
ICIM: An Inline Network Measurement Mechanism
for Highspeed Networks

Cao Le Thanh Man, Go Hasegawa and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

1-3 Yamadagaoka, Suita, Osaka 560-0871, Japan
E-mail: {mlt-cao, hasegawa, murata}@ist.osaka-u.ac.jp

Abstract— In high-speed networks, such as 1-Gbps or higher
networks, bandwidth measurement algorithms that utilize packet
transmission/arrival intervals, such as packet trains and packet
pairs, have a number of problems. First, network measurement
for large bandwidth requires short packet transmission intervals,
which causes a heavy load on the CPU. Second, network
interface cards for high-speed networks usually employ Interrupt
Coalescence (IC), which rearranges the arrival intervals of
packets and causes bursty transmission of packets. In the present
study, we introduce ICIM (Interrupt Coalescence -aware inline
measurement), a new bandwidth measurement approach that
overcomes these two problems. ICIM utilizes the data packets
of an active TCP connection for the measurement. In order to
determine the available bandwidth, rather than adjusting the
packet transmission intervals, the TCP sender instead adjusts
the number of packets involved in a burst and checks whether
the inter-intervals of the bursts of corresponding ACK packets
are increased or not. Simulation results show that ICIM can
measure the bandwidth as high as some Gbps while requiring a
number of data packets that is only 1/100 of that of the existing
stream-based algorithm.

I. INTRODUCTION

Active measurement of the available bandwidth of an end-
to-end network path has been vigorously investigated [1-6].
Compared with passive measurement, active measurement can
deliver faster and more accurate results because the network
can be investigated in detail using probe traffic. However, the
sending of probe traffic is a drawback of active measurement.
According to [3], Pathload [1] generated between 2.5 to 10 MB
of probe traffic per measurement. Newer tools have succeeded
in reducing the amount of probe traffic. The average per-
measurement probe traffic generated by IGI [2] is 130 KB and
that generated by Spruce [3] is 300 KB. Although a few KB
of probe traffic for a single measurement is a negligible load
on the network, for routing in overlay networks, or adaptive
control in transmission protocols, these measurements may
be repeated continuously and simultaneously from numerous
network nodes and end hosts. In such cases, probe traffic of
a few KB per measurement will generate a large amount of
traffic that may interfere with data transmission in the network,
as well as degrading the measurement itself.

Previously, we proposed an active measurement method that
overcomes the problem mentioned above [7]. We proposed
the concept of inline measurement, that is, the idea of “plug-
ging” the active measurement mechanism into an active TCP
connection. This method has the advantage of requiring no

extra traffic to be sent on the network, and provides fast and
accurate measurement. We refer to RenoTCP employing this
mechanism as ImTCP (Inline measurement TCP). When the
sender transmits data packets, ImTCP adjusts the transmission
rate of some packets, and considering arrival intervals of the
corresponding ACK packets, the ImTCP sender estimates the
available bandwidth. ImTCP utilizes a measurement algorithm
similar to that of Pathload [1]. That is, the arrival intervals
of packets that are sent back-to-back at a specified rate are
used to estimate the available bandwidth. ImTCP delivers
measurement results repeatedly in short intervals, such as
a few RTTs, and the number of packets involved in each
measurement is far fewer than that for Pathload.

In the present study, we focus on a new challenge regarding
active measurement. Specifically, we investigate the bandwidth
measurement of 1-Gbps or faster network paths, which are
becoming increasingly popular. In such high-speed networks,
ImTCP, Pathload and other active measurement tools based on
packet spacing [2-5] must overcome the following problems.
First, measurement in fast networks requires short transmission
intervals of the probe packets (for example, 12 µs for a 1-
Gbps link). However, regulating such short intervals causes a
heavy load on the CPU. Second, network cards for high-speed
networks usually employ Interrupt Coalescence (IC) [8, 9],
which rearranges the arrival intervals of packets and causing
bursty transmission, so that the algorithms utilizing the packet
arrival intervals do not work properly.

