
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

高速ネットワークのためのインライン計測手法

Cao Le Thanh Man† 長谷川 剛†† 村田 正幸†

†大阪大学大学院情報科学研究科
〒 560-0871大阪府吹田市山田丘 1-5

††大阪大学サイバーメディアセンター
〒 560-0043大阪府豊中市待兼山町 1-32

E-mail: †{mlt-cao,murata}@ist.osaka-u.ac.jp, ††hasegawa@cmc.osaka-u.ac.jp

あらまし 高速 (1ギガビットまたはそれ以上)ネットワークにおいて、パケットペアやパケットトレインなど、パケッ

ト間隔ベースの計測手法は、下記の二つの問題を持つ。まず、高速ネットワークでの計測は非常に短いパケット間隔が

必要となるが、短い間隔でパケットを送信することは、大きな CPU負荷を必要とする。次に、高速ネットワーク対応

のネットワークインタフェースのほとんどが割り込み削減機構（IC、Interrupt Coalescence）を採用していることであ

る。ICはパケットの到着間隔を変えたり、パケットのバースト転送を生成したりするため、パケット間隔ベースの計測

が不正確となる。そこで本稿では上記の二つの問題を解決した ICIM (Interrupt Coalescence-aware Inline Measurement)

というインライン計測手法を提案する。インライン計測とは TCPの転送中のデータパケットを用いた計測手法であ

る。提案手法は ICによって発生するパケットのバースト転送を逆に利用し、パケット送信間隔を調整することなく高

い利用可能帯域を計測することができる。シミュレーション結果から、ICIMが ICがある環境で数 Gbpsの利用可能

帯域でも計測可能であることがわかった。さらに、既存のパケットストリームを用いた手法に比べて、計測に使用す

るパケットが 1/100程度になることもわかった。また ICIMを導入した TCPが従来の TCPと同じデータ転送性能を持

ちながら、数 RTT程度という短い間隔で計測結果を導出することもわかった。

キーワード end-to-end計測、利用可能帯域、インライン計測、パケットペア、パケットトレイン、パケットバースト

An Inline Network Measurement Mechanism for High-Speed Networks

Cao LE THANH MAN†, Go HASEGAWA††, and Masayuki MURATA†

† Graduate School of Information Science and Technology, Osaka University

1-3, Yamadagaoka, Suita, Osaka 560-0871, Japan

†† Cybermedia Center, Osaka University

1-32, Machikaneyama, Toyonaka, Osaka 560-0043, Japan

E-mail: †{mlt-cao,murata}@ist.osaka-u.ac.jp, ††hasegawa@cmc.osaka-u.ac.jp

Abstract In high-speed networks, such as 1-Gbps or higher networks, bandwidth measurement algorithms that utilize packet

transmission/arrival intervals, such as packet trains and packet pairs, have a number of problems. First, network measurement

for large bandwidth requires short packet transmission intervals, which causes a heavy load on the CPU. Second, network

interface cards for high-speed networks usually employ Interrupt Coalescence (IC), which rearranges the arrival intervals of

packets and causes bursty transmission of packets. In the present study, we introduce ICIM (Interrupt Coalescence -aware

inline measurement), a new bandwidth measurement approach that overcomes these two problems. ICIM utilizes the data

packets of an active TCP connection for the measurement. In order to determine the available bandwidth, rather than adjusting

the packet transmission intervals, the TCP sender instead adjusts the number of packets involved in a burst and checks whether

the corresponding ACK packets also form a burst. Simulation results show that ICIM can measure the bandwidth as high as

some Gbps while requiring a number of data packets that is only 1/100 of that of the existing stream-based algorithm. TCP

that is deploying ICIM can yield measurement results in intervals as short as some RTTs, while maintaining the properties of

the original TCP.

