
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

High-speed Distributed Video Transcoding for Multiple

Rates and Formats

Yasuo SAMBE†a), Member, Shintaro WATANABE†, Dong YU†, Nonmembers,
Taichi NAKAMURA††, and Naoki WAKAMIYA†††, Members

SUMMARY This paper describes a distributed video
transcoding system that can simultaneously transcode an MPEG-
2 video file into various video coding formats with different rates.
The transcoder divides the MPEG-2 file into small segments
along the time axis and transcodes them in parallel. Efficient
video segment handling methods are proposed that minimize the
inter-processor communication overhead and eliminate temporal
discontinuities from the re-encoded video. We investigate how
segment transcoding should be distributed to obtain the shortest
total transcoding time. Experimental results show that imple-
menting distributed transcoding on 10 PCs can decrease the to-
tal transcoding time by a factor of about 7 for single transcoding
and by a factor of 9.5 for simultaneous three kinds of transcoding
rates.
key words: MPEG, video-transcoding, distributed computing

1. Introduction

With the launch of digital broadcasting in many coun-
tries and the proliferation of digital video disks (DVD),
both of which use the MPEG-2 video coding standard
[1], it is expected that MPEG-2 will become the de
facto video compression format in video archives. On
the contrary, as the number of different video compres-
sion algorithms in use increases in the networked video
application over the Internet, there is a growing de-
mand to convert a pre-encoded MPEG-2 digital video
in archives to other compressed formats such as MPEG-
1, MPEG-4, H.263 and so on.

Besides converting formats, video content will be
altered in terms of bit-rate and resolution to meet the
network bandwidth and terminal capability. For in-
stance, the bandwidth of end user access networks can
vary from several tens of kilo-bits per second to 20 to
30 megabits per second. Moreover, modern terminals
use displays with various sizes and resolutions. There-
fore, it is often necessary for service providers delivering
video over the Internet to transcode the same content
to yield different video formats, spatial resolution, and
bit-rates simultaneously.

Several video transcoding techniques have been
†The authors are with the R&D Headquarters, NTT

DATA Corporation, Tokyo, Japan
††The author is with the School of Computer Science,

Tokyo University of Technology, Tokyo, Japan
†††The author is with the Department of Information Net-

working, Graduate School of Information Science and Tech-
nology, Osaka University, Osaka, Japan

a) E-mail: sanbey@nttdata.co.jp

proposed [2]–[7], and most attempt to decrease the com-
putational complexity by using information like DCT
coefficients and the motion vectors extracted from the
original coded data. None of them, however, was de-
signed to produce multiple formats and rates. The aim
of our work is to provide a video transcoding system
that can convert MPEG-2 video files into other kinds
of formats and bit-rates at high-speed. To realize mul-
tiple transcoding and speed up the transcoding process,
we integrate multiple processors to fully decode and re-
encode incoming video

Our transcoding system divides the MPEG-2 file
into small segments along the time axis and transcodes
them in parallel [8]. Parallel transcoding along time
axis usually suffers from quality discontinuity and
degradation around the segmented cut points in the re-
encoded video, because of a lack of information such as
the coding complexity of the previous video segment.
To get the information of the previous segment from
another processor requires inter-processor communica-
tion, which leads to additional overhead and a signifi-
cant performance degradation.

To achieve high performance without significant
quality degradation due to parallel transcoding, we pro-
pose the segment handling method; it divides in-coming
MPEG-2 data with minimum duplication and the data
are used to determine re-encoding parameters. We
also investigate scheduling algorithms and the segment
length of the distributed transcode that minimizes over-
all transcoding time.

The organization of this paper is as follows. Sec-
tion 2 introduces the distributed video transcoder ar-
chitecture. Section 3 proposes a video segment han-
dling techniques for distributed transcoding along with
experimental results. In section 4, we investigate the
performance model of the transcoder and the optimum
segment length. Section 5 uses experimental results to
assess the performance model. Our conclusion is pre-
sented in Section 6.

2. System Overview

Our transcoding system consists of a source PC, sev-
eral transcoding PCs, and a merging PC. These PC
are connected by Giga-bit Ethernet LAN, as shown in
Fig.1.