We introduce a new inline measurement mechanism that
works well in high-speed networks. We call this ICIM (In-
terrupt Coalescence-aware Inline Measurement). Unlike other
active measurement tools, ICIM adjusts the number of packets
that are transmitted in a burst caused by IC and estimates the
available bandwidth by observing the number of packets in the
burst as it passes through the network, rather than by observing
the inter-intervals of the packets. ICIM does not set the sending
interval of the packets, so the overhead for packet spacing at
the sender is eliminated. The measurement results show that
TCP with ICIM can transmit data with the same performance
as Reno TCP and can measure the available bandwidth of
high-speed networks.

The remainder of this paper is organized as follows. In
Section 2, we discuss problems of measurement in high-speed
networks and look at a number of related studies. In Section 3,
we introduce ICIM and explain how to realize it in Reno TCP.
In Section 4, we evaluate the performance of Reno TCP that

is utilizing ICIM. Finally, in Section 5, we present concluding
remarks and discuss future projects.

II. AVAILABLE BANDWIDTH MEASUREMENT IN

HIGH-SPEED NETWORKS

In this section, we discuss some of the difficulties en-
countered by existing active available bandwidth measurement
tools, including ImTCP, in high-speed networks (1 Gbps or
higher). We assume that the machines that run the measure-
ment tools are general purpose machines, for example, a x86-
based CPU machine with a normal OS, such as 4.4 BSD or
Gnu/Linux (or similar). The problems mentioned here may
not occur in high-performance machines that are designed
especially for measurement.

A. Limitation of packet pacing in general-purpose machines

In current active measurement tools, probe packets must
be sent at a rate higher than the available bandwidth of the
network path, otherwise the packet space will not be expanded
and the tools will not be able to determine the available
bandwidth. When the available bandwidth can reach 1 Gbps
or higher, the transmission intervals of the probe packets must
be 12 µs (for measuring 1-Gbps bandwidth) or smaller. As we
discuss below, for a general-purpose machine, sending packets
in such small intervals causes high CPU overhead.

For pacing packets, there are two approaches. The first is
to continuously check the hardware clock (for example, using
gettimeofday()in UNIX systems) and send the packets
when the clock reaches a determined timing. In a Linux system
with an x86-based CPU, one access of the hardware clock
requires approximately 1.9 µs (in the FreeBSD system, one
access requires 9 µs) [10]. The write() system call requires
an average of 2 µs (in the case of a Pentium III CPU).
Therefore, a Linux system can only send packets in intervals
greater than 2 + 1.9 = 3.9 µs. This means that, the system can
measure the bandwidth up to 3 Gbps (for the case in which the
probe packet size is 1,500 Bytes). However, in order to send
packets at 3 Gbps, the CPU has to spend most of the time
checking the hardware clock overhead. If the measurement is
repeated continuously, then the CPU will not be able to process
tasks from other applications. The system performance then
will be deteriorated. Thus, checking the hardware clock to
send packets in a high-speed network is not a good approach.

The second approach is to register the packet sending
program to an Interrupt Service Routine (ISR) of the hardware
clock interrupt. In a general-purpose UNIX OS, the ISR
hardclock() is provided for this purpose. In 4.4BSD OS
and LINUX, the hardclock() system call is called by
the interrupt of hardware clock every 0.01 s. However, with
this low interrupt frequency, the program called by hard-
clock() can only send packets at the rate of 1.2 Mbps
(assuming that the packet size is 1,500 Bytes). To obtain a
higher interrupt frequency, a new interrupt schedule of the
hardware clock can be implemented. However, one hardware
interrupt (in 4.4 BSD OS) normally requires more than 1 µs
[11]. If the packet transmission rate is 1 Gbps, then the sending
interval is 12 µs. This means that, in this case, the overhead of

the hardware interrupt is as high as 1/12 of the total working
time of the CPU. In addition, a new interrupt schedule for the
hardware clock requires many changes in the OS.

B. Effects of Interrupt Coalescence

Another reason for the difficulty in the task of measurement
in high-speed networks is IC, which is deployed in most high-
bandwidth Network Interface Cards (NICs). IC is a technique
in which NICs group multiple packets that arrive in a short
time interval and pass them to the OS in a single interrupt. IC
reduces the CPU overhead when the arrival intervals of packets
become small. Because the inter-arrival intervals of the packets
observed by the kernel are changed, IC has an enormous
impact on bandwidth measurement tools, in which the arrival
intervals of packets are utilized for bandwidth estimation.