Key words end-to-end measurement, available bandwidth, inline measurement, packet pair, packet stream, packet burst
— 1 —

1. Introduction

Active measurement of the available bandwidth of an end-to-end
network path has been vigorously investigated [1-3]. Compared
with passive measurement, active measurement can deliver faster
and more accurate results because the network can be investigated
in detail using probe traffic. However, the sending of probe traffic is
a drawback of active measurement. According to [3], Pathload [1]
generated between 2.5 to 10 MB of probe traffic per measurement.
Newer tools have succeeded in reducing the amount of probe traffic.
The average per-measurement probe traffic generated by IGI [2] is
130 KB and that generated by Spruce [3] is 300 KB. Although a few
KB of probe traffic for a single measurement is a negligible load on
the network, for routing in overlay networks, or adaptive control in
transmission protocols, these measurements may be repeated con-
tinuously and simultaneously from numerous network nodes and
end hosts. In such cases, probe traffic of a few KB per measurement
will generate a large amount of traffic that may interfere with data
transmission in the network, as well as degrading the measurement
itself.

Previously, we proposed an active measurement method that
overcomes the problem mentioned above [4]. We proposed the con-
cept of inline measurement, that is, the idea of “plugging” the ac-
tive measurement mechanism into an active TCP connection. This
method has the advantage of requiring no extra traffic to be sent on
the network, and provides fast and accurate measurement. We refer
to RenoTCP employing this mechanism as ImTCP (Inline measure-
ment TCP). When the sender transmits data packets, ImTCP adjusts
the transmission rate of some packets, and considering arrival inter-
vals of the corresponding ACK packets, the ImTCP sender estimates
the available bandwidth. ImTCP utilizes a measurement algorithm
similar to that of Pathload [1]. That is, the arrival intervals of pack-
ets that are sent back-to-back at a specified rate are used to estimate
the available bandwidth. ImTCP delivers measurement results re-
peatedly in short intervals, such as a few RTTs, and the number
of packets involved in each measurement is far fewer than that for
Pathload.

In the present study, we focus on a new challenge regarding active
measurement. Specifically, we investigate the bandwidth measure-
ment of 1-Gbps or faster network paths, which are becoming in-
creasingly popular. In such high-speed networks, ImTCP, Pathload
and other active measurement tools based on packet spacing [2, 3]
must overcome the following problems. First, measurement in fast
networks requires short transmission intervals of the probe pack-
ets (for example, 0.12 ms for a 1-Gbps link). However, regulating
such short intervals causes a heavy load on the CPU. Second, net-
work cards for high-speed networks usually employ Interrupt Coa-
lescence (IC) [5, 6], which rearranges the arrival intervals of pack-
ets and causing bursty transmission, so that the algorithms utilizing
the packet arrival intervals do not work properly.

We introduce a new inline measurement mechanism that works
well in high-speed networks. We call this ICIM (Interrupt
Coalescence-aware Inline Measurement). Unlike other active mea-
surement tools, ICIM adjusts the number of packets that are trans-
mitted in a burst caused by IC and estimates the available bandwidth
by observing the number of packets in the burst as it passes through
the network, rather than by observing the inter-intervals of the pack-
ets. ICIM does not set the sending interval of the packets, so the
overhead for packet spacing at the sender is eliminated. The mea-
surement results show that TCP with ICIM can transmit data with
the same performance as Reno TCP and can measure the available
bandwidth of high-speed networks.

The remainder of this paper is organized as follows. In Section
2, we discuss problems of measurement in high-speed networks and

look at a number of related studies. In Section 3, we introduce ICIM
and explain how to realize it in Reno TCP. In Section 4, we evaluate
the performance of Reno TCP that is utilizing ICIM. Finally, in Sec-
tion 5, we present concluding remarks and discuss future projects.

2. Available bandwidth measurement in high-
speed networks

In this section, we discuss some of the difficulties encountered
by existing active available bandwidth measurement tools, includ-
ing ImTCP, in high-speed networks (1 Gbps or higher). We assume
that the machines that run the measurement tools are general pur-
pose machines, for example, a x86-based CPU machine with a nor-
mal OS, such as 4.4 BSD LINUX. The problems mentioned here
may not occur in high-performance machines that are designed es-
pecially for measurement.