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Transcoded

Video

Source

PC

Merging

PC

Source

Video

(MPEG-2)

Transcoding

PC

Transcoding

PC

Transcoding

PC

Transcoding

PC

Source

Video Segment

Transcoded

Video Segment

LAN

・

・

・

Fig. 1 Distributed video transcoder

MPEG-2

Decoder

Filter,

Resize

Encoder

(MPEG-1)

Encoder

(MPEG-2)

Encoder

(MPEG-4)

・

・

・

Transcoded

Segments

Source

Segments

Fig. 2 Block diagram of a transcoding PC

The source PC has a source MPEG-2 Program
Stream (PS) input file in which is multiplexed audio
and video data. Upon user or operator request, the
source PC demultiplexes the audio and video data, di-
vides the MPEG-2 video file into video segments of
appropriate length, and transmits these segments to
the transcoding PCs. Segment length is determined so
that the total transcoding time will be minimized with
additional overlapped data, as explained in Section 3
and 4. When the source PC transmits segments to the
transcoding PC, it also sends the transcoding parame-
ters that specify the operation of the filter and the en-
coder of transcoding PC. These parameters include fil-
ter function specifications, spatial resolution, temporal
resolution, and re-encoding formats desired. The de-
multiplexing, dividing and transmitting processes are
implemented by multi-threaded programming so that
they can be performed in parallel. A video segment
consists of one or more consecutive Groups of Pictures
(GOP). Audio transcoding is done on a single transcod-
ing PC, because it is not computationally expensive to
transcode audio. Audio transcoding is ignored here-
after.

Each transcoding PC decodes and re-encodes the
video segments into the different video formats speci-

fied. Decoded frames are filtered, resized, and passed to
the encoder frame by frame. Figure.2 shows a block di-
agram of the transcoding PC. In the segment transcod-
ing process, a frame is decoded only once and the en-
coding modules specified by transcoding parameters re-
encode the frame. This frame by frame based transcod-
ing architecture gives greater flexibility in transcoding.
For example, new encoding modules or new filter oper-
ations like digital water marking can be easily added.
All of the modules shown in the figure, including trans-
mission modules, are implemented by multi-thread pro-
gramming. Therefore, both transmitting and transcod-
ing process also can run in parallel.

Transcoded segments are sent to the merging PC
and concatenated to form the desired video format files
at the merging PC. After the second segment for each
desired file is received, the concatenation process begins
and runs in parallel to the following segment transcod-
ing. This concatenation process includes modification
of time-code. In this paper, video buffer verifier (VBV)
requirements are not taken into account, because the
probability that a bitstream concatenated with seg-
ments does not meet the VBV requirements can be de-
creased by overlapped segment transcoding. In order
to strictly guarantee the requirements, efficient meth-
ods for compressed domain video editing as proposed
in [12] should be applied .

3. video segment handling

If the video segments are to be transcoded in parallel
with minimal communication overhead, we need effi-
cient video segment handling techniques with regard to
Open-GOP as well as rate control for re-encoding the
segments.

3.1 Segmentation at Open-GOP

There are two kinds of GOP in MPEG-2: Closed-GOP
and Open-GOP. In the case of Closed-GOP, all frames
of the GOP can be independently decoded and no prob-
lem occurs in the decoding process. On the contrary, if
the first GOP of the segment is an Open-GOP, the last
reference frame of the previous segment is needed to de-
code the first bidirectional coded frame. To better un-
derstand this, Fig.3 shows a typical GOP structure. In
this figure, GOP (k−1) is a closed-GOP and GOP (k) is
an Open-GOP. Decoding bidirectionally coded frames
B14 and B15 requires both P13 of GOP (k − 1) and
I16. If GOP(k − 1) is located on another transcoding
PC, the transcoding PC processing GOP(k) should get
the decoded P13 frame via inter-processor communica-
tion. Generally, Open-GOP is more efficient in coding
than Closed-GOP, because the former reduces the tem-
poral redundancy between consecutive frames around
GOP boundaries. Therefore most GOPs in MPEG-2
encoded files are Open-GOPs and most segments would