There are a number of types of timer setting in IC. For
example, Intel Gigabit Ethernet Controllers [8] contains the
following mechanisms for IC:

• Absolute timer: The absolute timer delays the assertion
of an interrupt to allow the controller to collect additional
interrupt events before delivering them to software.

• Packet timer: The packet timers are inactivity timers,
triggering interrupts when the link has been idle for an
appropriately long interval.

• Master timer for throttling all interrupt sources: An
interrupt throttling mechanism is used to set an upper
bound for the interrupt rate.

Under sustained loads, the absolute timers will be the
primary source of device interrupts [8]. We investigate the
absolute timers in greater detail. There are two absolute timers.
One is for transmit interrupts, and the other is for receive
interrupts. Because transmit interrupts only inform the kernel
as to the completion of packet sending, delays in transmit
interrupts do not affect the real transmission intervals of the
packets. In contrast, delays in receive interrupts change the
intervals of all receiving packets observed by the kernel. As
shown in Figure 1, the receive absolute timer starts to count
down upon receipt of the first packet. Subsequent packets do
not alter the countdown. Once the timer reaches zero, the
controllers generate an interrupt to pass all of the packets to the
OS in a bursty manner. The length of the timer is decided by
the parameter RxAbsIntDelay, which is defaulted to 0.1312
ms in Intel Gigabit Ethernet Controllers [12]. Thus, all packets
that have time intervals smaller than RxAbsIntDelay will
belong either to the same burst, in which case the time interval
between the packets becomes zero, or to two successive bursts,
in which case the time interval becomes RxAbsIntDelay or
larger. Therefore, the software cannot detect packet intervals
smaller than RxAbsIntDelay. With the default value of
0.1312 ms for RxAbsIntDelay, the software cannot perceive
transmission rates larger than 100 Mbps (if the packet size is
1,500 Bytes).

Without IC, an OS interrupt occurs whenever a single packet
arrives; this leads to a high CPU overhead when the system
performs high speed data transmission. Therefore, we should
not disable IC feature for the purpose of measurement. There
are some studies that have discussed measuring bandwidth

Interrupt generated

Packet arrival

Time

Fig. 1. Receive Absolute Timer

using the existing IC. For example, one study [10] suggests
that in order to obtain the real arrival intervals of packets,
the onboard timestamp of some network cards (for example
SysKonnect GigE NIC [9]) should be used. However, the same
study also concludes that this solution is not useful for general-
purpose network measurement tools, because very few NICs
have an onboard timer. Furthermore, using an onboard NIC
timer requires modification of the device driver. This prevents
the tool from being easy to run on numerous systems.

Another study [13] reports that since the last packet in a
burst formed by IC has the smallest delay in the NIC buffer,
the intervals of the last packets in the bursts can be used
for estimation of the available bandwidth, according to the
Pathload [1] algorithm. However, because only a small part
of stream is used for the measurement, the stream must be
very long. This is not suitable in inline measurement, because
making long measurement streams in TCP badly effects the
TCP transmission performance.

III. INTERRUPT COALESCENCE-AWARE INLINE

MEASUREMENT (ICIM)

A. Effects of Interrupt Coalescence on TCP

The behavior of TCP when the network cards enable IC has
been investigated in previous studies [11, 13], and IC has been
shown to be detrimental to TCP self-clocking. IC causes the
ACK packets to arrive at the sender in bursts, and this bursty
arrival in turn causes bursty transmission of data packets and,
subsequently, bursty transmission of ACK packets from the
TCP receiver. According to one study [13], with IC, 65% of
ACKs arrive with intervals of less than 1 µs, because they
are delivered to the kernel with a single interrupt. Meanwhile,
without IC, almost no ACK packets arrive with small intervals.

In the present study, we propose an algorithm that can
exploit the burst of data packets in TCP under the effects
of IC to measure the available bandwidth of the network path
between TCP sender and receiver. The TCP sender adjusts the
number of packets involved in a burst and checks whether the
inter-intervals of the bursts of corresponding ACK packets are
increased or not to investigate the available bandwidth. ICIM
can be employed into any version of TCP. Using previously
reported results [13], ICIM first checks to see if the network
card has IC enabled. If the IC is enabled, ICIM continues
measurement based on the bursty transmission of TCP.