2. 1 Limitation of packet pacing in general-purpose ma-

chines
In current active measurement tools, probe packets must be sent

at a rate higher than the available bandwidth of the network path,
otherwise the packet space will not be expanded and the tools will
not be able to determine the available bandwidth. When the avail-
able bandwidth can reach 1 Gbps or higher, the transmission inter-
vals of the probe packets must be 0.012 ms (for measuring 1-Gbps
bandwidth) or smaller. As we discuss below, for a general-purpose
machine, sending packets in such small intervals causes high CPU
overhead.

For pacing packets, there are two approaches. The first is to con-
tinuously check the hardware clock (for example, using gettime-
ofday()in UNIX systems) and send the packets when the clock
reaches a determined timing. In a Linux system with an x86-based
CPU, one access of the hardware clock requires approximately 1.9
µs (in the FreeBSD system, one access requires 9 µs) [7]. The
write() system call requires an average of 2 µs (in the case of a
Pentium III CPU). Therefore, a Linux system can only send pack-
ets in intervals greater than 2 + 1.9 = 3.9 µs. This means that, the
system can measure the bandwidth up to 3 Gbps (for the case in
which the probe packet size is 1,500 Bytes). However, in order
to send packets at 3 Gbps, the CPU has to spend all of the time
checking the hardware clock overhead. If the measurement is re-
peated continuously, then the CPU will not be able to process tasks
from other applications. The system performance then will be de-
teriorated. Thus, checking the hardware clock to send packets in a
high-speed network is not a good approach.

The second approach is to register the packet sending program
to an Interrupt Service Routine (ISR) of the hardware clock inter-
rupt. In a general-purpose UNIX OS, the ISR hardclock() is
provided for this purpose. In 4.4BSD OS and LINUX, the hard-
clock() system call is called by the interrupt of hardware clock
every 0.01 s. However, with this low interrupt frequency, the pro-
gram called by hardclock() can only send packets at the rate of
1.2 Mbps (assuming that the packet size is 1,500 Bytes). To obtain
a higher interrupt frequency, a new interrupt schedule of the hard-
ware clock can be implemented. However, one hardware interrupt
(in 4.4 BSD OS) normally requires more than 1 µs [8]. If the packet
transmission rate is 1 Gbps, then the sending interval is 12 µs. This
means that, in this case, the overhead of the hardware interrupt is as
high as 1/12 of the total working time of the CPU. In addition, a new
interrupt schedule for the hardware clock requires many changes in
the OS.

2. 2 Effects of Interrupt Coalescence
Another reason that the task of measurement in high-speed net-

works difficult is IC, which is deployed in most high-bandwidth
Network Interface Cards (NICs). IC is a technique in which NICs

— 2 —

Interrupt generated

Packet arrival

Time

Fig. 1 Receive Absolute Timer

group multiple packets that arrive in a short time interval and pass
them to the OS in a single interrupt. IC reduces the CPU over-
head when the arrival intervals of packets become small. Because
the inter-arrival intervals of the packets observed by the kernel are
changed, IC has an enormous impact on bandwidth measurement
tools, in which the arrival intervals of packets are utilized for band-
width estimation.

There are a number of types of timer setting in IC. For example,
Intel Gigabit Ethernet Controllers [5] contains the following mech-
anisms for IC:
• Absolute timer: The absolute timer delays the assertion of an

interrupt to allow the controller to collect additional interrupt
events before delivering them to software.

• Packet timer: The packet timers are inactivity timers, trigger-
ing interrupts when the link has been idle for an appropriately
long interval.

• Master timer for throttling all interrupt sources: An interrupt
throttling mechanism is used to set an upper bound for the in-
terrupt rate.