SAMBE et al.: HIGH-SPEED DISTRIBUTED VIDEO TRANSCODING FOR MULTIPLE RATES AND FORMATS
3

I

1

B

2

B

3

P

4

B

5

B

6

P

7

B

8

B

9

P

10

B

11

B

12

P

13

B

14

B

15

I

16

B

17

B

18

P

19

I

1

P

4

B

2

B

3

P

7

B

5

B

6

P

10

B

8

B

9

P

13

B

11

B

12

I

16

B

14

B

15

P

19

B

17

B

18

Display Order

Coded Order
GOP(k-1) GOP(k)

Fig. 3 Segmentation at Open-GOP

begin with Open-GOP.
This leads to the following approaches: (i) trans-

mitting decoded reference frames among transcoding
PCs, (ii) duplicating the coded frames data in seg-
mentation so that each segment can be decoded in-
dependently. The second approach is more suitable,
because the size of coded data is much smaller than
decoded data and it takes smaller time to transmit. In
this distributed transcoding system, source PC makes
video segments with duplicating one GOP after seg-
mentation point and transmits it to a transcoding PC.
The first bi-directionally coded frames of the GOP are
transcoded by the PC. The next segment except the
first bi-directionally coded frames is transcoded by an-
other PC. By this method, all frames of the Open-GOP
can be transcoded and the transcoded frames has the
same structure of source coded video.

3.2 Re-Encoding Rate Control around Cut Points

If each video segment is encoded independently, seg-
ment encoding quality may differ which leads to discon-
tinuity around the segmentation points and irregular
video quality. This is because re-encoding parameters
of each segment are determined without regard to the
coding complexity of the previous segment. The more
complexity the video frame has, the more bits must be
allocated to make coded video quality constant.

In the widely used MPEG-2 Test Model 5 (TM5)
rate control [10], the target size of the frame is made
proportional to complexity. In TM5, the frame com-
plexity Xn is defined as the product of the coded frame
size Sn (in bits) and the average quantization scale Qn

of the frame, where n denotes the coding picture type
(I, P, B). The complexity of the frame to be coded is
estimated as the same as that of the same type of pre-
vious coded frame. For example in Fig.3, in encoding
B14, the complexity of the frame is estimated as the
same as that of B12. By doing this, TM5 assures that
the video quality keeps consistent. TM5 calculate the
target frame size using the complexity. After decid-
ing the target frame size, quantization scale Q of each
macro-block is determined so that actual coded size will
be equal to the target size using virtual buffer memory

dn. The virtual buffer dn is the accumulation of dif-
ference between the actual size and the target size of
coded frames. The quantization scale Q is calculated
as Q = rdn/31, where r is reaction parameter which is
defined as r = 2bitrate/framerate.

Therefore, if the Xn and dn of the first frames in a
segment can be estimated properly, the re-encoder can
calculate the target bit budget and the initial quanti-
zation scale so that re-encoded video quality is made
to be constant around segment cut point. In our sys-
tem, each transcoding PC determines the complexities
of the first frames of the video segment from the source
MPEG-2 coded data. In fact, the complexities of the
transcoded frames would be different from the input
video due to the frame resolution and bit-rate change.
However, since it has been shown that there are strong
correlations between the input and output video [6], we
employ the complexities of the input coded data, multi-
plying each of them by the ratio of output resolution to
that of input. The virtual buffer memory dn can’t be
estimated without actual frame size of all re-encoded
frames including those of frames on other transcoding
PCs. However, dn is expected to be stabilized within a
few GOP transcoding. To shorten the stabilization pe-
riod, dn of the first frames is calculated from source
MPEG-2 data as dn = 31Qn/r. The re-encoder of
transcoding PC begins to transcode one GOP before
segmentation point with the initial complexities and
virtual buffer memory.