B. Packet burst-based available-bandwidth measurement al-
gorithm

Because the absolute timer (described in Section 2) is
the primary source of device interrupts in the high speed

Transmission direction

Burst 1
Burst 2

S

(N pkts)

At the TCP sender

Probing rate: NP/S

A >NP /S

A<NP/S

Burst 2

S

S

At the TCP receiver

Burst 1

Burst 2 Burst 1

Burst 2

S

At the TCP sender

AC K packets

Burst 1

Burst 2

S

Burst 1

Fig. 2. Packet burst-based available-bandwidth measurement principle

transmission, we assume that the NIC uses the absolute timer
when receiving packets. The measurement algorithm using
bursts of packets is described below.

As shown in Figure 2, we consider the situation in which
two bursts of packets are sent at the interval S. The number
of packets in the first burst (Burst 1) is N . Assume that C
is the capacity of the bottleneck link. CCross is the average
transmission rate of cross traffic over the bottleneck link when
the two bursts pass the link, and P is the packet size. Then,
the amount of traffic that enters the bottleneck link during
the period from the point at which the first packet of Burst
1 reaches the link until the point at which the first packet
of Burst 2 reaches the link will be the sum of the packets
in Burst 1 and the cross traffic packets arriving in S, i.e.,
CCross · S + N · P . If the amount is larger than the transfer
ability of the link during this period, considered to be C · S,
then Burst 2 will go to the buffer of the link. This results in
a tendency for the interval between the two bursts to increase
after leaving the bottleneck link.

We can write that the burst interval will be increased if

CCross · S + N · P > C · S (1)

or,
N · P

S
> C − CCross

Note that C − CCross is the available bandwidth (A) of the
bottleneck link. Therefore, Eq. (1) becomes

N · P
S

> A

Since we assume that the absolute timer is used, S is always
larger than RxAbsIntDelay. Therefore, at the NIC of the
TCP receiver, since the arrival interval of the two bursts are
larger or equal to S, the two bursts are passed to the kernel in
two different interrupts. The TCP receiver then sends the ACK
of the two bursts in the same intervals to the sender TCP. Thus,
by checking the arrival intervals of the corresponding ACK
packets of the two bursts, the TCP sender can determine if
A > NP/S. By sending numerous bursts with various values
of NP/S (by changing N), we can search for the value of
the available bandwidth A. This is the measurement principle
of the proposed inline measurement mechanism.

1N2N1−kNkN

ku BB =

1−kS 1S
kS

1−kB 2B

lBB =1

Packet transmission direction

iii SPNB /=

Seach range

Packet bursts

(i=1..k)

Fig. 3. Probing a search range in ICIM

C. ICIM

ICIM inherits the concept of the search range from the mea-
surement algorithm in ImTCP [7]. This is the idea of limiting
the bandwidth measurement range using statistical information
from previous measurement results rather than searching from
0 bps to the upper limit of the physical bandwidth for every
measurement. By limiting the measurement range, we can
keep the number of probe packets small.

At first, we explain how to search for the available band-
width in a determined search range and then we present an
overview of the measurement algorithm.

Assume that the search range for a measurement is (Bl, Bu).
The algorithm then check k values in the range to determine
which is nearest to the real available bandwidth. We use k = 4
in the following simulations. The k points are:

Bi = Bl +
Bu − Bl

k − 1
(i − 1) (i = 1, ..., k)

The TCP sender then sends k consequence bursts and the
number of packets are adjusted so that the probe rate of Burst
i is Bi:

Ni · P
Si

= Bi (2)

We illustrate the setting in Figure 3.
Realization of Eq. (2) requires the following:

• The value of Si must be estimated at the timing of the
transmission of Burst i. In fact, Si is unknown until Burst
i + 1 is transmitted. But we need the value at the timing
of the transmission of Burst i in order to guarantee Eq.
(3). We therefore estimate the value of Si by assuming
that the amount of data in Burst i is proportional to the
length of the interval as follow:

Si =
Ni · P

T
(3)

where T is the average throughput of TCP.
• In case the number of packets in Burst i is smaller than