The absolute timer is the default setting for Intel Gigabit Eth-
ernet Controllers. Only users with root privileges can change the
IC settings in NIC drivers. We investigate the absolute timers in
greater detail. There are two absolute timers. One is for transmit
interrupts, and the other is for receive interrupts. Because trans-
mit interrupts only inform the kernel as to the completion of packet
sending, delays in transmit interrupts do not affect the real trans-
mission intervals of the packets. In contrast, delays in receive in-
terrupts change the intervals of all receiving packets observed by
the kernel. As shown in Figure 1, the receive absolute timer starts
to count down upon receipt of the first packet. Subsequent packets
do not alter the countdown. Once the timer reaches zero, the con-
trollers generate an interrupt to pass all of the packets to the OS in a
bursty manner. The length of the timer is decided by the parameter
RxAbsIntDelay, which is defaulted to 0.1312 ms in Intel Gigabit
Ethernet Controllers [9]. Thus, all packets that have time intervals
smaller than RxAbsIntDelay will belong either to the same burst,
in which case the time interval between the packets becomes zero,
or to two successive bursts, in which case the time interval becomes
RxAbsIntDelay or larger. Therefore, the software cannot detect
packet intervals smaller than RxAbsIntDelay. With the default
value of 0.1312 ms for RxAbsIntDelay, the software cannot per-
ceive transmission rates larger than 100 Mbps (if the packet size is
1,500 Bytes).

There are some studies that have discussed measuring bandwidth
using the existing IC. For example, one study [7] suggests that in
order to obtain the real arrival intervals of packets, the onboard
timestamp of some network cards (for example SysKonnect GigE
NIC [6]) should be used. However, the same study also concludes
that this solution is not useful for general-purpose network mea-
surement tools, because very few NICs have an onboard timer. Fur-
thermore, using an onboard NIC timer requires modification of the
device driver. This prevents the tool from being easy to run on nu-
merous systems.

Another study [10] reports that since the last packet in a burst
formed by IC has the smallest delay in the NIC buffer, the intervals

of the last packets in the bursts can be used for estimation of the
available bandwidth, according to the Pathload [1] algorithm. How-
ever, because only a small part of stream is used for the measure-
ment, the stream must be very long. This is not suitable in inline
measurement, because making long measurement streams in TCP
badly effects the TCP transmission performance.

3. Interrupt Coalescence-aware Inline Measure-
ment (ICIM)

3. 1 Effects of Interrupt Coalescence on TCP
The behavior of TCP when the network cards enable IC has been

investigated in previous studies [8, 10], and IC has been shown to
be detrimental to TCP self-clocking. IC causes the ACK packets to
arrive at the sender in bursts, and this bursty arrival in turn causes
bursty transmission of data packets and, subsequently, bursty trans-
mission of ACK packets from the TCP receiver. According to one
study [10], with IC, 65% of ACKs arrive with intervals of less than
1 µs, because they are delivered to the kernel with a single interrupt.
Meanwhile, without IC, almost no ACK packets arrive with small
intervals.

In the present study, we propose an algorithm that can exploit the
burst of data packets in TCP under the effects of IC to measure the
available bandwidth. The TCP sender adjusts the number of pack-
ets involved in a burst and checks whether the corresponding ACK
packets also form a burst to investigate the available bandwidth.
ICIM can be employed into any version of TCP. Using previously
reported results [10], ICIM first checks to see if the network card
has IC enabled. If the IC is enabled, ICIM continues measurement
based on the bursty transmission of TCP.

3. 2 Packet burst-based available-bandwidth measurement

algorithm
Because the absolute timer (described in Section 2) is the default

setting of the Intel(R) PRO/1000 Adapter [9], we assume that the
NIC uses the absolute timer when receiving packets. The measure-
ment algorithm using bursts of packets is described below.

As shown in Figure 2, we consider the situation in which two
bursts of packets are sent at the interval S. The number of packets
in the first burst (Burst 1) is N . Assume that C is the capacity of
the bottleneck link. CCross is the average transmission rate of cross
traffic over the bottleneck link when the two bursts pass the link, and
P is the packet size. Then, the amount of traffic that enters the bot-
tleneck link during the period from the point at which the first packet
of Burst 1 reaches the link until the point at which the first packet
of Burst 2 reaches the link will be the sum of the packets in Burst 1
and the cross traffic packets arriving in S, i.e., CCross · S + N · P .
If the amount is larger than the transfer ability of the link during this
period, considered to be C · S, then Burst 2 will go to the buffer of
the link. This results in a tendency for the interval between the two
bursts to increase after leaving the bottleneck link.

