media play-

out than our previous method. In addition, we find that the proposed search method

is robust to peer departures.

Finally, we focus on the construction of a P2P overlay network to improve the

user QoS in terms of search and retrieval time of files. After introducing several re-

lated works, we propose a construction method of a low-diameter and location-aware

P2P overlay network where a peer can find many physically-close provider peers. We

further propose a rewiring method to improve the structure of the constructed over-

lay network. Through evaluations in terms of diameter, physical distance between

neighboring peers, and degree distribution of the overlay network, it is shown that

our proposed method without rewiring can construct a low-diameter overlay network

comparable with traditional method. In addition, we find that the rewiring method

contributes to reduction of both the physical distance between neighboring peers and

diameter of the overlay network. Especially, the proposed methods can accomplish

the same logical reachability as the traditional method while reducing network load

to 50%.
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Chapter 1

Introduction

With the growth of computing power and the proliferation of the Internet, media

streaming services have widely diffused. However, with the current Internet, the ma-

jor transport mechanism is still only the best effort service, which offers no guarantees

of network bandwidth, delay, and packet loss probability. Consequently, the media

streaming system cannot provide users with media streams in a continuous way. Fur-

thermore, the media streaming introduces much load into the network compared with

other typical applications based on HyperText Transfer Protocol (HTTP) [1] or File

Transfer Protocol (FTP) [2]. This is because the media streaming needs to high

network bandwidth to transfer the media data to users. For instance, the coding

rate of a high-quality MPEG-2 media stream is 8 Mbps. Although MPEG-4 with

a high compression ratio has been developed for the distribution in the Internet, it

requires a few Mbps to provide users with a high quality media stream. Furthermore,

the media streaming constantly induces heavy traffic into the network. Short clips,

such as CM and the preview of a movie, are a few or minutes long while the length

of a movie reaches a few hours. The number of users also affects the network load.

Many users simultaneously join the media streaming system as well as the other web

services.
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Chapter 1. Introduction

To accomplish effective media streaming, routers and/or end systems require some

control mechanisms. Integrated Services (IntServ) [3], Differentiated Services (Diff-

Serv) [4], and multicast are control mechanisms supported by routers. IntServ and

DiffServ are mechanisms to provide users with Quality of Service (QoS) guarantees.

While IntServ completely allocates network resources to each user by using Resource

reSerVation Protocol (RSVP) [5, 6], Diffserv classifies traffic in accordance with its

priority. Multicast mainly represented by IP multicast is designed for use in live

broadcasting in which many users simultaneously watch the same media stream. IP

multicast constructs a multicast tree to deliver a media stream to users. The mul-

ticast tree consists of a media delivery server, IP multicast routers, and users. The

root of the tree, that is the server, transmits the media stream to the IP multicast

routers. Then, each IP multicast router forwards the received media stream to all of

its children. As a result, the multicast is obviously more effective than unicasting the

media stream for each user.

However, the current Internet does not sufficiently support these mechanisms due

to the deployment problem of routers that enable such functions. On the other hand,

rate control of sending data, such as TCP Friendly Rate Control (TFRC) [7], and

caching of media data can be categorized as mechanisms at end systems. We can

easily employ these mechanisms because they do not rely on such network equipments.

Furthermore, they can flexibly adapt to requirements of each user and its application.

In this thesis, we mainly focus on the caching mechanism. Specifically, we discuss

two kinds of approaches: proxy caching mechanisms on client-server architectures

and caching mechanisms on Peer-to-Peer (P2P) architectures. At first, we propose

proxy caching mechanisms for media streaming [8-12]. The proxy caching mechanism

widely used in WWW systems offers low-delay delivery of data by means of “proxy

server”. A proxy server caches media data which have passed through it in its local

buffer, called “cache buffer”, then it provides the cached data to users on demand.

– 2 –



Chapter 1. Introduction

By applying proxy mechanisms to a media streaming system, high-quality and low-

delay media distribution can be accomplished without introducing extra load on the

system[13-20].

To accomplish continuous media streaming, there are several challenging tasks:

heterogeneous user environments, changes of network conditions, and management

of cached data. First, the heterogeneity of the Internet access, such as Fiber To The

Home (FTTH) and Asymmetric Digital Subscriber Line (ADSL), is significant for

the media streaming. Since narrow-band users cannot receive a high quality media

stream in a real-time fashion, the proxy has to store a low quality media stream in its

cache buffer to serve all users independent of their access connections. However, this

approach apparently deteriorates the QoS of broad-band users. Furthermore, caching

media streams of multiple qualities leads to the cache overflow. One way to solve

these problem is the quality adjustment of the media stream on the proxy. There are

two kinds of the quality adjustment: layered encoding and QoS filtering [21, 22].

The layered encoding transcodes the original media stream into multiple layers: a

base layer and one ore more extension layers. By adjusting the number of the layers

that are transmitted to users, the proxy can provide users with different quality me-

dia streams without transcoding. However, the degree of the quality adjustment is

limited by the number of the layers. On the other hand, the QoS filtering techniques,

such as frame dropping, low-pass, and re-quantization, are other schemes of the qual-

ity adjustment. Although these filtering techniques require more processing power

compared with the layered encoding, they can flexibly adjust the media quality. The

growth of the computing power enables the proxy server to conduct the QoS filtering

in a real-time fashion. In this thesis, we employ the QoS filtering techniques. By ap-

plying the quality adjustment techniques, the proxy can provide users with different

qualities of the media stream taking into account their access connections [13].

Next problem is changes of network conditions in terms of the available bandwidth

– 3 –
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and Round Trip Time (RTT). To provide a media stream with users in a continuous

way, the proxy needs to adapt the data sending rate in accordance with the network

conditions. In most cases, media data are transmitted over UDP. Since UDP does

not retransmit packets discarded at intermediate routers, it can quickly transfer data

compared with TCP. In the case of media streaming, the packet retransmission is not

necessarily meaningful because the media data should be received at a user before

their corresponding play-out time. However, UDP cannot fairly coexist with the

other traffic transmitted over TCP due to the lack of the rate control mechanism.

To tackle this problem, we introduce TCP Friendly Rate Control (TFRC) protocol

that enables UDP to behave in a TCP-friendly fashion. TFRC controls the data

transmission rate based on the rate estimation method used in TCP. By adjusting

the media quality in accordance with the sending rate estimated by TFRC, the proxy

can provide users with the media stream of appropriate quality in a continuous way.

Finally, caching strategy that affects the cache hit probability is also significant

to reduce the network load and improve the user QoS. We consider the identical

characteristics of media streams: data size, quality, and temporal order of reference.

The data size of a media stream is considerable huge compared with other objects,

such as text and image. For the efficient use of the cache buffer and the network

bandwidth, a media stream is divided into blocks. The proxy should retrieve a block

of appropriate quality from a media server and store it into the cache buffer to prevent

cache misses to the succeeding user requests. The last feature of the media streaming

is that a user ordinarily plays out a media stream from the beginning to the end in

a sequential order. By utilizing this temporal order of reference to media blocks, the

proxy can predict what blocks will be requested by users in the near future. Based on

this assumption, we also propose a prefetching mechanism and a cache replacement

algorithm.
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For further low-delay and high-quality media streaming, cooperation among prox-

ies is also effective [23-25]. By exchanging information among the media server and

the proxy cache servers, they can provider a user with a media stream from an ap-

propriate server. However, their servers are statically located at various points in the

network and have to process all requests coming in. It has been pointed out that

such client-server model lacks scalability and stability against the number of users.

To improve the scalability against the number of users and adaptability to various

user demands, it is preferred that the number of hosts that provide media streams

increases proportional to the number of users.

P2P is a new network paradigm in which hosts called peers directly communicate

with each other and exchange information without the mediation of servers. Such

distributed manner improves the system scalability against the increase of the users

because traffic concentration to a specific point can be avoided. We expect that P2P

architectures can support media streaming services based on the traditional client-

server architectures. Typical examples of P2P systems are file-sharing, Application

Layer Multicast (ALM), and Grid computing. By applying the P2P communication

architectures, the media streaming can become more scalable to the number of users

and more adaptive to heterogeneous user demands. There are two kinds of P2P media

streaming systems: ALM and media streaming based on the file-sharing system.

ALM is a new multicast scheme in which peers function as the multicast routers

targets the live media streaming. While the IP multicast requires to deploy multicast

routers in the network to construct a multicast tree, ALM does not need extra re-

sources by using peers as routers. However, peers dynamically join and leave during

a session in ALM. In addition, peer-to-peer media delivery induces much load on

the network because peers are generally located at the edges of the network. Many

researchers have studied how to build an efficient multicast tree to solve these prob-

lems [26-33].
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However, when user demands arise intermittently and peers request a variety of

media streams, as in current P2P services, an efficient distribution tree cannot be

composed. In this thesis, we discuss the on-demand media streaming based on the

P2P file-sharing system[34, 35]. There are mainly three different architectures for the

P2P file-sharing systems: centralized, decentralized-structured, and decentralized-

unstructured. In a centralized model, such as Napster [36], meta servers maintain

the information on shared files stored on peers. By sending a query to the servers,

a peer can quickly find its desired file. However, this centralized architecture has a

problem of a single point of failure. On the other hand, decentralized models enable

users to exchange information and file directly with each other without the mediation

of the server. In a decentralized-structured model, such as Chord [37], Pastry [38],

Tapestry [39], and CAN [40], the location of shared files and the topology of a P2P

network are tightly controlled based on the Distributed Hash Tables (DHT). Although

DHT can improve the search efficiency, it requires to strictly manage the topology of a

P2P network against the join and departures of peers. A decentralized-unstructured

model, such as Gnutella [41] and KaZaA [42], has no correlation between the file

location and the network topology. Because of this simple structure, the unstructured

P2P systems are the most common in the current Internet. However, they also have

several challenging tasks to improve the effectiveness of search because flooding, which

is a typical search method, is not scalable to the number of peers.

We propose novel methods for on-demand media streaming based on the unstruc-

tured P2P file-sharing system [43-50]. From the viewpoint of service, we assume that

a media streaming server can accomplish effective media streaming supported by our

proposed P2P streaming system. In this thesis, we focus on to verify how high level

of QoS can be accomplished by our P2P media streaming system. There are several

issues to resolve in accomplishing effective media streaming on unstructured P2P

networks: scalability, continuous media play-out, adaptability to changes of system
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conditions. In our system, every peer participating in a service watches a media

stream and deposits it in its local cache buffer. A media stream is divided into blocks

for efficient use of network bandwidth and cache buffer. By retrieving blocks from

other peers in time, a peer can watch a desired media stream. Since there is no server

that manages information on peer and media locations, a peer has to find each block

constituting a desired media stream by emitting a query message into the network.

Other peers in the network reply to the query with a response message and relay the

query to the neighboring peers. If a peer successfully finds a block cached in other

peers, it retrieves it from one of them and deposits it in its local cache buffer. If there

is no room to store the newly retrieved block, a peer has to perform replacement on

cached blocks with it.

First, we tackle the problem of scalability in terms of search traffic. Flooding, in

which a peer relays a query to every neighboring peer, is a powerful scheme for finding

a desired media stream. However, it has been pointed out that the flooding lacks

scalability because the number of queries that a peer receives significantly increases

with the growth in the number of peers [51]. In particular, a block-by-block search

by flooding apparently introduces much load on the network and causes congestion.

To tackle this problem, we propose two scalable block search methods. Taking into

account the temporal order of reference to media blocks, a peer sends a query message

for a group of consecutive blocks. Then, the peer performs adaptive block search by

regulating the search range based on the preceding search result.

Next, continuous media play-out is also important for users in media streaming

services. To retrieve a block by its corresponding play-out time, we propose methods

to determine an appropriate provider peer (i.e., a peer having a cached block) from

search results by taking into account the network conditions, such as the available

bandwidth and the transfer delay. By retrieving a block as fast as possible, the

remaining time can be used to retrieve the succeeding blocks from distant peers.
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Finally, we consider the adaptability and robustness to changes of system condi-

tions, such as popularity of media streams, network condition, and peer departures.

To improve the completeness of media play-out, we propose an effective cache replace-

ment algorithm that takes into account the supply and demand for media streams.

Since there is no server, a peer has to make conjectures about the behavior of other

peers by itself. A peer estimates the supply and demand from P2P messages that

it relays and receives from a flooding-based media search. Then a peer determines

a media stream to discard to make room for a newly retrieved block. Furthermore,

a peer also adapts to changes in the supply and demand of media streams. For this

purpose, we propose a novel caching algorithm based on the response threshold model

of division of labor and task allocation in social insects [52].

In biology, social insects, such as ants, also construct a distributed system [53].