Ni , additional packets must be added to the burst so that
the packet number becomes Ni. ICIM utilizes a buffer
located at the bottom of the TCP layer in order to store
the packets temporarily before sending them to the IP
layer, in the manner of ImTCP. ICIM stores all of the
packets of the burst that preceded Burst 1 in the buffer.
Packets are added to Burst i (i = 1..k) when necessary

in order to maintain the desired number of packets (Ni)
in these bursts.
ICIM sends k bursts and checks the corresponding ACK
of the bursts. If from burst number j, j = 1..k, the
arrival interval of the bursts becomes larger, then Bj is
considered to be the value of the available bandwidth in
that measurement. Here, the burst interval is consider to
become larger if the arrival interval is larger then λ times
of the sending interval. We set λ to 1.01 in the following
simulations.

ICIM first checks whether IC is enabled for the network
card. For the reasons explained in Subsection 3.1, ICIM checks
the arrival intervals of the ACK packets. If more than 50%
of the intervals are less than 1 µs, then ICIM decides that
IC is enabled. If the IC is enabled, then ICIM continues
the following measurement steps. Otherwise, the measurement
algorithm introduced in ImTCP is used.

The measurement algorithm of ICIM is as follows:

1) Set the initial search range
We set the initial search range as (T, 2 · T) where T is
the throughput of TCP.

2) Search for the available bandwidth in the decided search
range.
ICIM waits until the window size (cwnd) is larger than
Cmin (large enough to create bursts for measurement).
We use Cmin = 50 in the following simulations. Data
packets are then sent in order to search the available
bandwidth in the decided search range, as described
above.

3) Add the new measurement result to the database and
calculate the new search range.
The measurement result in the last step is added to a
dabatase of measurement results. We then calculate the
new search range (B′

l , B
′
u) from the database. We use

the 95% confidential interval of the data stored in the
database as the width of the next search range, and the
current available bandwidth is used as the center of the
search range. The search range is calculated as follow:

B′
l = R − max

(
1.96

V√
q
,

R

10

)

B′
u = R + max

(
1.96

V√
q
,

R

10

)

where R is the latest measurement result. V is the
variance of stored values of the available bandwidth and
q is the number of stored values. R/10 is a value that
ensures that the search range does not become too small.
Moreover, when measurement result in Step 3 falls to
Bl (Bu), it is possible to consider that the network has
changed greatly so that the real value of the available
bandwidth is lower (higher) than the search range. In this
case, we discard the accumulated measurement results
because they become unreliable as statistic data and
enlarge the search range (Bl, Bu) twice towards the
lower (higher) direction to create (B′

l , B
′
u).

4) Wait for Q seconds then return to Step 2 and start the
next measurement. During the waiting time Q, TCP

10 Gbps 10 Gbps

 connection

Sender with ICIM Receiver
Data pkts

ACK pkts

NIC:ACK pkts
are delayed

NIC:Data pkts
are delayed TCP

Fig. 4. Simulation topology

TABLE I

DISTRIBUTION OF PACKET SIZE OF CROSS TRAFFIC.

Packet size (Bytes) Proportion of bandwidth (%)
28 0.08
40 0.51
44 0.22
48 0.24
52 0.45
552 1.10
576 16.40
628 1.50
1420 10.50
1500 37.10
40-80 (range) 4.60
80-576 (range) 9.60
576-1500 (range) 17.70

transmits packets in the normal manner. The waiting
time is needed for the TCP transmission to return to the
normal state after the packets store-and-forward process
at Step 2.

IV. SIMULATION EXPERIMENT

A. Measurement results

We show the measurement results for ICIM through ns-
2 [14] simulations. We implement ICIM via Reno TCP, the
most popular version of TCP, and use the topology shown in
Figure 4 for the simulation. The sender and receiver of TCP
are connected through 10-Gbps access links and a bottleneck
link. The NICs of both the sender and receiver host employ
IC with an absolute timer. The value of RxAbsIntDelay
used in NIC is 0.000132 (the default value). The cross traffic
on the bottleneck link is made up of UDP flows in which
various packet sizes are used, according to results monitored
on the Internet [15], as shown in Table I. The capacity of the
bottleneck link is 5 Gbps, and the available bandwidth (A-bw)
is 2 Gbps (from 0 to 15 sec), 3 Gbps (from 15 to 35 sec) and
4 Gbps (from 35 to 50 sec).