To verify the above proposed segment handling, we
conducted segment transcoding experiments as follows:

Table 1 Experimental transcoding conditions

Source Video Format MPEG-2 MP@ML
Source Video football, flower garden

mobile & calendar, sailboat
Source Video Rate 8 Mbit/s
Source Frame Size Horizontal 720 pixels，

Vertical 480 lines
Output Video Coding MPEG-2, MPEG-4 ASP
Output Video Rate MPEG-2: 2 Mbps, 1 Mbps

MPEG-4: 1 Mbps, 750 Kbps
Output Frame Size Horizontal 360 pixels，

Vertical 240 lines
GOP/GOV Structure M=3，N=15

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

k -1 k k + 1

k -1

k k + 1

k

k -1

k k + 1

k

k -1

Transcoding PC(j)

Source PC

k -1

k k + 1

k

k -1

Transcoding PC(j+1)

Transcoding PC(j)

Transcoding PC(j+1)

Transcoding PC(j)

Transcoding PC(j+1)

(a) Simply segmented

(b) 1GOP overlapped

(c) 1GOP overlapped with initial adjustment

MPEG-2 PS file

segment (s) segment (s + 1)

initial re-encoding rate-control parameters

estimated with the source MPEG-2 PS file

Fig. 4 Video segment handling methods

0

5

10

15

20

25

30

45 50 55 60 65 70 75 80 85 90

C
o
m
p
le
x
it
y
 (
 x
 1
0

5

)

2nd segment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

Fig. 5 Complexity around cut-point: MPEG-2 of 2Mbit/s,
mobile & calendar

(a) simply segmented and transcoded independently,
(b) 1GOP overlapped transcoding without initial pa-
rameter adjustment, (c) 1GOP overlapped transcod-
ing with initial parameters, as the above proposed
method. These methods are illustrated in Fig.4 and
the transcoding parameters are listed in Table.1. The
first segment has the first 60 frames and the second seg-
ment has the next 60 frames. Figure 5 and 6 show the
the complexity Xn and virtual buffer memory dn us-
ing the standard video mobile & calendar for MPEG-2
transcoded at 2 Mbit/sec and Fig.7- 8 show them using
sailboat for MPEG-4 transcoded at 750 Kbit/sec. We
can see that the Xn and dn of the proposed method
(c) in the second segment are the most approximate to
those of transcoding without segmentation. The pro-
posed initial adjustment shorten the period in which
the Xn and dn become close to those of non seg-
mented transcoding, compared with the one GOP over-
lapped transcoding without initial adjustment. Figure

0

2

4

6

8

10

12

14

16

45 50 55 60 65 70 75 80 85 90

V
ir
tu
a
l
B
u
ff
e
r
M
e
m
o
ry
 (
x
 1
0
4
)

Frame Number

2nd segment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

Fig. 6 Virtual buffer memory around cut-point: MPEG-2 of
2Mbit/s, mobile & calendar

0

2

4

6

8

10

12

45 50 55 60 65 70 75 80 85 90

C
o
m
p
le
x
it
y
 (
 x
 1
0

5

)

Frame Number

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

2nd segment

Fig. 7 Complexity around cut-point: MPEG-4 of 750Kbit/s,
sailboat

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

45 50 55 60 65 70 75 80 85 90

V
ir
tu
a
l
B
u
ff
e
r
M
e
m
o
ry
 (
x
 1
0
4
)

Frame Number

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

2nd segment

Fig. 8 Virtual buffer memory around cut-point: MPEG-4 of
750Kbit/s, sailboat

9 shows the Peak Signal-to-Noise Ratio (PSNR) of these
methods using the standard video mobile&garden for
MPEG-2 transcoded at 2 Mbit/sec and Fig.10 shows
them using sailboat for MPEG-4 transcoded at 750
Kbit/sec. These results show that the proposed method
(c) achieves the same quality and continuity as the non-
segmented video sequence. Example transcoded pic-

SAMBE et al.: HIGH-SPEED DISTRIBUTED VIDEO TRANSCODING FOR MULTIPLE RATES AND FORMATS
5

18

19

20

21

22

23

24

55 60 65 70 75 80 85 90 95 100 105

Frame Number

P
S
N
R
 (
d
B
)