In spite of the simplicity of their individuals, the insect society presents a highly

structured organization. It has been pointed out that social insects provide us with

a powerful metaphor for creating decentralized systems of simple interacting [53, 54].

In particular, a recently proposed model of division of labor in a colony of primitively

eusocial wasps, based on a simple reinforcement of response thresholds, can be trans-

formed into a decentralized adaptive algorithm of task allocation [52]. By regarding

the replacement of media streams as a task, we propose a fully distributed and au-

tonomous cache replacement algorithm which can adapt to changes in environments,

i.e., the supply-to-demand, without parameter tunings.

Furthermore, in an actual situation, media streaming fails since peers participat-

ing a service occasionally leave a P2P network due to user’s interactions or system

failures. Network conditions including the available bandwidth and RTT also change

dynamically. We newly propose a block retrieval method which dynamically switches

provider peers based on the estimation of the available bandwidth and RTT. In ad-

dition, we extend our block search method to prepare for peer departures.
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The structure of a P2P overlay network is also important because it determines

the effectiveness of search in terms of network load and user QoS. An inefficient over-

lay network induces unnecessary and huge traffic into underlying physical networks.

Specifically, the diameter of an overlay network affects the number of hops, i.e., a TTL

value, required to find a sufficient number of provider peers and files desired by users.

Furthermore, if an overlay network is constructed without taking into account the

topology of underlying physical networks, a logical link may be established between

physically-distant peers. Passing a message from one peer to another takes time and

much network resources. A peer has to wait for a long time to obtain information on

physically-close providers from which it can quickly retrieve its desired file.

To tackle these problems, an overlay network should reflect the characteristics

of the underlying physical topology, e.g., the degree distribution and the physical

proximity. In this thesis, we propose novel methods to construct a low-diameter and

location-aware overlay network where peers can find physically-close providers with-

out introducing much load on underlying physical networks [55]. There have been

several research works on the construction of a low-diameter network. Barabási-

Albert (BA) model [56] is the first and the most popular model that explains gener-

ation of a network whose degree distribution follows the power-law. The BA model

is dominated by the preferential attachment (PA). The PA defines the probability Pi

that node i gets links from newly added nodes as proportional to its degree ki, that

is Pi = ki∑
j∈Sn

kj
, where Sn is the set of nodes existing in the network. As a result,

it constructs a scale-free network in which there are a few hub nodes that are con-

nected with many low-degree nodes. This characteristic contributes to reduction of

the diameter of the network, where a peer can discover a sufficient number of desired

files in the range of a small number of logical hops.

Although the BA can build an overlay network, it does not consider the topology

of underlying physical networks. We should shorten the physical distance, i.e., the
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number of physical hops, between neighboring peers to reduce the load on underlying

physical networks. For this purpose, in our model a peer adopts the PA to only peers

that are physically close. As a result, constructed overlay network has a correlation

between the logical and the physical distances. Usually in conventional P2P file-

sharing systems, on receiving a response message, a peer has to examine the physical

closeness of the peer by using a ping message. On the other hand, in our overlay

network, logically-close peers are also physically close. It does not require for a peer

to probe the physical distance from the discovered providers by emitting additional

ping-like messages.

Since a new peer only knows some of peers notified by a bootstrapping node in

realistic situations, it can not necessarily find appropriate peers from the initially

obtained peer list and it leads to the limitation of the effectiveness of a constructed

network in join phases. To improve the structure of a constructed network, a rewiring

method is viable, which enables a peer to connect to more appropriate peers after the

join phase [57-59]. In this thesis, we also propose a new rewiring method to improve

the location-awareness of an overlay network. We assume that a peer can obtain

information on peers that its neighboring peers know by periodically exchanging

ping-pong messages. Based on the constructed peer list, a peer finds peers that are

physically closer and with a higher-degree than the current neighbors.

The rest of this thesis is organized as follows. Chapter 2 explains proxy caching

mechanisms with a media quality adjustment. After introducing the overview of our

system, we propose three mechanisms: media retrieval mechanism, media prefetching

mechanism, and cache replacement mechanism. Through several simulation experi-

ments, we evaluate our proposed mechanisms in terms of required cache buffer size,

play-out delay, and media quality. Simulation results show that our system is effective

in suppressing the play-out delay and reducing the required cache buffer size with a

media stream of the desired quality. We further implement our proposed mechanisms
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on a real system. Through experiments, it is shown that our implemented system

can continuously provide users with a high-quality and low-delay media service in

accordance with the network condition. Chapter 3 describes continuous and scalable

media streaming on unstructured P2P networks. We first propose scalable media

search methods taking into account temporal order of reference to media data that

means users usually play out a media stream from the beginning to the end. Then,

we also propose media retrieval methods to accomplish continuous media play-out.

Through several simulation experiments, we show that the proposed methods can

provide users with continuous media play-out without introducing extra load on the

system. Chapter 4 discusses adaptive and robust P2P media streaming. First, we

propose a novel cache replacement algorithm that considers balance between supply

and demand for media streams. Next, to improve the adaptability and robustness

against changes of system conditions, such as network conditions, and peer depar-

tures, we further propose an adaptive media retrieval method and a robust media

search method. Simulation results show that our proposed cache replacement algo-

rithm can accomplish continuous media play-out independent of media popularity

and adapt to changes in media popularity. Furthermore, we demonstrate that the

adaptive media retrieval method can provide users with more continuous media play-

out than the previous method proposed in Chapter 3. In addition, we find that the

proposed search method is robust to peer departures. Chapter 5 focuses on the con-

struction of a P2P overlay network to improve the user QoS in terms of search and

retrieval time of files. After introducing several related works, we propose a construc-

tion method of a low-diameter and location-aware P2P overlay network where a peer

can find many physically-close provider peers. We further propose a rewiring method

to improve the structure of the constructed overlay network. Through evaluation in

terms of diameter, physical distance between neighboring peers, and degree distribu-

tion of the overlay network, it is shown that our proposed method without rewiring
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can construct a low-diameter overlay network comparable with the BA model. In

addition, we find that the rewiring method contributes to reduction of both the

physical distance between neighboring peers and diameter of the overlay network.

Finally, Chapter 6 concludes this thesis and presents future research works.
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Chapter 2

Proxy Caching Mechanisms with

Quality Adjustment for Media

Streaming Services

2.1 Introduction

With the growth of computing power and the proliferation of the Internet, media

streaming services have widely diffused. Then, a considerable amount of media traffic

injected by the services causes serious congestion and, as a result, network cannot

provide users with the high-quality and interactive services.

The proxy mechanism widely used in WWW systems offers low-delay delivery

of data by means of “proxy server”. A proxy server caches media data which have

passed through it in its local buffer, called “cache buffer”, then it provides the cached

data to users on demand. By applying proxy mechanisms to a media streaming

system, high-quality and low-delay media distribution can be accomplished without

introducing extra load on the system [13-20]. In addition, it is effective to adapt the

– 13 –



2.1 Introduction

Server

Client 1

Client 2
NetworkNetwork

ProxyProxy Request

(high quality)

Request

(high quality)
Request

(high quality)

Request

(high quality)

Request

(low quality)

Request

(low quality)
Request

(low quality)

Request

(low quality)

Cache Buffer

Forward

(high quality)

Forward

(high quality)

high quality

Forward

(high quality)

Forward

(high quality)
Forward

(high quality)

Forward

(high quality)

high qualityhigh quality

CacheCache

high qualityhigh quality

CacheCacheCacheCache

high qualityhigh qualityhigh qualityhigh quality

Request

(high quality)

Request

(high quality)
Request

(high quality)

Request

(high quality)

Forward

(high quality)

Forward

(high quality)
Read

Forward

(high quality)

Forward

(high quality)
Forward

(high quality)

Forward

(high quality)
ReadRead

low quality

Forward

(low quality)

Forward

(low quality)

Quality

Adjustment

Quality

Adjustment

ReadRead

low qualitylow quality

Forward

(low quality)

Forward

(low quality)

Quality

Adjustment

Quality

Adjustment

ReadRead

Forward

(low quality)

Forward

(low quality)
Forward

(low quality)

Forward

(low quality)

Quality

Adjustment

Quality

Adjustment

ReadReadReadRead

Figure 2.1: Media streaming system

quality of cached media data in the proxy if user requests are different and diverse

due to heterogeneity in terms of the available bandwidth, end-system performance,

and user’s preferences on the perceived media quality [13]. Taking into account the

heterogeneity among clients is indispensable when we want to provide users with a

distributed multimedia service of a satisfactory level of quality.

In this chapter, we propose proxy caching mechanisms to accomplish high-quality

and low-delay media streaming services in a heterogeneous environment. In our

proposed system illustrated in Fig. 2.1, a media stream is divided into blocks for

efficient use of a cache buffer. A proxy cache server is assumed to be able to adjust

the quality of cached or retrieved media blocks to requests through media filters or

transcoders. We develop effective algorithms for determining the quality of a block

to retrieve from a media server, replacing cached blocks with a newly retrieved block,

and prefetching blocks in prior to requests. These algorithms are important when we

want to suppress the possibility of cache misses and decrease the block transfer delay

introduced by retrieving missing blocks from a distant media server.
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Figure 2.2: Basic behavior of our mechanisms

Through simulation experiments, it is shown that our system with the above algo-

rithms can provide users with high-quality and low-delay media streaming services.

Furthermore, we implement proposed mechanisms on a real system to verify their

practicality and usefulness. We conduct several experiments and evaluate the traf-

fic condition, the media quality variation, and the overhead of quality adjustment.

Then, we confirm that our implemented system can continuously provide users with

a media stream in accordance with the network condition.

This chapter is organized as follows. In section 2.2, we propose mechanisms for

a proxy cache server with a media-quality adjustment mechanism and we evaluate

our proposed mechanisms through several simulation experiments. In section 2.3,

we describe implementation of proposed mechanisms on a real system and conduct

several experiments to evaluate our proposed mechanisms. Finally, we conclude the

results of our study in section 2.4.
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2.2 Proxy Caching Mechanisms with Media-Quality

Adjustment

2.2.1 Overview of Mechanisms

Figure 2.2 illustrates the basic behavior of our mechanisms. Considering the re-

usability of cached data, a media stream is divided into N blocks [13-15].

A client periodically requests a designated proxy to send a block. Each request

expresses the desired level of quality of the block, which is determined based on the

client-system performance, user’s preferences on the perceived media quality, and the

available bandwidth specified by an underlying protocol, e.g., TFRC (TCP Friendly

Rate Control) [7] or the link capacity.

The proxy maintains a table, called “cache table”, for each of media streams and

possesses informations on cached blocks. Each entry includes the block number, the

size and quality of the cached block and the quality of blocks under transmission.

The size and quality become zero if the block is not cached or not being transmitted.

On receiving a request, a proxy compares it to a corresponding entry in the table.

If the quality of a cached block can satisfy the request, i.e., cache hit, the proxy reads

out the cached block, adjusts the level of the quality to the request, and transmits it

to the client. Media-quality adjustment is performed by QoS filtering techniques such

as frame dropping, low-pass, and re-quantization filters [21]. In some cases, a block

being received can satisfy the request. To avoid introducing extra delay in retrieving

a block, the proxy waits for the completion of the reception and provides it to the

client. Otherwise, when a cache misses the request, the proxy retrieves a block of

the appropriately determined quality from the server on a session established to the

server for the client. Then, the newly obtained block is stored in the cache. If there is

not enough room, one or more cached blocks are replaced with the new block. Cached
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blocks are useful to reduce the response time, but further reduction can be expected

if the proxy retrieves and prepares blocks in advance using the residual bandwidth.

In the following subsections, we propose several algorithms for the block retrieval,

prefetching, and replacement mechanisms.

2.2.2 Block Retrieval Mechanism

When a cache cannot supply a client with a block of the requested quality, a proxy

should retrieve the block. The quality of a block that a proxy can retrieve from a

server in time is determined in accordance with the available bandwidth between

the server and the proxy. Thus, when the path between the server and the proxy is

congested, the proxy cannot satisfy the client’s demand even if it retrieves the block

from the server. We introduce a parameter α which is given as;

α =
max(Qsp(i, j), Qcache(j))

Qpc(i, j)
. (2.1)

α is the ratio of the quality that the proxy can provide to the request. j (1 ≤ j ≤ N) is

the block number that client i requires. Qsp(i, j) stands for the quality of block j that

can be transfered from the server to the proxy within a block time. The block-time

is given by dividing the number of frames in a block by the frame rate. For example,

in our evaluations, the block corresponds to 30 frames and it is played out at 30

frames per second. Thus, one block-time is equal to one second. By multiplying the

available bandwidth by the block-time, the proxy obtains the size feasible for block j.