We can write that the burst interval will be increased if

CCross · S + N · P > C · S (1)

or,

N · P
S

> C − CCross

Note that C − CCross is the available bandwidth (A) of the bottle-
neck link. Therefore, Eq. (1) becomes

N · P
S

> A

Since we assume that the absolute timer is used, S is always larger
than RxAbsIntDelay. Therefore, at the NIC of the TCP receiver,

— 3 —

Transmission direction

Burst 1
Burst 2

S

(N pkts)

At the TCP sender

Probing rate: NP/S

A >NP /S

A<NP/S

Burst 2

S

S

At the TCP receiver

Burst 1

Burst 2 Burst 1

Burst 2

S

At the TCP sender

AC K packets

Burst 1

Burst 2

S

Burst 1

Fig. 2 Packet burst-based available-bandwidth measurement principle

1N2N1−kNkN

ku BB =

1−kS 1SkS

1−kB 2B

lBB =1

Packet transmission direction

iii SPNB /=

Seach range

Packet bursts

(i=1..k)

Fig. 3 Probing a search range in ICIM

since the arrival interval of the two bursts are larger or equal to S, the
two bursts are passed to the kernel in two different interrupts. The
TCP receiver then sends the ACK of the two bursts in the same inter-
vals to the sender TCP. Thus, by checking the arrival intervals of the
corresponding ACK packets of the two bursts, the TCP sender can
determine if A > NP/S. By sending numerous bursts with various
values of NP/S (by changing N), we can search for the value of
the available bandwidth A. This is the measurement principle of the
proposed inline measurement mechanism.

3. 3 ICIM
ICM inherits the concept of the search range from the measure-

ment algorithm in ImTCP [4]. This is the idea of limiting the band-
width measurement range using statistical information from previ-
ous measurement results rather than searching from 0 bps to the
upper limit of the physical bandwidth for every measurement. By
limiting the measurement range, we can keep the number of probe
packets small.

At first, we explain how to search for the available bandwidth in
a determined search range and then we present an overview of the
measurement algorithm.

Assume that the search range for a measurement is (Bl, Bu). The
algorithm then check k values in the range to determine which is
nearest to the real available bandwidth. We use k = 4 in the follow-
ing simulations. The k points are:

Bi = Bl +
Bu − Bl

k − 1
(i − 1) (i = 1, ..., k)

The TCP sender then sends k consequence bursts and the number
of packets are adjusted so that the probe rate of Burst i is Bi:

Ni · P
Si

= Bi (2)

We illustrate the setting in Figure 3.
Realization of Eq. (2) requires the following:
• The value of Si must be estimated at the timing of the trans-

mission of Burst i. In fact, Si is unknown until Burst i + 1 is
transmitted. But we need the value at the timing of the trans-
mission of Burst i in order to guarantee Eq. (3). We therefore

estimate the value of Si by assuming that the amount of data in
Burst i is proportional to the length of the interval as follow:

Si =
Ni · P

T
(3)

where T is the average throughput of TCP.
• In case the number of packets in Burst i is smaller than Ni,

additional packets must be added to the burst so that the packet
number becomes Ni. ICIM utilizes a buffer located at the bot-
tom of the TCP layer in order to store the packets temporarily
before sending them to the IP layer, in the manner of ImTCP.
ICIM stores all of the packets of the burst that preceded Burst
1 in the buffer. Packets are added to Burst i (i = 1..k) when
necessary in order to maintain the desired number of packets
(Ni) in these bursts.

ICIM sends k bursts and checks the corresponding ACK of
the bursts. If from burst number j, j = 1..k, the arrival inter-
val of the bursts becomes larger, then Bj is considered to be
the value of the available bandwidth in that measurement.

The measurement algorithm of ICIM is as follows:
（ 1） Check whether IC is enabled.

ICIM first checks whether IC is enabled for the network card.
For the reasons explained in Subsection 3.1, ICIM checks the
arrival intervals of the ACK packets. If more than 50% of
the intervals are less than 1 µs, then ICIM decides that IC is
enabled. If the IC is enabled, then ICIM continues the mea-
surement. Otherwise, the measurement algorithm introduced
in ImTCP is used.