No segmented

1GOP overlapped

Simply segmented

1GOP overlapped with initial adjustment

Fig. 9 Transcoded video quality around cut-point: MPEG-2
of 2Mbit/s, mobile & calendar

26

28

30

32

34

55 60 65 70 75 80 85 90 95 100

No segmented

1GOP overlapped

Simply segmented

1GOP overlapped with initial adjustment

Frame Number

P
S
N
R
 (
d
B
)

Fig. 10 Transcoded video quality around cut-point: MPEG-4
of 750Kbit/s, sailboat

Fig. 11 An example frame of simply segmented method (a) at
cut-point

tures are shown in Fig.11 and Fig.12. These pictures
are the frame 60 of simply segmented method and that
of the proposed method in Fig.10, respectively. The
proposed method is especially efficient for video hav-
ing little movement like this sailboat video, because the
even short time quality degradation as Fig.11 for this
kind of video is very noticeable.

Table 2 shows the comparison of quality degrada-
tion during 30 frames after cut-point (the frame 60),
compared with transcoded video without segmentation.

Although the results show the proposed method
achieve the least quality degradation for many

Fig. 12 An example frame of the proposed transcoding method
(c) at cut-point

0

2

4

6

8

10

12

45 50 55 60 65 70 75 80 85 90

V
ir
tu
a
l
B
u
ff
e
r
M
e
m
o
ry
 (
x
 1
0
4
)

Frame Number

2nd Segment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

Fig. 13 Virtual buffer memory around cut-point: MPEG-4 of
1Mbit/s, sailboat

22

23

24

25

26

55 60 65 70 75 80 85 90 95 100 105

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

No segmented

1GOP overlapped

Simply Segmented

1GOP overlapped with initial adjustment

Frame Number

P
S
N
R
 (
d
B
)

Fig. 14 Transcoded video quality around cut-point: MPEG-4
of 1Mbit/s, sailboat

transcoding conditions, there are some cases in which
method (b) ’s degradation are smaller than those of
the proposed method. This is because the initial esti-
mation of virtual buffer memory dn doesn’t work well
due to saturation of quantization scale Q estimated for
that of output video segment. When this case occurs,
the estimated size of previous coded frames are smaller
than that of actual size, and then the dn is estimated
much higher than that of video without segmentation.

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Table 2 Comparison of image quality degradation for segment transcoding methods

format rate Simply 1GOP Overlapped 1GOP Overlapped
segmented with initial adjustment

(bit/s) (dB) (dB) (dB)

MPEG-4

football 750K -24.6 -16.7 -6.1
flower 750K -13.8 -2.3 -5.3

mobile&calendar 750K -15.0 -8.9 -6.2
sailboat 750K -44.8 -14.4 -9.7
football 1M -17.3 -6.4 -3.1
flower 1M -11.9 -2.2 -5.0

mobile&calendar 1M -11.3 -4.2 -6.5
sailboat 1M -46.2 -12.8 -3.3

MPEG-2
football 1M -33.9 -13.2 -2.0
flower 1M -15.0 -5.2 -2.0

mobile&calendar 1M -10.8 -6.9 -1.8
sailboat 1M -32.5 -5.6 -5.8
football 2M -12.9 -1.4 -1.3
flower 2M -11.7 -1.0 -0.4

mobile&calendar 2M -9.7 -2.1 -0.2
sailboat 2M -28.9 -0.2 -0.2

As an example of this case, dn using mobile & calendar
for MPEG-4 transcoded at 1 Mbit/sec is shown in Fig.
13. There are large discrepancies at the initial frame
(frame 45) between the dn of the proposed method and
that of the non segmented method and some differences
remains at the second segment. However, as shown in
Fig 14, the period in which the proposed method has
the most quality degradation is limited within a few
frames.

4. Segment Allocation of Distributed Transcod-
ing

This section describes how the video segments should
be allocated to transcoding PCs in order to minimize
the overall transcoding time.

4.1 Segment Transcoding Time

In a transcoding PC, since the MPEG-2 decoder, filter,
and encoders are implemented as threads operating in
parallel and the encoding process is the most time con-
suming process, the segment transcoding time primar-
ily depends on the encoder.