Then, assuming that the quality can be determined from the size [60], we can derive

Qsp(i, j). The quality affordable on the path between the proxy and the client is

expressed as Qpc(i, j) and is regarded as client i’s request on block j. The quality of

a cached block j, Qcache(j), is obtained from a corresponding entry of the cache table.

In this subsection, since we consider a case of the cache miss, Qcache(j) < Qpc(i, j)
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holds.

When α ≥ 1, that is, the proxy can provide the client with the block of the desired

quality, we have three alternatives of determining the quality of block j to retrieve

for client i, Qreq(i, j).

method1: A possible greedy way is to request the server to send block j of as

high quality as possible. This strategy seems reasonable because cached blocks can

satisfy the most of the future requests and probability of cache misses becomes small.

Then, the request Qreq(i, j) becomes

Qreq(i, j) = Qsp(i, j). (2.2)

method2: When the available bandwidth between the server and the proxy

is extremely larger than that between the proxy and the client, method1 cannot

accomplish the effective use of bandwidth and cache buffer. Thus, we propose an

alternative which determines the quality Qreq(i, j) based on prediction of demands

on block j, as follows;

Qreq(i, j) = min( max
k∈S,0≤l≤j

Qpc(k, l), Qsp(i, j)), (2.3)

where S is a set of clients which are going to require block j in the future. Client i

is also in S.

method3: To accomplish a further efficient use of the cache, it is possible to

request block j of the same quality that the client requests, as follows;

Qreq(i, j) = Qpc(i, j). (2.4)

With this strategy, the number of cached blocks increases and the probability of cache

misses is expected to be suppressed as far as future requests can be satisfied with
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them.

In some cases, both cached and retrieved blocks cannot meet the demand (α < 1).

One way is to request a server to send a block of the desired quality, but it may cause

undesirable delay. The other is for a client to be tolerant of the quality degradation

and accept a block whose quality is lower than the request. We introduce another

parameter β to tackle this problem. β is defined as the ratio of the acceptable quality

to the demand, and it expresses the client’s insistence on the media quality. Clients

with β close to one want to receive blocks in accordance with the request at the risk

of undesirable transfer delay. On the other hand, those who value timeliness and

interactivity of applications will choose β close to zero.

First, we consider the case that the quality of a cached block can satisfy the client,

but is still lower than the request (β ≤ Qcache(j)
Qpc(i,j)

≤ α < 1). In such a case, in order to

effectively reuse the cached block, the proxy only sends the cached block to the client

regardless of the quality of the block that the server can provide, Qsp(i, j). When the

quality of the cached block is not high enough (Qcache(j)
Qpc(i,j)

< β ≤ Qsp(i,j)
Qpc(i,j)

= α < 1), the

proxy requests the server to send block j whose quality is equal to Qsp(i, j) as;

Qreq(i, j) = Qsp(i, j). (2.5)

Finally, if the proxy cannot provide the client with a block of the satisfactory quality

(α < β), it requests the server to send the block of the minimum quality which is

expected not to cause a cache miss, that is,

Qreq(i, j) = β ·Qpc(i, j). (2.6)

The proxy requests the server to send block j of the quality Qreq(i, j). The

corresponding entry for client i Qrec(i, j) for the quality of block j being received in
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the cache table is set to Qreq(i, j). When the block reception is finished, Qcache(j) is

set to Qrec(i, j).

2.2.3 Block Prefetching Mechanism

To reduce the possibility of cache misses and avoid the delay in obtaining missing

blocks from a server, a proxy prefetches blocks that clients are going to require in

the future. After checking the cache table for block j being requested by client i, a

proxy compares the minimum requirement β ·Qpc(i, j) to the quality of cached blocks

Qcache(k) and that of receiving blocks Qrec(i, k) (for ∀i, j + 1 ≤ k ≤ j + P ≤ N).

Here, P is the size of a sliding window called a prefetching window, which determines

the range of examination for prefetching. If there exists any block whose quality is

lower than the minimum, a block retrieval mechanism is triggered. The mechanism is

the same as one explained in subsection 2.2.2 except that the available bandwidth to

prefetching is the remaining bandwidth between the server and the proxy. Prefetch

requests have a lower priority than requests for retrieving cache-missed blocks at the

server in order not to disturb urgent block-retrieval.

2.2.4 Cache Replacement Mechanism

Since a cache buffer has a limited capacity, the replacement of cached blocks should

be considered to accomplish the effective use of a storage. When the quality of a

newly retrieved block is lower than that of a cached block, the new block is not to

be cached. Otherwise, a proxy first removes a cached block of the lower quality if

exists. Then, it tries to deposit the new block in the cache. If there is not sufficient

room to store the new block, some cached blocks must be removed. We propose a

replacement algorithm with consideration of size, quality, and re-usability of blocks.

First, the proxy assigns priority to cached blocks. Blocks requested by clients at
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Figure 2.3: Priorities of cached blocks

the moment of the replacement have the highest priority and are never removed from

the cache. The block residing at the beginning of the stream is also assigned the

highest priority to provide potential clients with a low-latency service. The second

important blocks are those in the prefetching windows following the most important

blocks. The other blocks are with no priority.

Then, blocks candidate for replacement are chosen one by one until the sufficient

capacity becomes available. In Fig. 2.3, we show an example of victim selection. A

cached block, which locates at the end of longest succession of un-prioritized blocks,

is regarded as the least important and becomes the first victim as indicated as “1” in

the figure. Among successions of the same length, one closer to the end of the stream

has a lower priority.

The proxy first tries the quality adjustment to decrease the size of the victim if

it is larger than the new block. Since it is meaningless to hold a block whose quality

is smaller than Qreq(i, j) determined by the method chosen in the block retrieval

mechanism, no further adjustment is performed and the victim is removed from the

cache. The proxy repeatedly chooses the next victim and applies the same techniques

until the capacity for the new block becomes sufficient. When all un-prioritized blocks
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Figure 2.4: Simulation system model

are removed but it is still insufficient, the proxy gives up storing the new block.

2.2.5 Simulation Experiments

In this section, we conduct simulation experiments to evaluate performance of the

proposed caching mechanisms in terms of the required buffer size, the playout delay,

and the media quality.

Figure 2.4 illustrates our simulation system model. A media stream of two hours

long is coded using the MPEG-2 media coding algorithm. It is segmented into GoPs

(Group of Pictures) and a GoP corresponds to a one-second block. The media-quality

adjustment is performed by a re-quantization filter which regulates the quantizer

scale, that is, the degree of the quantization. The size of entire media stream ranges

from 8.6 Gbits to 194.5 Gbits according to the applied quantizer scale. Ten clients

are connected to the proxy on the same path and watch the same media stream

from the beginning to the end without interactions such as rewinding, pausing, and

fast-forwarding. The inter-arrival time between two successive client participations

follows the exponential distribution whose average is 1,800 seconds. The propagation

delay between the server and the proxy is 200 msec and that between the proxy and

the client is 50 msec. The simulation runs for 29,000 seconds in simulation time unit.

It is assumed that all sessions employ TFRC as an underlying rate-control protocol.

We conduct simulation experiments on TFRC with ns-2 [61] and obtained results are
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used as the available bandwidth of sessions.

Although requests are sent to the proxy at the regular interval of a block-time,

inter arrival times of blocks at the client fluctuate due to cache-hit, cache-miss, and

available bandwidth. In any types of streaming services, it is necessary for a client

to defer the playout and buffer some amount of media preparing for expected or

unexpected delay jitter (See Fig. 2.2). We define the time that client i waits and

buffers media blocks at the beginning of the session in order to ensure regularity and

smoothness of media playout as the playout delay W (i). W (i) is derived as;

W (i) = max
1≤j≤N

(T (i, j)− I(i, j)), (2.7)

where j stands for the block number, and N is the number of blocks in the stream.

The arrival time of block j at client i is denoted as T (i, j). I(i, j) corresponds to the

ideal arrival time of block j and those conditions hold that I(i, j)− I(i, j − 1) = one

block-time and I(i, 1) = T (i, 1).

Next, we define the degree of user’s satisfaction with media quality as;

S(i) =
1

N

N∑
j=1

Qact(i, j)

Qpc(i, j)
, (2.8)

where Qact(i, j) is the quality of block j provided to client i whose request on the

block is Qpc(i, j).

In Figs. 2.5 through 2.7, we summarize simulation results on the amount of

cached blocks and the playout delay. The proxy is assumed to have an infinite cache

buffer. Prefetching window size is set to zero, i.e., no prefetching, in Figs. 2.5 and

2.6, and 30 in Fig. 2.7. Client’s insistence on the quality β is set to 1. Those results

labeled “traditional” correspond to the case that the proxy does not have capability

of neither quality adjustment or prefetching. In such a case, a cache hits a request
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Figure 2.5: Amount of cached data with infinite cache (β =1, P =0)

only when it has a media block of the same quality as the request. Otherwise, the

proxy retrieves the block of the requested quality from the server. The traditional

proxy tries to store every blocks it retrieves even if it already has a block of the

same number and the higher quality. Figure 2.5 shows that the required buffer size

of proposed methods is down to one forth of the traditional method while providing

clients with media blocks of the requested quality. In addition, even if clients insist

on the quality, the playout delay is suppressed by introducing the quality adjustment

and the prefetching mechanism as shown in Figs. 2.6 and 2.7. In the case of method3,

the prefetching mechanism is not so effective in comparison with the others because

the proxy retrieves and caches blocks of the minimum quality.

Next, we show simulation results for the case where the proxy is equipped with

the cache of 20 Gbits, which is smaller than the half of that required (see Fig. 2.5).

Since we cannot expect an efficient use of cached blocks with obstinate clients, we

assume that they are tolerant of quality degradation, that is, β = 0.6.
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Figure 2.6: Playout delay with infinite cache (β =1, P =0)

The lower β leads to the higher cache-hit probability. Consequently, regardless of

methods, the playout delay becomes small enough while the amount of cached blocks

is limited to 20 Gbits as shown in Fig. 2.8. Furthermore, since method3 requests the

server to send blocks of the lowest quality among three methods, the block transfer

time in method3 becomes small and the number of cached blocks increases. As a

result, performance improvement of method3 becomes high. Due to a limited cache

buffer, the degree of satisfaction S(i) slightly decreases but is still higher than 0.6 as

shown in Fig. 2.9.
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2.3 Implementation of Proposed Mechanisms

In this section, we describe our implementation of proposed mechanisms on a real

system. Figure 2.10 illustrates modules constituting our media streaming system.

The implemented system consists of a media server, a proxy cache server, and several

clients. We employ well-known and widely-used protocols for inter-system communi-

cations. For example, the media streaming is controlled through RTSP (Real Time

Streaming Protocol) / TCP sessions. Media blocks are transferred over RTP (Re-

altime Transport Protocol) / UDP sessions as being segmented into 1 K bytes-long

RTP packets. The media stream is coded using the MPEG-2 media coding algo-

rithm in the PS (Program Stream) format. The available bandwidth, that is taken

into account in three mechanisms explained in section 2.2, is determined by TFRC.

The media-quality adjustment is performed by a low-pass filter [21]. In the following
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Figure 2.10: Modules constituting system
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subsections, details of our implementation are given.

2.3.1 Delmultiplexing MPEG-2 PS Blocks

MPEG-2 PS is one of the formats for multiplexing media and audio streams. As the

quality adjustment is applied only to media data, a block received through a proxy’s

RTP Receiver is divided into a pair of media and audio blocks by Demultiplexer. The

divided blocks are stored in a cache buffer separately. In our implemented system,

each block corresponds to a GoP (Group of Pictures) of MPEG-2, which consists of

a series of frames.

The block to request and its quality are specified in the header of an RTSP PLAY

message using the Range field and Bandwidth field, respectively. In a case of a cache

hit, a proxy reads out both media and audio blocks from its cache, and it applies the

quality adjustment only to the media block. Then, those blocks are multiplexed and

transmitted to the requesting client.

2.3.2 Rate Control with TFRC

TFRC is a protocol that enables a non-TCP session to behave in a TCP-friendly

fashion [7]. TFRC sender estimates the throughput of a TCP session sharing the

same path in accordance with network condition, expressed in terms of the packet

loss probability and RTT. Those informations are obtained by exchanging RTCP

(Real-Time Control Protocol) messages between a sender and a receiver. In our

implemented system, we can use RTSP as a feedback mechanism where a client

calculates the TCP-friendly rate and informs a proxy of the rate using the Bandwidth

field of a RTSP PLAY message.
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2.3.3 Media-Quality Adjustment

We employ the low-pass filter as a quality adjustment mechanism. We compared

several media filters such as the low-pass, re-quantization, and frame dropping [22].

Through experiments, it was shown that the low-pass filter is the most suitable as

an MPEG-2 media filter for its flexibility in rate adaptation, faster processing, and

media quality. The low-pass filter adjusts the media quality to the desired level by

discarding some portion of less influential information in media blocks.