Figures 5(a) and 5(b) show the measurement results for
ICIM when the interval between two measurements is set
to one RTT or two RTTs, respectively. Also shown are the
search ranges for each measurements. The search ranges, in
most cases, successfully cover the correct value of the A-bw.
Therefore, ICIM can quickly detect the A-bw, even in such
a high-speed network. When Q = 1, the throughput of TCP
oscillates slightly, the estimation of the burst interval in Eq. (3)

becomes incorrect. Therefore, the probing rate of each Burst
i may not be exactly equal to Bi (in Step 2 of Section 3.3).
This leads to a large dispersion of the measurement results
in Figure 5(a). When Q = 2, the TCP sender creates fewer
packet bursts so that the measurement results are nearer to the
correct value of the A-bw, as shown in Figure 5(b). However,
the measurement frequency (16.7 results/second) becomes half
of that when Q = 1 (34.2 results/second)

B. Comparison with IC-aware Pathload

For the comparison between ICIM and Pathload, the TCP
sender and receivers are next replaced by the sender and
receiver of Pathload. We used the version of Pathload that
can detect and filter the effects of IC [13]. To make the
measurement of Pathload faster, we set the starting probing
rate to 200 Mbps (instead of the default setting of 1 Mbps).
In addition, ω and χ are set to 200 Mbps and 150 Mbps,
respectively, and the size of probing packets is set to 1,500
bytes.

The measurement results of Pathload when the number of
packets in a stream K is set to 160 are shown in Figure 6(a).
Because the default value of RxAbsIntDelay used in NIC is
0.000132 (s) and the packet size is 1,500 bytes, the average
number of packets in a burst is 22 when the A-bw is 2 Gbps,
33 when the A-bw is 3 Gbps and 44 when the A-bw is 44
Gbps. Therefore, when K = 160, there are approximately nine
bursts in each stream when the A-bw is 2 Gbps. This means
that Pathload has approximately nine packets (the last packet
in the bursts) for measurement. The increasing trend in the
stream in this case can be well determined so Pathload can
deliver good measurement results. However, when the A-bw
becomes 3 Gbps or greater, the number of bursts becomes
approximately six or fewer. Then, Pathload does not have
enough packets to detect well the increasing trend in the
stream. Therefore, as shown in Figure 6(a), Pathload fails to
deliver good measurement results when the bandwidth is equal
to or greater than 3 Gbps.

Figure 6(b) shows the measurement results of Pathload
when K is set to 200. In this case, Pathload has a suffi-
cient number of packets for detecting the increasing trend
of streams. Therefore, the measurement results are correct.
However, since Pathload searches for the A-bw from a low
value, a long time is required to yield one result. The mea-
surement frequency is only 0.28 results/second, which is 60
times smaller than that of ICIM (with Q = 2 RTTs).

Figure 6(b) shows that, if the A-bw changes during a
measurement, Pathload may not detect the change well. At
15 seconds, the A-bw changes from 2 Gbps to 3 Gbps while
Pathload is probing a rate smaller than 2 Gbps. When the
probing rate reaches 2 Gbps, the A-bw is already changed,
therefore Pathload can successfully detect the value of 3 Gbps.
However, at 35 seconds, the probing rate of the ongoing
measurement reaches 3 Gbps before the change in the A-bw
from 3 to 4 Gbps, so Pathload assumes that the A-bw is smaller
than or equal to 3 Gbps. Therefore, Pathload delivers a value of
approximately 3 Gbps at the end of that measurement, which
is far from the value of the A-bw at this timing.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (M

bp
s)

Time (s)

Search range
Results

A-bw

(a) Measuring intervals Q = 1RT T

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (M

bp
s)

Time (s)

Search range
Results

A-bw

(b) Q = 2RT Ts

Fig. 5. Measurement results for ICIM

TABLE II

NUMBER OF PACKETS REQUIRED FOR A MEASUREMENT

A − bw ICIM IC-aware Pathload Ratio ICIM:Pathload
2 Gbps 110 200 · 12 · 8 = 19 200 0.006
3 Gbps 130 200 · 12 · 9 = 21 600 0.006
4 Gbps 154 200 · 12 · 10 =24 000 0.006

Table II compares the number of packets used in the
measurement of ICIM, and Pathload. ICIM sends four bursts
of packets for each measurement. The average number of total
packets in four bursts are shown in the second column of the
table. On the other hand, Pathload probes 8, 9 and 10 times
for one measurement result when the A-bw is 2, 3 and 4 Gbps,
respectively. Each probe requires 12 streams, the number of
packets of which is 200. We can see that the number of packets
used by ICIM is less than one percent of that of Pathload.