（ 2） Set the initial search range
We set the initial search range as (T, 2 · T) where T is the
throughput of TCP.

（ 3） Wait until the window size (cwnd) is larger than Cmin (large
enough to create bursts for measurement). We use Cmin = 50

in the following simulations. Data packets are then sent in
order to search the available bandwidth in the decided search
range, as described above.

（ 4） Add the new measurement result to the database.
Calculate the new search range (B′

l, B
′
u) from the database of

the measurement results. The search range is calculated as fol-
low:

B′
l = R − max

(
1.96

V√
q
,

R

10

)

B′
u = R + max

(
1.96

V√
q
,

R

10

)

where R is the latest measurement result. V is the variance of
stored values of the available bandwidth and q is the number
of stored values. A/10 is a value that ensures that the search
range does not become too small. Moreover, when measure-
ment result in Step 3 falls to Bl (Bu), it is possible to consider
that the network has changed greatly so that the real value of
the available bandwidth is lower (higher) than the search range.
In this case, we discard the accumulated measurement results
because they become unreliable as statistic data and enlarge the
search range (Bl , Bu) twice towards the lower (higher) direc-
tion to create (B′

l, B
′
u).

（ 5） Wait for Q seconds then return to Step 2 and start the next
measurement. During the waiting time Q, TCP transmits pack-
ets in the normal manner. The waiting time is needed for the
TCP transmission to return to the normal state after the packets
store-and-forward process at Step 2.

— 4 —

10 Gbps 10 Gbps

 connection

Sender with measurement
program

Receiver
Data pkts

ACK pkts

NIC:ACK pkts
are delayed

NIC:Data pkts
are delayed TCP

Fig. 4 Simulation topology

4. Simulation experiment

4. 1 Measurement resutls
We show the measurement results for ICIM through ns-2 simu-

lations. We deploy ICIM into Reno TCP, the most popular version
of TCP, and use the topology shown in Figure 4 for the simulation.
The sender and receiver of TCP are connected throught 10 Gbps ac-
cess links and a bottleneck link. The NICs of both the sender and
receiver host employ IC with the absolute timer. The cross traffic
on the bottleneck link is made up of UDP flows, in which various
packet size are used according to the monitored results in the Inter-
net reported in [11]. The Capacity of the bottleneck link is 5 Gbps
and the available bandwidth (A-bw) is 2 Gbps (from 0 to 15 sec), 3
Gbps (from 15 to 35 sec) and 4 Gbps (from 35 to 50 sec).

Figures 5(a) and 5(b) show the measurement results for ICIM
when the interval between two measurements Q are set to 1 RTT
and 2 RTTs, respectively. The curved line ”Average” shows the ex-
ponential moving average of the measurement results. Also shown
are the search ranges for each measurements. We can see that the
search ranges, in most of the cases, successfully cover the correct
value of the A-bw. Therefore, ICIM can detect fast that value, even
in such a high-speed network. When Q = 1, in every RTTs TCP
sender stores and sends packet bursts for the purpose of measure-
ment. These bursts makes the througput of TCP slightly oscillate so
that the estimation for the burst interval in Eq. (3) becomes wrong.
Therefore, the probing rate of each Burst i may not be exactly Bi

(in Step 3 of Section 3.3). This leads to a large dispersion of the
measurement results in Figure 5(a). When Q = 2, TCP sender cre-
ates fewer packet bursts so the measurement results are nearer to
the correct value of A-bw as shown in Figure 5(b). However, the
measurement frequency (16.7 results/second) becomes only a half
of that when Q = 1 (34.2 resutls/second).

4. 2 Comparision with IC-aware Pathload
For the comparision between ICIM and Pathload, the TCP sender

and receivers are next replaced by the sender and receiver of
Pathload. We use the version of Pathload that can detect and filter
the effects of IC [10]. To make the measurment of Pathload faster,
we set the starting probing rate to 200 Mbps (instead of 1 Mbps in
default). ω and χ are set to 200 Mbps and 150 Mbps, respectively.
We set the size of probing packets to 1500 bytes.