2.3.4 Cache Manager

A proxy maintains information on cached blocks as Cache Table. On receiving a

request, Cache Manager examines the table. When a cache miss occurs, it determines

the quality of a block to retrieve from a media server in accordance with the available

bandwidth and requests using methods explained in section 2.2. Then, it requests

the server to send the block via an RTSP session established between them.

The server reads out a pair of a media block of the highest quality and a corre-

sponding audio block through Disk Manager, adjusts the quality of the media block

to the request using Filter, rebuilds a PS block by Multiplexer, and finally sends the

block to the proxy via an RTP session in a TCP-friendly fashion.

Cache Manager obtains a pair of blocks through RTP Receiver and Demultiplexer.

The block is sent to the client in a similar way to the block transfer from the media

server to the proxy. At the same time, a pair of blocks is stored in Hard Disk. TFRC

calculates TCP-friendly rate while receiving RTP packets from the server.

Cache Manager is also responsible for prefetching blocks and replacing cached

blocks with new blocks.

– 30 –



Chapter 2. Proxy Caching Mechanisms with Quality Adjustment for Media Streaming
Services

2.3.5 Experimental Evaluation

In this section, we conduct experiments to evaluate the rate variation, the media

quality variation, and the overhead of quality adjustment.

Figure 2.11 illustrates a configuration of our experimental system. Two clients

are connected to the proxy and watch the same media stream of 10 minutes from

the beginning to the end without interactions such as rewinding, pausing, and fast-

forwarding. The media server has the whole media blocks of the highest quality of

8 Mbps. The proxy also has the whole media blocks, but the quality is 3 Mbps and

a cache buffer capacity is limited to 450 MBytes. The proxy determines the quality

of a block to retrieve from a media server using method3 which does not need to

adjust the quality of a newly retrieved block at the proxy. The prefetching window

size P is set to 5. There exists a TCP session for the file-transfer as a disturbance

that competes with media sessions for the bandwidth. The client’s insistence on the

media quality, β, is set to 1. Clients defer playing the media until media data of

4 MBytes are stored in playout buffer.
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Figure 2.11: Configuration of experimental system
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Figure 2.12 illustrates variations in reception rates observed at the clients’ RTP

Receiver. At time 180, the client 2 begins a media session. From 360 to 420, the

TCP session transfers a file. As shown in the figure, the media rate is regulated

as the network condition changes, to avoid unexpected transfer delay and quality

degradation that would be caused by congestions.

Figure 2.13 illustrates variations in the perceived media quality in terms of the

coding artifact measured by VP2000A of KDD Media Will Corporation. A higher

coding artifact value means that quality degradation is higher. These figures show

that the perceived media quality changes in accordance with the network condition.

Through experiments, the maximum processing time of adjusting the quality of

a media block was less than 0.5 second. Since the proxy is required to process each

block faster than one second, i.e., the interval between two consecutive requests in

our experiments, more than 0.5 second can be devoted to the other tasks including

retrieving a block from the media server. In our experiments, we observed only
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Figure 2.13: Media quality variation

several freezes during 10 minutes media playout. Thus, we can conclude that our

mechanisms can accomplish a low-latency and high-quality media streaming service

under a heterogeneous and dynamically changing environment.

2.4 Conclusion

In this chapter, we proposed several caching mechanisms for the media streaming

system with the proxy server capable of media-quality adjustment. Simulation results

show that our system is effective enough in suppressing the playout delay and reducing

the required cache size while providing users with a media stream of the desired

quality. Specifically, waiting time for media play-out is less than 8 seconds even under

a severe situation where the cache buffer size is limited to 20 Gbits. Furthermore,

we implemented and evaluated our proposed mechanisms on a real system. Through

the experiments, it is shown that our implemented system can continuously provide
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users with a high-quality and low-delay media service in accordance with the network

condition.
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Chapter 3

Continuous and Scalable Media

Streaming on P2P Networks

3.1 Introduction

With the growth of computing power and the proliferation of broadband access to the

Internet, such as ADSL and FTTH, the use of media streaming has become widely

diffused. A user receives a media stream from an original media server through

the Internet and plays it out on his/her client system as it progressively arrives.

However, with the current Internet, the major transport mechanism is still only the

best effort service, which offers no guarantees of bandwidth, delay, and packet loss

probability. Consequently, such a media streaming system cannot provide users with

media streams in a continuous way.

P2P is a new network paradigm in which hosts called peers directly communicate

with each other and exchange information without the mediation of servers. Such

distributed manner improves the system scalability against the increase of the users

because traffic concentration to a specific point can be avoided. We expect that
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P2P architectures can support media streaming services based on the traditional

client-server architectures. There have been several research works on P2P media

streaming [26-28, 30, 34, 62]. Most of these have constructed an application-level

multicast tree whose root is an original media server while the peers are intermediate

nodes and leaves. Their schemes were designed for use in live broadcasting. Thus,

they are effective when user demands are simultaneous and concentrated on a specific

media stream. However, when demands arise intermittently and peers request a

variety of media streams, as in on-demand media streaming services, an efficient

distribution tree cannot be constructed. Furthermore, the root of the tree, that is, a

media server, can be regarded as a critical point of failure because such systems are

based on the client-server architecture.

In Ref. [45], we proposed scalable search and in-time media retrieval methods for

on-demand media streaming on unstructured P2P networks. In our system, every

peer participating in a service watches a media stream and deposits it in its local

cache buffer. A media stream is divided into blocks for efficient use of network

bandwidth and cache buffer [15, 16, 18, 63]. By retrieving blocks from other peers in

time, a peer can watch a desired media stream. Since there is no server that manages

information on peer and media locations, a peer has to find each block constituting

a desired media stream by emitting a query message into the network. Other peers

in the network reply to the query with a response message and relay the query to

the neighboring peers. If a peer successfully finds a block cached in other peers, it

retrieves it from one of them and deposits it in its local cache buffer. If there is no

room to store the newly retrieved block, a peer has to perform replacement on cached

blocks with it.

There are several issues to resolve in accomplishing effective media streaming

over unstructured P2P networks. Scalability is the most important among them.

Flooding, in which a peer relays a query to every neighboring peer, is a powerful
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scheme for finding a desired media stream. However, it has been pointed out that

the flooding lacks scalability because the number of queries that a peer receives

significantly increases with the growth in the number of peers [51]. In particular, a

block-by-block search by flooding apparently introduces much load on the network

and causes congestion. To tackle this problem, we proposed two scalable block search

methods. Taking into account the temporal order of reference to media blocks, a peer

sends a query message for a group of consecutive blocks. Then, the peer performs

adaptive block search by regulating the search range based on the preceding search

result.

Since continuous media play-out is the most important factor for users in media

streaming services, we have to consider a deadline of retrieval for each block. To

retrieve a block by its corresponding play-out time, we proposed methods to determine

an appropriate provider peer (i.e., a peer having a cached block) from search results

by taking into account the network conditions, such as the available bandwidth and

the transfer delay. By retrieving a block as fast as possible, the remaining time can

be used to retrieve the succeeding blocks from distant peers.

Through several simulation experiments, we compare several combinations of

those methods and algorithms, in terms of the amount of the search traffic and

the continuity of the media play-out.

The rest of this chapter is organized as follows. In Section 3.2, we give an overview

of our streaming system on P2P networks and describe our per-group based search

and retrieval methods. Next, in Section 3.3, we evaluate our proposed methods

through several simulation experiments. Finally, we conclude the results of our study

in Section 3.4.

– 37 –



3.2 Search and Retrieval Methods for Media Streaming on P2P Networks

3.2 Search and Retrieval Methods for Media Stream-

ing on P2P Networks

Figure 3.1 illustrates our media streaming system on unstructured P2P networks.

A peer participating in our system first joins a logical P2P network for the media

streaming. Then, a peer sends a query message to find a media stream that it

wants to watch. We especially call this query as a media request. For efficient use

of network bandwidth and cache buffer, a media stream is divided into blocks. A

peer searches, retrieves, and stores a media stream on a block-by-block basis. In this

section, we describe our scalable search methods to find desired blocks and algorithms

to determine an appropriate provider peer from the search results.

3.2.1 Per-group based Block Search and Retrieval

In our system, a peer retrieves a media stream and plays it out in a block-by-block

manner. However, a block-by-block search apparently increases the number of queries
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Figure 3.1: Overview of our media streaming on unstructured P2P networks
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Figure 3.2: Example of per-group search and retrieval

that are transferred on the network and causes network congestion. To tackle this

problem, taking into account the temporal order of reference in a media stream, our

method employs a per-group search to accomplish scalable media search.

A peer sends out a query message for every N consecutive blocks, called a round.

Figure 3.2 illustrates an example of N = 4. PA, PB, PC , and PD indicate peers within

the range of the propagation of query messages. Numbers in parentheses next to peers

stand for identifiers of the blocks that a peer has. At time Ts(1), a query message for

blocks 1 to 4 is sent out from P to the closest peer PA. The query is relayed among

peers. Since PA, PB, and PD have one or more block out of four requested blocks,

they return response messages. P determines a provider peer for each block in the

round from the search results obtained by the query. It takes two Round Trip Time

(RTT) periods from the beginning of the search to the start of reception of the first

block of the round. To accomplish continuous media play-out, P sends a query for
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the next round at a time that is 2RTTworst earlier than the start time of the next

round. RTTworst is the RTT to the most distant peer among the peers that returned

response messages in the current round.

3.2.2 Scalable Block Search

Since each peer retrieves a media stream sequentially from the beginning to the end,

we can expect that a peer that sent back a responses message for the current round

has some blocks of the next round. In our methods, a peer tries flooding at the first

round. However, in the following rounds, it searches blocks in a scalable way based

on the search results of the previous round.

A query message consists of a query identifier, a media identifier, and a pair of

block identifiers to specify the range of blocks needed, i.e., (1, N), a time stamp, and

Time To Live (TTL). A peer that has any blocks in the specified range sends back a

response message. A response message reaches the querying peer through the same

path, but in the reversed direction, that the query message traversed. The response

message contains a list of all cached blocks, TTL values stored in the received query,

and sum of the time stamp in the query and processing time of the query. Each entry

of the block list consists of a media identifier, a block number, and block size. If

TTL is zero, the query message is discarded. Otherwise, after decreasing the TTL

by one, the query message is relayed to neighboring peers except for the one from

which it received the query. In the case of Gnutella, a fixed TTL of seven is used.

By regulating TTL, the load of finding a file can be reduced. We have called this

flooding scheme with a fixed TTL of seven “full flooding,” and that with a limited

TTL based on the search results, “limited flooding.”

In limited flooding, for the kth round, a peer obtains a set R of peers based on

response messages obtained at round k − 1. R is a set of peers expected to have
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at least one of the blocks belonging to round k. Since time has passed from the

search at round k − 1, some blocks listed in the response message may have already

been replaced by other blocks. Assuming that a peer is watching a media stream

without interactions such as rewinding, pausing, and fast-forwarding, and that the

cache buffer is filled with blocks, we can estimate the number of removed blocks by

dividing the elapsed time from the generation of the response message by one block

time Bt. We should note here that we do not take into account blocks cached after

a response message is generated. In limited flooding, TTL is set to that of the most

distant peer among the peers in R.

To attain an even more efficient search, we also proposed another search scheme.

The purpose of flooding schemes is to find peers that do not have any blocks of

the current round but do have some blocks of the next round. Flooding also finds

peers that have newly joined our system. However, in flooding, the number of queries

relayed on the network exponentially increases according to the TTL and the number

of neighboring peers [51]. Therefore, when a sufficient number of peers are expected

to have blocks in the next round, it is effective for a peer to directly send queries to

those peers. We call this “selective search.”

By considering the pros and cons of full flooding, limited flooding, and selective

search, there are efficient methods based on combining them.

FL method is a combination of full flooding and limited flooding. For blocks of

the next round, a peer conducts (1) limited flooding if the conjectured cache contents

of peers in R satisfy every block of the next round, or (2) full flooding if one or more

blocks cannot be found in the conjectured cache contents of peers in R.

FLS method is a combination of full flooding, limited flooding, and selective

search. For the next round’s blocks, a peer conducts (1) selective search if the conjec-

tured cache contents of peers in R contain every block of the next round, (2) limited

flooding if any one of the next round’s blocks cannot be found in the conjectured
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cache contents of peers in R, or, finally, (3) full flooding if none of the provider peers

it knows is expected to have any block of the next round, i.e., R = φ.