Figures 5 and 6 show that the measurement results of
ICIM have a larger dispersion compared to Pathload because,
based on the nature of the algorithm, ICIM cannot increase
the length of each measurement burst to obtain high accuracy,
as Pathload does. Instead, the accuracy can be improved by
taking the exponential moving average in suitable intervals.

C. Measurement results in Web traffic environment

We next investigate the measurement results for ICIM in
the network model depicted in Figure 4. Cross traffic is now
changed to Web traffic involving a large number of active Web
document accesses. We use a Pareto distribution for the Web
object size distribution with 1.2 as the Pareto shape parameter
and 12 KBytes as the average object size. The number of
objects in a Web page is 20. The capacity of the bottleneck
link is set to 1Gbps. The access links are also set to 1Gbps.

The available bandwidth is calculated as the capacity of
the bottleneck link minuses the total amount of Web traffic
passing the link. Figure 7(a) shows the changes of available

bandwidth and the average measurement results for each
second. ICIM under-estimates the available bandwidth a little
because the cross traffic, composed of so many connections,
arrives at the bottleneck link in a bursty fashion. The burst
of cross traffic may enlarge the intervals of the measurement
bursts of ICIM even when the probing rate is still lower than
the average available bandwidth. However, the measurement
results deviate only a litle from the correct values and in
general they can follow the changes of available bandwidth.

Figure 7(b) shows the measurement results for IC-aware
Pathload in the same environment. We set K to 160 and the
starting probing rate to 100Mbps and ω and χ are both set to
50 Mbps. Overall, the results have a trend of over-estimation.
We think that the problem can be solved if we adjust the
PCT/PDT thresholds of Pathload appropriately, instead of
using the default values. Figure 7(c) shows the measurement of
normal Pathload. Because the probe packets are grouped at the
NIC, the increasing trend in the measurement streams becomes
difficult to discover. Therefore, Pathload over-estimates in
most of the time.

D. TCP compatibility

We finally examine the data transmission performance of
Reno TCP when it employs ICIM. We perform a simulation
where a number of Reno TCP connections that have ICIM
conflict with the same number of Reno TCP connections
that do not have ICIM through a 1 Gbps bottleneck link, as
shown in Figure 8. All the connections have the same RTT
(0.018 s) and the same access link’s bandwidth (10 Gbps). The
number of connections is set to 4, 8 and 12. For each value of
connection numbers, simulation is repeated 10 times, and the
throughputs of the TCP connections that have and do not have
ICIM (and the ratio of thereof) are calculated and compared.

Table III shows the results when Q of ICIM is set to 1 RTT
and 2 RTTs. In case ICIM performs measurement in every
RTT, the TCP achieves lower throughput than TCP that does

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Pathload
A-bw

(a) Number of packets in a stream K = 160 packets

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Pathload
A-bw

(b) K = 200 packets

Fig. 6. Measurement results for IC-aware Pathload

10 Gbps

10 Gbps

TCP senders with ICIM

Bottleneck link

RenoTCP senders

TCP receivers

10 ms

10 ms

10 ms

10 Gbps

10 ms 10 ms

10 Gbps

RenoTCP receivers

Fig. 8. Simulation topology for examining TCP compatibility

TABLE III

THROUGHPUT (MBPS) OF RENO TCP USING ICIM: NORMAL RENO TCP

(RATIO)

#connections Q=1 RTT Q=2 RTTs
4 466.4 : 490.6 (0.95:1) 483.7 : 475.6 (1.01:1)
8 451.1 : 544.4 (0.82:1) 505.1 : 490.5 (1.02:1)
12 418.7 : 577.7(0.72:1) 503.5 : 493.2 (1.02:1)

not perform ICIM when conflicts occur because ICIM has to
delay several data packets for measurement in this case. As
shown in Table III, the ratio of throughput between TCP with
ICIM compared to RenoTCP is always less than 1. When the
number of connections increases, the ratio is lower because
conflicts between TCP connections are more intense. If ICIM
takes a lower measurement frequency, for example, when Q
= 2 RTTs, then the TCP connections performing ICIM can
obtain the same throughput as normal Reno TCP, as shown in
the third column of the table.