The measurement results of Pathload when the number of packet
in a stream K is set to 160 are shown in Figure 6(a). Because the
default value of RxAbsIntDelay used in NIC is 0.000132 (s) and
the packet size is 1500 bytes, the number of packets in a burst, on
the average, is 22 when the A-bw is 2 Gbps, 33 when A-bw is 3
Gbps and 44 when A-bw is 44 Gbps. Therefore, when K=160,
there are about 9 bursts in each stream when A-bw is 2 Gbps. This
means that Pathload has about 9 packets (the last one in the bursts)
for the measurement. The increasing trend in the stream in this case
can be determined well so Pathload can deliver good mesurement
results. However, when A-bw becomes 3 Gbps or larger, the num-
ber of bursts becomes about 6 or fewer. Pathload then does not have

Tab. 1 Comparision in number of packets required for a measurement

A − bw ICIM IC-aware Pathload Ratio ICIM:Pathload

2 Gbps 110 200 · 12 · 8 = 19 200 0.006

3 Gbps 130 200 · 12 · 9 = 21 600 0.006

4 Gbps 154 200 · 12 · 10 =24 000 0.006

Tab. 2 Throughput (Mbps) of Reno TCP using ICIM: Normal Reno TCP

(ratio)

#connections Q=1 RTT Q=2 RTTs

4 466.4 : 490.6 (0.95:1) 483.7 : 475.6 (1.01:1)

8 451.1 : 544.4 (0.82:1) 505.1 : 490.5 (1.02:1)

12 418.7 : 577.7(0.72:1) 503.5 : 493.2 (1.02:1)

enought packets to detect well the increasing trend in the stream.
Therefore, as shown in Figure 6(a), Pathload fails to deliver good
measurment results when the bandwidth is equal to or larger than 3
Gbps.

Figure 6(b) shows the measurement results of Pathload when K

is set to 200. In this case, Pathload have sufficient number of pack-
ets for detecting the increasing trend of streams therefore the mea-
surement results are correct. However, as Pathload searches for the
A-bw from a low value so it takes long time for yielding one result.
The measurement frequency is only 0.28 results/second, 60 times
smaller than that of ICIM (with Q=2 RTTs).

Figure 6(b) shows that, if the A-bw changes during a measure-
ment, Pathload may not detects the change well. At 15 second, the
a-bw changes from 2 Gbps to 3 Gbps while Pathload is probing a
rate smaller than 2 Gbps. When the probing rate reaches 2 Gbps, the
A-bw is already changed, therefore Pathload can succesfully detect
the value 3 Gbps. However, at 35 second, the probing rate of the
on going measurement reaches 3 Gbps before the change of A-bw
from 3 to 4 Gbps so Pathload assumes that the A-bw is smaller than
or equal to 3 Gbps. Therefore, Pathload delivers a value around 3
Gbps at the end of that measurement, that is far from the value of
A-bw at this timing.

Table 1 compares the number of packets used in a measurment
of ICIM and Pathload. ICIM sends four bursts of packets for each
measurement. The average number of packets totally in four bursts
are shown in the second column of the table. On the other hand,
Pathload probes 8, 9, 10 times for one measurement results when
A-bw is 2, 3, 4 Gbps, respectively. Each probe requires 12 streams,
of which the number of packets is 200. We can see that the number
of packets ICIM used is less than one percent of that of Pathload.

Figures 5 and 6 show that the measurement results of ICIM have
a larger dispersion in comparision with Pathload. That is because,
base on the nature of algorithm, ICIM cannot increase the length of
each measurement burst to abtain high accuracy as Pathload does.
Instead, the accuracy can be improved by taking the exponential
moving average in suitable intervals.