3.2.3 Block Retrieval for Continuous Media Play-out

The peer sends a request message for the first block of a media stream just after

receiving a response message from a peer that has the block, because it cannot predict

whether any better peer exists at that time. In addition, it is essential for a low-delay

and effective media streaming service to begin the media presentation as quickly as

possible. Thus, in our method, the peer plays out the first block immediately when

its reception starts. Of course, we can also defer the play-out in order to buffer a

certain number of blocks in preparation for unexpected delays.

The deadlines for retrieval of succeeding blocks j ≥ 2 are determined as follows:

Tp(j) = Tp(1) + (j − 1)Bt, (3.1)

where Tp(1) corresponds to the time that the peer finishes playing out the first block.

Although block retrieval should follow a play-out order, the order of request mes-

sages does not. We do not wait for completion of reception of the preceding block

before issuing a request for the next block because this introduces an extra delay of at

least one round-trip, and the cumulative delay affects the timeliness and continuity

of media play-out. Instead, the peer sends a request message for block j at Tr(j),

which will be given by Equation (3.3), so that it can start receiving block j just after

finishing the retrieval of block j − 1, as shown in Fig. 3.2. As a result, our block

retrieval method can maintain the continuity of media play-out.

The peer estimates the available bandwidth and the transfer delay from the

provider peer by using existing measurement tools. For example, by using the inline
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network measurement technique [64], those estimates can be obtained through ex-

changing query and response messages without introducing any measurement traffic.

Furthermore, the estimates are updated through reception of media data. Every time

the peer receives a response message, it derives the estimated completion time of the

retrieval of block j, that is Tf(j), from the block size and the estimated bandwidth

and delay, for each block to which it has not yet sent a request message. Then, it

determines an appropriate peer in accordance with deadline Tp(j) and calculates time

Tr(j) at which it sends a request. The detailed algorithm to determine the provider

peer is given below.

Step 1 Set j to r, which is the maximum block number among blocks that have

already been requested.

Step 2 Calculate set S, a set of peers having block j. If S = φ, that is, there is no

candidate provider, set Tf (j) ← Tp(j), j ← j + 1 and repeat Step 2 for the

next block. Otherwise, proceed to Step 3.

Step 3 Derive set S ′, a set of peers from which a peer can retrieve block j by deadline

Tp(j), from S. Time required to retrieve block j from provider peer i becomes

the sum of round trip time R(i) to peer i and the transfer time of block j

obtained by dividing block size B(j) by available bandwidth A(i) from peer i.

For each peer i in S, the estimated completion time of the retrieval of block

j from peer i is derived as max(Tf(j − 1), Tnow + R(i)) + B(j)
A(i)

, considering the

case that the retrieval of block j − 1 lasts more than R(i) and the request for

block j is deferred. Here, Tnow is the time when this algorithm is performed.

If the estimated completion time is earlier than Tp(j), the peer is put in S ′. If

S ′ = φ, set Tf (j)← Tp(j), j ← j + 1 and go back to Step 2.

Step 4 Determine provider peer P (j) of block j from S ′. We propose the following
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two alternative methods for determining the provider peer.

SF (Select Fastest) Method selects a peer whose estimated completion time

is smallest among peers in S ′. By retrieving block j as fast as possible, the

remainder Tp(j) − Tf (j) can be used to retrieve the succeeding blocks from

distant peers or peers with insufficient bandwidth.

SR (Select Reliable) Method selects a peer with the lowest possibility of

block disappearance among those in S ′. Since the capacity of a cache buffer is

limited, block j may be replaced by another block before a request for block j

arrives at the provider peer. The list of block identifiers in a response message

is in ascending order of referenced time. Thus, a block located closer to the

head of the list is likely to be removed in the near future. In SR method, in

order to perform reliable retrieval, we consider the peer with a buffer in which

block j has the largest number among those of peers in S ′.

Step 5 Derive estimated completion time of retrieval Tf (j) and time Tr(j) to send

a request message for block j as follows.

Tf(j) = max(Tf(j − 1), Tnow + R(P (j))) +
B(j)

A(P (j))
(3.2)

Tr(j) = Tf (j)−R(P (j))− B(j)

A(P (j))
(3.3)

Step 6 If j = kN , finish and wait for receiving the next response message. Here, k

is the round number. Otherwise, set j ← j + 1 and go back to Step 2.

A peer emits a request message for block j to peer P (j) at Tr(j) and sets r to j.

On receiving the request, peer P (j) initiates block transmission. If it replaced block

j with another block since it returned a response message, it informs the peer of a

cache miss. When a cache miss occurs, the peer determines another provider peer

based on the above algorithm. However, if it has already requested any block after
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j, it gives up retrieving block j in order to keep the media play-out in order.

After receiving block j, the peer replaces Tf(j) with the actual completion time.

In the algorithm, the estimated completion time of retrieval of block j depends on

that of block j − 1, as in Eq. (3.2). Therefore, if the actual completion time Tf (j) of

the retrieval of block j changes because of changes of network conditions or estimation

errors, the peer applies the algorithm and determines provider peers for succeeding

blocks. Our proposed algorithm stated above depends on the accuracy of estimation.

One of possible solutions to inaccurate estimates is to introduce some reserved time

in Eq. (3.2). In addition, deferment of the play-out also contributes to absorption of

estimation errors.

3.3 Simulation Experiments

We conducted simulation experiments to evaluate the basic characteristics of our

proposed methods in terms of the amount of search traffic and the continuity of

media play-out.

We used a P2P logical network with 100 peers randomly generated by the Waxman

algorithm [65] with parameters α = 0.15 and β = 0.3. An example of generated

networks is shown in Fig. 3.3. The round trip time between two contiguous peers is

also determined by the Waxman algorithm and ranges from 10 ms to 660 ms. To

investigate the ideal characteristics of our proposed methods, the available bandwidth

between two arbitrary peers does not change during a simulation experiment and is

given at random between 500 kbps and 600 kbps, which exceeds the media coding

rate of CBR 500 kbps.

At first, none of the 100 peers watch any media stream. Then, peers randomly

begin to request a media stream one by one. The inter-arrival time between two
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Figure 3.3: Random network with 100 peers

successive media requests for the first media stream among clients follows an expo-

nential distribution whose average is 20 minutes. Forty media streams of 60 minutes

length are available. Media streams are numbered from 1 (most popular) to 40 (least

popular), where the various levels of popularity follow a Zipf-like distribution with

α = 1.0. Therefore, media stream 1 is forty times more popular than media stream

40. Each peer watches a media stream without such interactions as rewinding, paus-

ing, or fast-forwarding. When a peer finishes watching a media stream, it becomes

idle during the waiting time, which also follows a exponential distribution whose av-

erage is 20 minutes. A media stream is divided into blocks of 10-sec duration and

625 KBytes. Each peer sends a query message for a succession of six blocks, i.e.,

N = 6, and retrieves blocks. Blocks obtained are deposited into a cache buffer of
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675 MB, which corresponds to three media streams. At the beginning of each sim-

ulation experiment, each peer stores three whole media streams in its cache buffer.

The initial population of each media stream in the network also follows a Zipf-like

distribution whose parameter α is 1.0. To prevent the initial condition of the cache

buffer from influencing system performance, we only use the results after the initially

cached blocks are completely replaced with newly retrieved blocks for all peers.

We consider six combinations of three search methods, i.e., full flooding only,

FL, and FLS, and two retrieval methods, i.e., SF and SR. We conducted 90 set of

simulations for each of six methods and show average values in the following figures.

3.3.1 Evaluation of Scalability of Search Methods

First, we evaluate search methods from the viewpoint of the scalability in terms of the

number of queries. Figure 3.4 illustrates transitions of the average number of queries

that a peer receives. As shown in Fig. 3.4, the FL method only slightly reduces

the number of queries compared with full flooding. This is because the average

number of relays in limited flooding is relatively large in our simulation experiments,

independent of the block retrieval method. Since TTL is determined in accordance

with the previous search results, the number of relays chosen for limited flooding

immediately after full flooding tends to remain large. On the other hand, selective

search can considerably reduce the number of queries.

3.3.2 Evaluation of Continuous Media Play-out

We defined the waiting time as the time between the emission of the first query mes-

sage for the media stream and the beginning of reception of the first block. Although

not shown in figures, we observed that, independent of the combination of methods,
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the waiting time decreases as the popularity increases, and, independent of popular-

ity, all media streams that are successfully found can be played out within 3.5 sec.

This is small enough from a viewpoint of service accessibility [66].

Figures 3.5(a) and 3.5(b) illustrate the completeness with 95 % confidence interval

of each media stream after 20000 media requests occur. To evaluate the continuity

of media play-out, we define the completeness as the ratio of the number of retrieved

blocks in time to the number of blocks in a media stream. As shown in Figs. 3.5(a)

and 3.5(b), independent of method, media streams from 1 to 10 are played out almost

continuously from the beginning to the end. On the other hand, as media popularity

decreases, the completeness also deteriorates. In our experiments, most of the blocks

that cannot be retrieved in time are blocks that have already been replaced by blocks

of more popular streams. In spite of the less number of query messages, FLS method

can accomplish equivalent completeness compared with other two methods. Com-

paring Figs. 3.5(a) and 3.5(b), we find that there is little difference between SF and

SR. This is because the remaining time is not used effectively and unexpected cache

miss hardly occurs in our experiments.
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3.4 Conclusion

We first propose scalable block search methods taking into account temporal order

of reference to media blocks that means users usually play out a media stream from
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the beginning to the end. Then, we also propose block retrieval methods to accom-

plish continuous media play-out. Through several simulation experiments, we show

that the FLS method can provide users with continuous media play-out for popular

media streams while reducing the search traffic to 1
6

compared with the full flooding.

Simulation results also show that the cache replacement algorithm is important to

improve the completeness of unpopular media streams.
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Chapter 4

Adaptive and Robust Media

Streaming on P2P Networks

4.1 Introduction

In the previous chapter, we have shown that our systems can accomplish continuous

media play-out for popular media streams without introducing extra load on the

system through several simulation experiments. However, we have also found that

the completeness of media play-out deteriorates as the media popularity decreases.

The reason is that popular media streams are cached excessively while unpopular

media streams eventually disappear from the network. Although Least Recently

Used (LRU) is a simple and widely used cache replacement algorithm, it fails in

continuous media play-out.

To improve the completeness of media play-out, in this chapter we consider an

effective cache replacement algorithm that takes into account the supply and demand

for media streams. Since there is no server, a peer has to make conjectures about

the behavior of other peers by itself. A peer estimates the supply and demand from
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P2P messages that it relays and receives from a flooding-based media search. Then

a peer determines a media stream to discard to make room for a newly retrieved

block. Furthermore, a peer also adapts to changes in the supply and demand of

media streams. For this purpose, we propose a novel caching algorithm based on the

response threshold model of division of labor and task allocation in social insects [52].

In biology, social insects, such as ants, also construct a distributed system [53].

In spite of the simplicity of their individuals, the insect society presents a highly

structured organization. It has been pointed out that social insects provide us with

a powerful metaphor for creating decentralized systems of simple interacting [53, 54].

In particular, a recently proposed model of division of labor in a colony of primitively

eusocial wasps, based on a simple reinforcement of response thresholds, can be trans-

formed into a decentralized adaptive algorithm of task allocation [52]. By regarding

the replacement of media streams as a task, we propose a fully distributed and au-

tonomous cache replacement algorithm which can adapt to changes in environments,

i.e., the supply-to-demand. Our proposed algorithm is also insensitive to parameter

settings since it adaptively changes the response threshold taking into account the

obtained information from the network. Through several simulation experiments, we

evaluate the algorithm in terms of the completeness of media play-out, adaptability

to changes in media popularity, and sensitivity to parameter settings.

Furthermore, in an actual situation, media streaming fails since peers participat-

ing a service occasionally leave a P2P network due to user’s interactions or system

failures. Network conditions including the available bandwidth and Round Trip Time

(RTT) also change dynamically. In this chapter, we newly propose a block retrieval

method which dynamically switches provider peers based on the estimation of the

available bandwidth and RTT. In addition, we extend our block search method to

prepare for peer leaves. Through several simulation experiments, we evaluate our

proposed methods in terms of the completeness of media play-out under unstable
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system conditions.

The rest of this chapter is organized as follows. In Section 4.2, we propose a

supply-demand-based cache replacement algorithm, an adaptive and robust block

search method, an adaptive block retrieval method. Next, we evaluate our proposed

methods through several simulation experiments in Section 4.3. Finally, we conclude

the results of our study in Section 4.4.

4.2 Adaptive and Robust P2P Media Streaming

4.2.1 Supply-Demand-based Cache Replacement Algorithm

Although LRU is a simple and widely used scheme, simulation results showed that

LRU cannot accomplish continuous media play-out under the condition of heteroge-

neous media popularity. This is because popular media streams are cached excessively

while unpopular media streams eventually disappear from the P2P network.