V. CONCLUSION AND FUTURE STUDIES

In the present paper, we introduced ICIM, a new method
that can measure the available bandwidth in a 1-Gbps or

higher network path. The proposed measurement algorithm
does not require regulation of packet transmission intervals
and works well with Interrupt Coalescence. Simulation experi-
ments showed that the proposed measurement algorithm works
well with no degradation of TCP data transmission speed.

At present, we are evaluating the performance of ICIM in
a real network environment. In addition, we are investigating
the measurement mechanism for the capacity of high-speed
networks that can be implemented in ICIM with the least
change.

REFERENCES

[1] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput,” in
Proceedings of ACM SIGCOMM 2002, Aug. 2002.

[2] N.Hu and P.Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE Journal on Selected Areas in
Communications, vol. 21, Aug. 2003.

[3] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study of available
bandwidth estimation tools,” in Proceedings of Internet Measurement
Conference 2003, Oct. 2003.

[4] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell, “PathChirp:
Efficient available bandwidth estimation for network paths,” in Proceed-
ings of Passive and Active Measurement Workshop, 2003.

[5] J. Navratil and R. Cottrell, “ABwE: A practical approach to available
bandwidth estimation,” in Proceedings of the 4th Passive and Active
Measurement Workshop PAM 2003, Apr. 2003.

[6] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M. Fomenkov
and k claffy, “Comparison of public end-to-end bandwidth estimation
tools on high-speed links,” in Proceedings of the 6th Passive and Active
Measurement Workshop PAM 2005, Mar. 2005.

[7] Cao Le Thanh Man, Go Hasegawa and Masayuki Murata, “Available
bandwidth measurement via TCP connection,” in Proceedings of the
2nd Workshop on End-to-End Monitoring Techniques and Services
E2EMON, Oct. 2004.

[8] Intel, “Interrupt Moderation Using Intel Gigabit Ethernet Controllers,”
available at http://www.intel.com/design/network/
applnots/ap450.pdf(2003).

[9] Syskonnect, “SK-NET GE Gigabit Ethernet Server Adapter,” available at
http://www.syskonnect.com/syskonnect/technology/
SK-NET_GE.PDF(2003).

[10] G.Jin and B.Tierney, “System capability effect on algorithms for net-
work bandwidth measurement,” in Proceedings of Internet Measurement
Conference 2003, Oct. 2003.

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

B
an

dw
id

th
 (

M
bp

s)

Time (s)

A-bw
Results (average)

(a) Average measurement results of ICIM for each second

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Pathload
A-bw

(b) Measurement results for IC-aware Pathload. K = 160

0

200

400

600

800

1000

1200

1400

0 50 100 150 200

B
a
n
d
w

id
th

 (
M

b
p
s)

Time (s)

Pathload
A-bw

(c) Measurement results for normal Pathload. K = 200

Fig. 7. Measurement results in Web traffic environment

[11] M. Zec, M. Mikuc and M. Zagar, “Estimating the impact of interrupt
coalescing delays on steady state TCP,” in Proceedings of the 10th
SoftCOM 2002 conference, 2002.

[12] Intel(R) PRO/1000 Adapter, “README file,” available at
http://support.intel.co.jp/jp/support/network/
adapter/1000/linux_readme%.htm.

[13] R. Prasad, M. Jain and C. Dovrolis, “Effects of interrupt coalescence on
network measurements,” in Proceedings of the 5th Passive and Active
Measurement Workshop PAM 2004, Apr. 2004.

[14] NS Home Page, “http://www.isi.edu/nsnam/ns/,”
[15] “NLANR web site,” available at http://moat.nlanr.net/

Datacube/.