4. 3 TCP compatibility
We next examine the data transmission performance of Reno TCP

when employing ICIM. We perform a simulation where a number
of TCP connections using ICIM conflict with the same number of
TCP connections, which is not using ICIM, through a 1 Gbps bot-
tleneck link. All the connections have the same RTT (0.018 s) and
the same access link’s bandwidth (10 Gbps). The number of con-
nections is set to 4, 8 and 12. For each value of connection numbers,
the simulation is repeated 10 times and the throughput of the TCP
connections that have and do not have ICIM (and the ratio of them
), are calculated and compared.

Table 2 shows the results when Q of ICIM is set to 1 RTT and

— 5 —

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (M

bp
s)

Time (s)

Search range
Results

A-bw
Average

(a) Measuring intervals Q = 1RTT

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (M

bp
s)

Time (s)

Search range
Results

A-bw
Average

(b) Q = 2RTTs

Fig. 5 Measurement results for ICIM

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (M

bp
s)

Time (s)

Pathload
A-bw

(a) Number of packets in a stream K = 160 packets

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (M

bp
s)

Time (s)

Pathload
A-bw

(b) K = 200 packets

Fig. 6 Measurement results for IC-aware Pathload

2 RTTs. In case ICIM performs measurement in every RTT, the
TCP archives lower throughput than TCP that do not perform ICIM
when conflicting because ICIM has to delay many data packets for
the measurement in this case. As shown in Table 2, the ratio of
throughput between ImTCP HighSpeed over RenoTCP is always
smaller than 1. When the number of connections increases, the ra-
tio is lower because the conflict between TCP connections are more
intensive. If ICIM takes a lower measurement frequency, for exam-
ple, when Q= 2 RTTs, then the TCP connections performing ICIM
can obtain the same througput with the normal Reno TCP, as shown
in the third column of the table.

5. Conclusion and future studies

In the present paper, we introduced ICIM, a new method that
can measure the available bandwidth in a 1-Gbps or higher net-
work path. The proposed measurement algorithm does not require
regulation of packet transmission intervals and works well with In-
terrupt Coalescence. Simulation experiments showed that the pro-
posed measurement algorithm works well with no degradation of
TCP data transmission speed.

At present, we are evaluating the performance of ICIM in a real
network environment. In addition, we are investigating the mea-
surement mechanism for the capacity of high-speed networks that
can be implemented in ICIM with the least change.

References

[1] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput,” in
Proceedings of ACM SIGCOMM 2002, Aug. 2002.

[2] N.Hu and P.Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE Journal on Selected Areas in

Communications, vol. 21, Aug. 2003.
[3] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study of avail-

able bandwidth estimation tools,” in Proceedings of Internet Mea-
surement Conference 2003, Oct. 2003.

[4] Cao Le Thanh Man, Go Hasegawa and Masayuki Murata, “Available
bandwidth measurement via TCP connection,” in Proceedings of the
2nd Workshop on End-to-End Monitoring Techniques and Services
E2EMON, Oct. 2004.

[5] Intel, “Interrupt Moderation Using Intel Gigabit Ethernet Con-
trollers,” available at http://www.intel.com/design/

network/applnots/ap450.pdf(2003).
[6] Syskonnect, “SK-NET GE Gigabit Ethernet Server Adapter,”

available at http://www.syskonnect.com/syskonnect/
technology/SK-NET_GE.PDF(2003).

[7] G.Jin and B.Tierney, “System capability effect on algorithms for net-
work bandwidth measurement,” in Proceedings of Internet Measure-
ment Conference 2003, Oct. 2003.

[8] M. Zec, M. Mikuc and M. Zagar, “Estimating the impact of interrupt
coalescing delays on steady state TCP,” in Proceedings of the 10th
SoftCOM 2002 conference, 2002.

[9] Intel(R) PRO/1000 Adapter, “README file,” available at http://
support.intel.co.jp/jp/support/network/adapter/

1000/linux_readme%.htm.
[10] R. Prasad, M. Jain and C. Dovrolis, “Effects of interrupt coalescence

on network measurements,” in Proceedings of the 5th Passive and
Active Measurement Workshop PAM 2004, Apr. 2004.

[11] “NLANR web site,” available at http://moat.nlanr.net/
Datacube/.

— 6 —