In this section, to solve this problem, we propose a bio-inspired cache replace-

ment algorithm that considers the balance between supply and demand for media

streams. Since there is no server in an unstructured P2P network, a peer has to

make conjectures about the behavior of other peers by itself. It is important to avoid

the situation where a peer aggressively collecting information on supply and demand

by communicating with other peers, since this brings extra load on the system and

deteriorates the system scalability. Therefore, in our scheme, a peer estimates them

based on locally available and passively obtained information, i.e., search results it

obtained and P2P messages it relayed. Then, each peer autonomously determines a

media stream to replace so that the supply and demand is well-balanced according to

the media popularity in the network. For this purpose, we use the response threshold

model [52].
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In the response threshold model of the division of labor, the ratio of individuals

that perform a task is adjusted in a fully-distributed and self-organizing manner. The

demand to perform a task increases as time passes and decreases when it is performed.

The probability that individual i performs a task is given by the demand, i.e., stim-

ulus s, and response threshold θi as s2

s2+θ2
i
, for example. When individual i performs

the task, θi is decreased and thus it tends to devote itself to the task. Otherwise, θi

is increased. After performing the task several times, it becomes a specialist in the

task. Through threshold adaptation without direct interactions among individuals,

the ratio of individuals that perform a specific task is eventually adjusted to some

appropriate level. As a result, they form two distinct groups that show different

behaviors toward the task, i.e., one performing the task and the other hesitating to

perform the task. When individuals performing the task are withdrawn, the asso-

ciated demand increases. Eventually, the stimulus reaches the response thresholds

of the individuals in the other group, i.e., those not specialized for that task. Some

individuals are stimulated to perform the task, their thresholds decrease, and finally

they become specialized for the task. Finally, the ratio of individuals allocated to the

task reaches the appropriate level again.

4.2.2 Description of Algorithm

By regarding the replacement of media streams as a task, we propose a cache replace-

ment algorithm based on the response threshold model. In the cache replacement, a

task corresponds to discarding a block of a media stream. However, per-block based

decision consumes much computational power and memory. In addition, it leads

to fragmentation of cached streams, and a cache becomes a miscellany of variety of

independent blocks of media streams. Thus, we define a stimulus as the ratio of

supply to demand for a media stream. By introducing the response threshold model,
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a peer continuously replaces blocks of the same stream with newly retrieved blocks

once a stream is chosen as a victim, i.e., a media stream to be replaced. As a result,

fragmentation of media streams can be avoided. Each peer discards blocks based on

the following algorithm when there is no room in the cache buffer to store a newly

retrieved block.

Step1 Estimate the supply and demand for media streams per round. For a set of

cached media streams M , a peer calculates supply S(i) and demand D(i) for

media stream i ∈ M from search results it received and messages it relayed at

the previous round. S(i) is the ratio of total number of blocks for media stream

i in received and relayed response messages to the number of blocks in media

stream i. Here, to avoid overestimation, only response messages received are

taken into account for S(i) when a peer watches stream i. D(i) is the number

of query messages for media stream i, which the peer emitted and relayed.

Step2 Determine a media stream to replace. Based on the “division of labor and

task allocation”, we define ratio Pr(i) that media stream i is replaced as follows:

Pr(i) =
s2(i)

s2(i) + θ2(i) + l2(i)
, (4.1)

where s(i) is derived as max
(

S(i)−1
D(i)

, 0
)
, which indicates the ratio of supply to

demand for media stream i after the replacement. s(i) means how excessively

media stream i exists in the network after it is discarded. l(i) is the ratio of

the number of locally cached blocks to the number of blocks in media stream i.

l(i) is used to restrain the replacement of a fully or well-cached stream. Among

cached streams except for the stream being watched, e.g., stream m, a victim

is chosen with probability Pr(i)∑
i∈M−m

Pr(i)
. Then, a peer discards blocks from the

head or the tail of the stream at random. As in [54], thresholds are regulated
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using Eq.(4.2). Thus, media i is to be discarded more often once it is chosen as

a victim.

∀j ∈M, θ(j) =

⎧⎪⎨
⎪⎩

θ(j)− ξ if j = i

θ(j) + ϕ if j �= i
(4.2)

Inspired by biological systems, we can accomplish fully distributed but globally well-

balanced cache replacement. Furthermore, our proposed algorithm is insensitive to

parameter settings since it adaptively changes the response threshold in accordance

with the obtained information from the network. With slight modification of equa-

tions of the response threshold model, we can apply our proposed algorithm to other

caching problems in distributed file sharing systems.

4.2.3 Adaptive Block Retrieval Method

In an actual situation, system conditions dynamically change. The in-time block

retrieval fails if the available bandwidth decreases due to congestions. A peer cannot

find a provider peer since search results becomes unreliable due to peer failures or

leaves. To tackle this problem, we propose an adaptive block retrieval method that

appropriately switches provider peers based on the estimated available bandwidth

and RTT. As far as the following condition holds, a peer can retrieve block j in time.

V (t) + r(j, t)
Bs

Bt

≥ r(j, t)

ΔbwA(i, t)
, (4.3)

where A(i, t) is the available bandwidth from peer i at time t, V (t) is the remaining

buffer size at t, r(j, t) is the remaining size of block j being retrieved at t. Bs and

Bt are block size and block time, respectively. Δbw takes into account the degree of

accuracy of bandwidth estimation. When peer i leaves a P2P network, the available
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bandwidth is considered to be zero.

When Eq.(4.3) cannot be satisfied, the peer tries to find an alternative provider

peer i′ from which it can retrieve the remainder of block j in time. Peer i′ must

satisfy the following condition:

r(j, t)

A(i, t)
≥ min

i′∈Sj−i

(
r(j, t)

A(i′, t)
+ 2R(i′, t)

)
, (4.4)

where Sj is the set of provider peers of block j obtained from the search results and

R(i′, t) is the RTT from peer i′ at time t. If the peer can find i′ then it retrieves the

remainder of block j from i′. Otherwise, it gives up retrieving block j.

4.2.4 Adaptive and Robust Block Search Method

If any of provider peers leaves a P2P network, a peer loses a chance to find and retrieve

the corresponding block. To improve the robustness, we introduce parameter x, which

defines the number of provider peers to be found in the current round to move to the

selective search in the next round. For example, by setting x to two, a peer moves to

the selective search when it finds two provider peers and it can prepare an alternative

provider peer.

4.3 Simulation Experiments

We used the same simulation model used in the previous Chapter. Based on the

values used in [53], we set the parameters of the cache replacement algorithm as

follows: ξ = 0.01 and ϕ = 0.001. θ(i) was initially set to 0.5, but it dynamically

changed between 0.001 and 1. s(i) was normalized by dividing by
∑

i s(i). To prevent

the initial condition of the cache buffer from influencing system performance, we only

used the results after the initially cached blocks were completely replaced with newly
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Figure 4.1: Completeness (LRU vs. Proposal)

retrieved blocks.

4.3.1 Evaluation in Stable P2P Networks

We conducted simulation experiments to evaluate our proposed cache replacement

algorithm in terms of the completeness of media play-out, adaptability to changes in

media popularity, and sensitivity to parameter settings. In this scenario, we consid-

ered the stable P2P network where the available bandwidth and RTT did not change

and we set x to 1 and employed the in-time block retrieval method. We set the

RTT from 10 ms to 660 ms and the available bandwidth from 500 kbps to 600 kbps

between two arbitrary peers. We show the average values of 40 sets of simulations in

the following figures.
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Evaluation of Continuous Media Play-out

We define the waiting time as the time between the emission of the first query message

for the media stream and the beginning of reception of the first block. Although not

shown in the figures, we observed that the waiting time decreases as the popularity

increased. However, independent of popularity, all media streams successfully found

can be played out within 1.7 sec.

We define the completeness as the ratio of the number of retrieved blocks in time

to the number of blocks in a media stream. Figure 4.1 depicts the completeness

with a 95 % confidence interval of each media stream after 20000 media requests.

We find that our proposed algorithm can improve the completeness of unpopular

media streams without affecting popular streams. This is because the amount of

cached streams for popular media streams is suppressed in accordance with their

popularities. As time passes, the completeness for unpopular media streams slightly

decreases even with our algorithm due to the disappearance of blocks. We expect that

a media streaming server that stores the original media streams can provide users with

the remaining part of unpopular media streams. Since the media popularity follows

the Zipf distribution, 70% requests concentrate on the popular media streams whose

completeness is one. The remaining 30% requests require to retrieve at most 20%

blocks of an unpopular media stream from the server. This means that our proposed

methods can accomplish effective media streaming while considerably reducing the

load on the server.

Evaluation of Adaptability to Changes in Popularity

We changed the popularity of each media stream over time based on a model used

in [15]. In the model, the media popularity changes every L media requests. Another

well-correlated Zipf-like distribution with the same parameter (α = 1.0) is used for
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the change. The correlation between two consecutive Zipf-like distributions is mod-

eled by using a parameter n that can be any integer between 1 and the number of

media streams, i.e., 40. First, the most popular media stream in the current Zipf-like

distribution becomes the r1th popular in the next Zipf-like distribution, where r1 is

randomly chosen between 1 and n. Then, the second popular media stream in the

current distribution becomes the r2th popular in the next distribution, where r2 is

randomly chosen between 1 and min(40, n + 1), except that r1 is not allowed. Thus,

as time passes, initially popular media streams become less popular while initially

unpopular media streams become more popular. We set n = 5 in the experiments

and the demand changes every L media requests.

Figure 4.2 illustrates the transition of the completeness of the proposed algorithm.

To clarify the transition, we show the completeness at instants when 5000, 10000,

15000, and 20000 media requests occur. To evaluate the adaptability to the speed of

popularity change, we set L to 200, 500, and 1000. As shown in Fig. 4.2, in the case

of L = 200 where the popularity changes fast, the completeness of initially unpopular

media streams, identified by a large number, becomes higher than that of initially

popular media streams with a smaller number as time passes and demand changes.

On the other hand, in the case of L = 1000, where the popularity changes rather

more slowly, the completeness of media streams with a small number is kept higher

than that of media streams with a large number. Thus, we can conclude that our

proposed algorithm can adapt to changes in media popularity.

Evaluation of Sensitivity to Parameter Settings

Our cache replacement algorithm has a set of parameters, θ(i), ξ, and ϕ. θ(i) is

dynamically adjusted by Eq.(4.2). We conducted several simulation experiments by

changing ξ and ϕ in Eq. 4.2, which are associated with the degree of adherence to

a specific victim in cache replacement. Although not shown in figures, we found
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(b) Number of media requests: 10000
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(c) Number of media requests: 15000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40

C
om

pl
et

en
es

s

Media

L=1000
L=500
L=200

(d) Number of media requests: 20000

Figure 4.2: Completeness with changes in media popularity (ξ = 0.01, ϕ = 0.001)

that there was almost no difference among different ξ and ϕ. It follows that the

proposed algorithm is insensitive to parameter settings. Thus, we do not need to give

careful consideration to the problem of parameter setting as in other algorithms that

need several critical parameters to be carefully determined in advance. Furthermore,

the proposed algorithm flexibly adapts to changes in media popularity without any

parameter adjustment.
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4.3.2 Evaluation in Unstable P2P Networks

We conducted simulation experiments to evaluate the proposed improvements in

terms of the completeness of media play-out under unstable P2P networks. We show

the average values of 20 sets of simulations in the following figures.

Evaluation with Changes in Network Condition

We randomly changed RTT from 10 ms to 660 ms and the available bandwidth from

450 kbps and 550 kbps between two arbitrary peers at one-second intervals. A peer

estimated the available bandwidth and RTT at one-second intervals with the degree

of accuracy of 0.975. We set Δbw to 0.95 which was less than the estimation accuracy.

Since peers did not leave in this scenario, we set x to 1.

Figure 4.3 depicts the completeness of the in-time block retrieval method and

the adaptive block retrieval method. For comparison purposes, results in a stable

environment are also shown. As shown in this figure, the completeness of the in-

time block retrieval method is less than 0.5 even for the most popular media stream

under unstable network conditions. This is because peers keep retrieving blocks even

when the available bandwidth decreases and they cannot finish the retrieval in time.

In contrast, the adaptive block retrieval method can improve the completeness by

appropriately changing a provider peer. However, it is still lower than in a stable

environment.

For a peer effectively to switch provider peers, it needs to have at least one

alternative peer i′ which satisfies Eq.(4.5).

⎧⎨
⎩i′ ∈ Sj − i

∣∣∣∣∣∣
V (t) + r(j, t)

Bs

Bt

≥ r(j, t)

A(i′, t)
+ 2R(i′, t)

⎫⎬
⎭ (4.5)

The number of alternative peers depends on the number of media streams against the
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Figure 4.3: Completeness (40 streams)

capacity of the whole P2P network. Figure 4.4 illustrates the results of the case with

10 media streams. As shown in the figure, the completeness of the adaptive block

retrieval method is more than 0.9 independently of the media popularity. Although

not shown in figures, we conducted additional experiments with the various number

of media streams and found that the completeness of more than 0.9 could be attained

for all media popularity when the number of media streams was less than 12 against

the network capacity of 100× 3 = 300 media streams.

Evaluation with Leaves of Provider Peers

To evaluate the robustness to peer leaves, we next considered the following scenario.

First, one designated peer was randomly chosen. Then, we removed peers while the

designated peer was retrieving the first media stream. Peers to be removed were

randomly chosen among peers that deposited blocks of the media stream which the

designated peer was interested in. The inter arrival time between two successive
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Figure 4.4: Completeness (10 streams)

removals followed an exponential distribution whose average was 10 minutes. To

investigate the impact of peer leaves, there was no reconstruction or recovery of the

P2P network when peers left and links were broken and the available bandwidth and

RTT did not change in this scenario.

Figure 4.5 shows that the completeness of x = 1 is higher than that of x = 2, on

the contrary to our expectation. With x = 2, a peer conducts the limited flooding

more often than the case with x = 1. In the limited flooding, query messages are

diffused over a P2P network by being relayed by peers. Thus, the possibility that a

peer can find an appropriate provider peer decreases due to breaks of the network

caused by disappearance of peers. On the other hand, in the selective search, query

messages are directly sent to provider peers without mediations of other peers. As

a result, even though only 6 % peers left the network in Fig. 4.5, the completeness

of the case of x = 1 becomes superior to that of x = 2. Thus, we can conclude

that the selective search is more robust to peer leaves than the limited flooding from
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simulation results.

4.4 Conclusion

In this chapter, we proposed an adaptive and robust block search method, an adap-

tive block retrieval method, and a supply-demand-based cache replacement algorithm

inspired by biological systems. Through several simulation experiments, we showed

that our proposed cache replacement algorithm could accomplish continuous media

play-out independent of media popularity and adapt to changes in media popularity.

Furthermore, we demonstrated that the adaptive block retrieval method could im-

prove the completeness compared to the in-time block retrieval method. In addition,

we found that the selective search was more efficient than flooding methods when

peers failed and left.
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Chapter 5

Construction Methods of a

Low-Diameter and Location-Aware

P2P Network

5.1 Introduction

In recent years, P2P file-sharing systems have become widely diffused. There are

three kinds of architectures for P2P systems: centralized, decentralized-structured,

and decentralized-unstructured. Since decentralized-unstructured P2P systems, such

as Gnutella [41] and KaZaA [42], are the most popular in the current Internet, in

this thesis, we also focus on a decentralized-unstructured model. In decentralized-

unstructured P2P systems, there is no server that manages meta information on peer

and file locations. A peer tries to find its desired file by flooding a query in a P2P

overlay network. From a set of peers in search results obtained by the query, it

determines a provider peer from which it retrieves a file.

The structure of an overlay network determines the effectiveness of search in terms
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of network load and user QoS. An inefficient overlay network induces unnecessary

and huge traffic into underlying physical networks. Specifically, the diameter of an

overlay network affects the number of hops, i.e., a TTL value, required to find a

sufficient number of provider peers and files desired by users. Furthermore, if an

overlay network is constructed without taking into account the topology of underlying

physical networks, a logical link may be established between physically-distant peers.

Passing a message from one peer to another takes time and much network resources.

A peer has to wait for a long time to obtain information on physically-close providers

from which it can quickly retrieve its desired file.

To tackle these problems, an overlay network should reflect the characteristics of

the underlying physical topology, e.g., the degree distribution and the physical prox-

imity. Figure 5.1 illustrates examples of overlay networks constructed on a physical

network. The physical network consists of five hosts (H1 ∼ H5) and three routers

(R1 ∼ R3). Peers (P1 ∼ P5) corresponding to the hosts. The overlay network in

Fig. 5.1(a) has three physically-close logical links while that in Fig. 5.1(b) has only

one physically-close link. As a result, peers on Fig. 5.1(a) can find physically-closer

peers with faster response time than those on Fig. 5.1(b). This contributes to reduc-

tion of the network load while improving the user QoS in terms of the search and

retrieval time of the desired file.

In this thesis, we propose novel methods to construct a low-diameter and location-

aware overlay network where peers can find physically-close providers without intro-

ducing much load on underlying physical networks. There have been several re-

search works on the construction of a low-diameter network. Barabási-Albert (BA)

model [56] is the first and the most popular model that explains generation of a net-

work whose degree distribution follows the power-law. The BA model is dominated by

the preferential attachment (PA). The PA defines the probability Pi that node i gets

links from newly added nodes as proportional to its degree ki, that is Pi = ki∑
j∈Sn

kj
,
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Figure 5.1: Correlation between overlay and underlying physical network

where Sn is the set of nodes existing in the network. As a result, it constructs a

scale-free network in which there are a few hub nodes that are connected with many

low-degree nodes. This characteristic contributes to reduction of the diameter of the

network, where a peer can discover a sufficient number of desired files in the range of

a small number of logical hops.

Phenix [67] also provides an algorithm to construct a scale-free network. Although

the BA model requires a centralized control mechanism, the Phenix is based on

local control information. The BA model assumes that a new node knows all nodes

already participating in the network when it tries to join. However, in realistic

situations, a new peer only knows some of peers notified by a bootstrapping node [68,

69]. The Phenix also assumes that a new node obtains information on peers from a

bootstrapping node. Then, it collects information on neighbors of the peers. Finally,

it conducts the PA based on the frequency of appearance of a peer in the information.
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Although the BA and Phenix can build an overlay network, they do not consider

the topology of underlying physical networks. We should shorten the physical dis-

tance, i.e., the number of physical hops, between neighboring peers to reduce the load

on underlying physical networks. For this purpose, in our model a peer adopts the PA

to only peers that are physically close. As a result, constructed overlay network has

a correlation between the logical and the physical distances. Usually in conventional

P2P file-sharing systems, on receiving a response message, a peer has to examine the

physical closeness of the peer by using a ping message. On the other hand, in our

overlay network, logically-close peers are also physically close. It does not require

for a peer to probe the physical distance from the discovered providers by emitting

additional ping-like messages.

Since a new peer only knows some of peers notified by a bootstrapping node in

realistic situations, it can not necessarily find appropriate peers from the initially

obtained peer list and it leads to the limitation of the effectiveness of a constructed

network in join phases. To improve the structure of a constructed network, a rewiring

method is viable, which enables a peer to connect to more appropriate peers after

the join phase [57-59].

Location-aware topology matching (LTM) is a rewiring method to build a location-

aware overlay network [57]. It disconnects low productive neighbors that are found by

Gnutella 0.6 protocol. In the LTM, peer P collects delay information on peers within

two hops by periodically sending probing packets. Based on the delay information, P

conjectures the topology of an overlay network within two hops and searches peer S

that has two ore more logical paths to P . Then, P finds the most distant connection

in the overlay network. If the inefficient connection is established between P and

its neighbor, P cuts off the connection. Although the LTM method can construct

a location-aware overlay network, it does not contribute to reduction of the diame-

ter of the overlay network. Furthermore, the Gnutella-based random selection of the
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neighbors can not necessarily connect to physically-close peers. This not only induces

unnecessary traffic into underlying physical networks but also requires multiple times

of rewiring to obtain physically-close neighbors.

In this thesis, we propose a new rewiring method to improve the location-awareness

of an overlay network. We assume that a peer can obtain information on peers that its

neighboring peers know by periodically exchanging ping-pong messages. Based on the

constructed peer list, a peer finds peers that are physically closer and with a higher-

degree than the current neighbors. To investigate the effectiveness of the proposed

methods, we conducted several simulation experiments using real physical topologies

such as Abilene and Sprint networks that also follow the power-law distribution. We

evaluated diameter, physical distance to neighbors, and degree distribution of overlay

networks constructed by existing and our proposed methods. Simulation results show

that the proposed methods enable a peer to find physically-close providers without

introducing much load into underlying physical networks.

The rest of this chapter is organized as follows. We propose construction methods

of a low-diameter and location-aware overlay network in Section 5.2. Next, in Sec-

tion 5.3 we evaluate our proposed methods through several simulation experiments.

Finally, we conclude the thesis in Section 5.4.

5.2 Construction Methods of a Low-Diameter and

Location-Aware P2P Network

In this section, we consider methods to construct an overlay network that satisfies

both low-diameter and location-aware features. We first propose a BA-based con-

struction method with a modification in the node selection for the PA in order to

consider underlying physical networks. Then, we further propose a rewiring method
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to improve the structure of an overlay network.

5.2.1 Tree Construction with Consideration of Underlying

Physical Networks

To build a low-diameter and location-aware overlay network, a newly added peer has

to connect high-degree and physically-close peers. For this purpose, we limit a set of

nodes in the PA. Our proposed method is inspired by the modified BA model [69].

In the model, they introduce ‘affinity’ to restrict target nodes for the PA. A newly

added node with a random affinity first selects nodes that are already present in the

network and have a similar affinity. Then, nodes to connect are chosen among them

according to the PA. Through several simulation experiments, they showed that the

power-law feature was not lost by introducing the restriction. Our proposed method

considers the physical distance instead of the affinity. In this thesis, we regard the

number of physical hops of the shortest path as the physical distance.

When new peer i joins to an overlay network, it chooses m peers to connect among

peers it knows according to the following algorithm.

1. Obtain set Sp of x peers from a bootstrapping server.

2. Calculate the physical distance to each peer in Sp by using the existing mea-

surement tools, such as traceroute.

3. Obtain set Sc of μx peers in Sp in an ascending order of the physical distance.

μ is a control parameter that ranges (0,1]. If μ is set to one, this method is

equivalent to the original BA with the limitation of the size of candidate nodes.

On the other hand, the smaller value of μ is intended to shorten the physical

distance to neighbors in an overlay network.
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4. According to the PA, select m peers in Sc. The probability Pn(dj) that peer j

with degree dj is chosen is given by:

Pn(dj) =
dj∑

k∈Sc
dk

. (5.1)

5.2.2 Rewiring Method

In realistic situations, a newly added peer knows only some of peers from a bootstrap-

ping node. This means that a peer can not necessarily find a peer physically close

enough and with a sufficient degree at the join phase. Therefore, there is a possibility

to improve the efficiency of a constructed overlay network by dynamically changing

its structure. For this purpose, we propose a rewiring method where a peer first dis-

connects inefficient connections and then establishes connections to physically-closer

and higher-degree peers. This approach is inspired by the BA model with a rewiring

method described in Ref. [59]. Our rewiring method differs from the model in the se-

lection of peers to disconnect. While the model randomly selects peers to disconnect,

our rewiring method chooses the most physically-distant neighbors to disconnect.

We assume that each peer can obtain information on the other peers that are not

current neighbors by exchanging ping-pong messages among neighbors in the same

manner as Gnutella. In the case of Gnutella, the interval of sending ping is a few

minutes. A pong message sent by a neighbor includes information on peers that the

neighbor knows. Gnutella 0.6 also proposes to cache pong messages to reduce the

messaging overhead. When a peer finds a new peer, it conducts the rewiring method.

At first, by using a similar way to the construction method, it examines the physical

distance to the new peer. Then, it chooses peers to disconnect and connect among

the most distant neighboring peers and closer non-neighboring peers based on the

PA. Detailed algorithm is described as follows.
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1. Calculate set Sw of peers that are the most physically distant among the current

neighbors. Note that neighbors whose degree are one are not included in Sw

to prevent the fragmentation of an overlay network. We denote the physical

distance of the peers in Sw as hw.

2. Calculate set Sm of peers whose physical distance does not exceed hw among

non-neighboring peers.

3. Select a peer with probability Pr(dj) among peers in Sw ∪ Sm according to the

PA as follows.

Pr(dj) =
dj∑

k∈Sw∪Sm
dk

(5.2)

If the selected peer is not the current neighbor, namely a member of Sm, it is

replaced with a peer randomly chosen from peers in Sw.

5.3 Simulation Experiments

To investigate the effectiveness of the proposed methods, we conducted several sim-

ulation experiments by using real physical topologies such as Abilene and Sprint

networks that also follow the power-law distribution.

We evaluate our proposed methods from a view point of the structure of a con-

structed overlay network. We use the logical reachability and degree distribution to

evaluate the diameter of an overlay network. The neighbor distance, physical cost,

and provider proximity are used to evaluate how much an overlay network considers

underlying physical networks. The logical reachability corresponds to the cumulative

distribution function (CDF) of the number of peers existing at each logical hops. The

neighbor distance is defined as the average number of physical hops between neigh-

bors, i.e., a pair of hosts that has a logical connection. The physical cost means the
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Figure 5.2: Example values of evaluation criteria

number of physical hops needed to accomplish the logical reachability. We can derive

the physical cost by weighting each logical link with its physical distance, i.e., the

number of physical hops between its ends. We define the provider proximity as the

average physical distance from a searching peer to providers that were found within

the physical cost. We used the average value among all peers for those evaluation

criteria in the following simulation results. Figure 5.2 shows example values of the

evaluation criteria for peer P2.

5.3.1 Simulation Model

We used topological data of the real physical networks: Abilene [70] and Sprint

networks [71]. The Abilene network is the Internet backbone network for higher

education and a part of the Internet2. It has a power-law degree distribution and

forms a hierarchical structure. It is comprised of sparsely meshed core routers and

many edge routers each of which is highly-connected to end users. This structure

considers the router technology constraints that mean a router can have a few high
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Figure 5.3: Graphics of physical topologies

bandwidth connections or many low bandwidth connections. The Sprint network is

a major ISP topology in the USA. The router level topology of the Sprint network

was obtained by using a measurement tool called Rocketfuel [71]. Figures 5.3 and

5.4 illustrate physical topologies used in simulation experiments and their physical

characteristics, respectively. In both physical topologies, we set peers only on the

nodes whose degree is one, because we assumed that peers were end users. The

number of peers in the Abilene and Sprint networks were 698 and 6478, respectively.

We assumed that the latency of each physical link is identical so that we could

compare our proposed methods with the delay-based LTM method.

We constructed P2P overlay networks on these physical networks by using three

kinds of methods: the LTM method, BA model, and proposed methods. Since the

LTM method is based on a Gnutella method, a peer periodically tries to establish con-

nections until the number of neighbors reaches a degree limit configured in advance.

We set the degree limit of each peer at 8 [57]. On the other hand, the BA model

and proposed methods have no limitation on the degree. Instead, they restricted the

– 76 –



Chapter 5. Construction Methods of a Low-Diameter and Location-Aware P2P Network

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000

C
C

D
F

Node degree

Abilene network
Sprint network

(a) Degree distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

C
D

F

Physical hop count between two nodes

Abilene network
Sprint network

(b) Number of physical hops between two
arbitrary nodes

Figure 5.4: Characteristics of physical topologies

number of connections established at the join phase to m. In the following simulation

experiments, we used two values of m, that is �dl� and 
dl�. Here, dl corresponds to

the average degree of the overlay network constructed by the LTM method. In the

following simulation experiments, dl of the Abilene and Sprint networks was 5 and

4.8, respectively. We set the initial number of nodes m0 to the same value of m. The

inter-arrival time between two successive peer participations followed an exponential

distribution whose average was 120 seconds. In the case of the LTM, the interval

of rewiring was also set to 120 seconds. Although we conducted several simulation

experiments by changing μ, i.e., the ratio of peers targeted for the PA, we only show

the results of μ = 0.2 in the following figures.

5.3.2 Evaluation of Basic Characteristics

We first conducted simulation experiments in the case of ideal situations where a peer

could obtain information on all peers in an overlay network from a bootstrapping

node. In this scenario, we evaluated the proposed method without the rewiring
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Figure 5.5: Logical reachability (μ = 0.2)

method.

First, we discuss the diameter of an overlay network. We show the logical reacha-

bility in Fig. 5.5. The proposed method and BA model can construct lower-diameter

overlay networks compared with the LTM method because of their power-law fea-

tures as shown in Fig. 5.6. We also find that their performance difference is larger

in the Sprint network than in the Abilene network. Since there is no hub node in

the overlay network constructed by the LTM method, the diameter of the overlay

network is much influenced by the number of nodes. In addition, the results show

that the reachability of the LTM method does not reach one due to the fragmentation

of the overlay network.

Next, we focus on how much an overlay network considers underlying physical

networks. Figure 5.7 illustrates the neighbor distance. The LTM method can shorten

the neighbor distance compared with the BA model by disconnecting physically-

distant neighbors. Our proposed method can also slightly improve the structure of

an overlay network. Since the LTM can reconnect logical connections after the join
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Figure 5.6: Degree distribution (μ = 0.2)

phase, the LTM is superior to our proposed method without the rewiring method.

Their performance difference is larger in the Sprint network than in the Abilene

network. A peer can reach many peers at two physical hops in the Abilene network

because edge routers connected by end users function as their hub nodes.

To consider the physical load and the effectiveness of search, we also present the

physical cost in Fig. 5.8. Our proposed method is the most efficient compared with

the other methods. For instance, in the case of the Sprint network, the LTM, BA

(m = 3), and proposal (m = 3) need 25, 22, and 17 of physical costs to accomplish

the logical reachability of 0.6, respectively.

Finally, we show the provider proximity in Fig. 5.9. The proposed method and

LTM method can discover physically-closer provider peers than the BA model. How-

ever, the LTM method needs more physical cost than the proposed method to find

the same number of provider peers as shown in Fig. 5.8.

From these results, we found that especially in the case of the Sprint network, the

proposed method could construct a low-diameter overlay network comparable with
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Figure 5.7: Neighbor distance (μ = 0.2)
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Figure 5.9: Provider proximity (μ = 0.2)

the BA. On the other hand, there was room for improvement in the neighbor distance

and physical proximity compared with the LTM method.

5.3.3 Evaluation of Rewiring Method

Next, we conducted simulation experiments in more realistic and severe environments

where a new peer knows only 20 peers among 698 or 6478 peers at the join phase.

The interval that a peer sent ping messages was set at 120 seconds, which was equal

to the average inter-arrival time between two successive peer participations. Since it

was also the same as the interval of rewiring in the LTM, there was no difference of

the messaging overhead between the proposed method and LTM.

Figures 5.10 through 5.14 illustrate the results of the LTM, BA, and proposed

method with and without the rewiring method. We find that the proposed method

with the rewiring method is superior to the BA and LTM in terms of the logical reach-

ability and physical cost. In addition, the neighbor distance and provider proximity

are also comparable with the LTM.

– 81 –



5.3 Simulation Experiments

Table 5.1: Correlation coefficient
LTM BA (m = 3) Proposal with rewiring (m = 3)

Abilene 0.19 -0.01 0.45
Sprint 0.46 -0.17 0.42

Without rewiring, the diameter of an overlay network becomes large when x is

restricted to 20 (Fig. 5.10). This is because a peer could not discover a sufficient

number of physically-close hub peers in the initially obtained peer list. The rewiring

method contributes to reduction of the diameter of an overlay network because the

degree of hub peers increases by rewiring as shown in Fig. 5.11.

Next, as shown in Fig. 5.12, we find that the limitation of x does not affect

the neighbor distance very much. Furthermore, the rewiring method contributes to

reduction of the neighbor distance. By shortening the neighbor distance and the

diameter of an overlay network, a peer can reduce the physical cost (Fig. 5.13) and

obtain physically-close provider peers (Fig. 5.14).

Figures 5.15 and 5.16 depict the correlation between logical and physical distance.

We also show the correlation coefficient in Tab. 5.1. These results also show that the

proposed method can improve the correlation between the overlay and underlying

physical network, that is, logically-close peers are physically close. Although the LTM

method also accomplishes the almost same correlation coefficient as the proposed

method in the Sprint network, it cannot construct a low-diameter overlay network.

We also find that an overlay network constructed by the BA model has no correlation

between the logical and physical distance.

Thus, the simulation results showed that we could construct a low-diameter and

location-aware overlay network by applying the rewiring method under realistic en-

vironments.
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5.4 Conclusion

In this thesis, we proposed the construction method of a low-diameter and location-

aware overlay network where a peer can find many physically-close provider peers. We

further introduced the rewiring method to improve the structure of the constructed

overlay network. Through evaluation in terms of the diameter, neighbor distance, and

degree distribution of the overlay networks constructed by the existing and proposed

methods, it was shown that our proposed method without rewiring could construct a

low-diameter overlay network comparable with the BA model. In addition, we found

that the rewiring method contributed to reduction of both the neighbor distance and

diameter of the overlay network.
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Figure 5.10: Logical reachability (μ = 0.2, m = 3)
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Figure 5.12: Neighbor distance (μ = 0.2, m = 3)
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Conclusion

In this chapter, we summarize the discussion in each of the previous chapters and

describe future research works.

Chapter 1 mentioned research backgrounds and overviews of our studies. With the

growth of computing power and the proliferation of the Internet, media distribution

services have widely diffused. However, with the current Internet, the major transport

mechanism is still only the best effort service without no guarantees of communication

qualities. Furthermore, the media streaming constantly introduces much load into the

network compared with other typical applications based on HTTP or FTP. From the

viewpoint of users, high levels of QoS, such as high-quality, low-delay, and continuous

media play-out, are requested to the streaming services. In addition, the increase of

Internet population leads to the diversity of users demands to the media quality and

popularity. In this thesis, we focused on the caching mechanisms to accomplish media

streaming that can adapt to heterogeneity of user demands and network changes

without introducing extra load on the network.

Chapter 2 explained proxy caching mechanisms with a media quality adjustment

which could solve the heterogeneity of media qualities requested by users. After
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introducing the overview of our system, we proposed three mechanisms: media re-

trieval mechanism, media prefetching mechanism, and cache replacement mechanism.

Through several simulation experiments, we evaluated our proposed mechanisms in

terms of required cache buffer size, play-out delay, and media quality. Simulation

results showed that our system was effective in suppressing the play-out delay and

reducing the required cache buffer size with a media stream of the desired quality.

Especially, the degree of user’s satisfaction was higher than 0.9 and the play-out delay

was less than 8 sec even under a severe environment where the cache buffer size was

limited only to 20 Gbits. We further implemented our proposed mechanisms on a real

system to verify the practicality and usefulness. Through experiments, it was shown

that our implemented system could continuously provide users with a high-quality

and low-delay media service in accordance with the network condition.

Chapter 3 described continuous and scalable media streaming on unstructured

P2P networks. We first proposed scalable media search methods taking into account

temporal order of reference to media data that intended users usually played out a

media stream from the beginning to the end. Then, we also proposed media retrieval

methods to accomplish continuous media play-out. Through several simulation ex-

periments, we showed that the proposed methods could provide users with continuous

media play-out without introducing extra load on the system. Specifically, the FLS

method could perform continuous media play-out for popular media streams while

reducing the amount of search traffic to 1
6

compared with full flooding.

Chapter 4 discussed adaptive and robust P2P media streaming. First, inspired by

biological systems, we proposed a novel cache replacement algorithm that considered

the balance between supply and demand for media streams. Next, to improve the

adaptability to network changes and robustness against peer departures, we further

proposed an adaptive media retrieval method and a robust media search method.
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Simulation results showed that our proposed cache replacement algorithm could ac-

complish continuous media play-out independent of media popularity and adapt to

changes in media popularity. Furthermore, we demonstrated that the adaptive media

retrieval method could provide users with more continuous media play-out than the

previous method proposed in Chapter 3. In addition, we found that the proposed

search method was robust to peer departures.

Chapter 5 focused on the construction of a P2P overlay network to improve the

user QoS in terms of search and retrieval time of files. After introducing several re-

lated works, we proposed a construction method of a low-diameter and location-aware

P2P overlay network where a peer could find many physically-close provider peers.

We further proposed a rewiring method to improve the structure of the constructed

overlay network. Through evaluations in terms of diameter, physical distance between

neighboring peers, and degree distribution of the overlay network, it was shown that

our proposed method without rewiring could construct a low-diameter overlay net-

work comparable with the BA model. In addition, we found that the rewiring method

contributed to reduction of both the physical distance between neighboring peers and

diameter of the overlay network. Especially, the proposed methods can accomplish

the same logical reachability as the traditional method while reducing network load

to 50%.

From the findings obtained in each chapter, we can conclude that cache-based

mechanisms are effective to provide users with continuous media play-out while sup-

pressing the load on networks in both client-server and P2P architectures. Further-

more, proposed adaptive mechanisms can address the heterogeneous user demands,

such as access connections to the Internet, and the changes in system conditions, i.e.,

media popularity, network conditions, and peer departures. We believe that these

discussions help to lead toward future media streaming systems.

There are several challenging tasks as future research works. First, we should
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consider the combination of our proposed methods. Especially, by applying the con-

struction method of a low-diameter and location-aware P2P overlay network to our

P2P media streaming system, we expect that more scalable and continuous media

streaming can be accomplished. We also plan to implement our media streaming sys-

tem on a large-scale and real environment to verify the practicality and usefulness.

It is also important to consider the media streaming on mobile and wireless P2P

networks. We assume that several modifications and new proposals will be needed

to adapt node mobility and unstable wireless connection.
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