Most encoding algorithms include discrete cosine
transform, motion compensation (MC). In this paper,
the encoders we use employ simple block matching mo-
tion estimation with fixed search range in the MC.
Therefore, The time taken to transcode segments are
expected to be constant irrespective of the degree of
movement and the texture.

In order to ensure the assumption that segment
transcoding time can be treated as constant and to in-
vestigate how the video segment transcoding can be
determined,

we measured the MPEG-4 transcoding time of 40
second video segments created from a one hour foot-

ball video. The video sequence included a wide variety
of frames in terms of the degree of movement and tex-
ture. The other transcoding parameters were the same
as those in Table 1. The transcoding PC had two 1.26
GHz Pentium processors and 2GB of memory. Fig.15
and Fig.16 show the transcoding time and the time his-
togram respectively. These results show that the fluc-
tuation in segment transcoding time is about only 5%
or so and the transcoding speed can be estimated as
constant within the video sequence. Therefore, for a
transcoding job, the video segment transcoding time
can be taken as the product of c and d, where c is
transcoding performance and d is segment length in
terms of display time.

This c is time taken to transcode unit length of
source video and is the sum of decoding time cdec and
re-encoding time cenc. For multiple transcoding into
p kinds of rates or formats, the time taken to encode
only increases: c = cdec + pcenc. However, in case that
transcoding PC has multiple CPUs like our experimen-
tal system, the part of encoding might be done in par-
allel and the re-encoding time is less than pcenc. This
parallelization effect depends on the implementation of
encoder. In our system having dual CPU, when two
encoders run, about 60% of encoding process is over-
lapped and c can be estimated as

c = cdec + cenc (p = 1)

= cdec + 1.4�p

2
�cenc (p ≥ 2) (1)

where cdec ≈ 0.5, cenc ≈ 1.5 for the transcoding con-
ditions listed as Table.1. The estimation of cdec and
cenc using other transcoding conditions remains further
study.

SAMBE et al.: HIGH-SPEED DISTRIBUTED VIDEO TRANSCODING FOR MULTIPLE RATES AND FORMATS
7

Transcoding PCs

Demultiplexing and Transmission (R
demux

bit/s)

Source PC

Merging PC

PC(1)

PC(2)

PC(3)

PC(m)

Segment Length = d (sec) in tems of display time

Segment Transcoding (= c × d)

Segment Handling (T
OH

sec)

Transmission of

Transcoded Video Segments over LAN

MPEG-2 PS file (R
s
bit/s, F sec in terms of display time)

Fig. 17 Process flow of the distributed transcoding

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

Segment Number

S
e
g
m
e
n
t
T
ra
n
s
c
o
d
in
g
 T
im
e
 (
s
e
c
)

Fig. 15 Transcoding time of each 40 second video segment

0

5

10

15

20

25

30

35

40

45

< 60 60

-65

65

-70

70

-75

75

-80

80

-85

85

-90

≧90

Segment Transcoding Time (sec)

F
r
e
q
u
e
n
c
y

Fig. 16 Histogram of the segment transcoding time

4.2 Performance model and the optimum segment
length

Since the segment transcoding time can be considered
as constant, the proposed system implements a sim-
ple round-robin scheduling method (Fig.17). Segment
lengths are equal, as is transcoding PC performance.
For this allocation, shortening the length of the video
segment decreases the waiting time of each transcoding

PC, because the delay until the first video segment is
transmitted to the transcoding PC becomes shorter.
However, this increases overhead costs including the
segment handling process described in the previous sec-
tion and transmission overhead such as connection set-
ting, making the total transcoding time longer.

If we assume that segment transmission time is rel-
atively small and can be neglected,the total transcoding
time (Ttotal) can be estimated as the sum of the time
taken to transcode a source file (length F in display
time) using m PCs in parallel and the time (Tc) which
is not able to do in parallel. The former is cF/m. Ac-
cording to Amdahl’s law [9], the total transcoding time
Ttotal is estimated using parallelism a as

Ttotal = (Tc + cF){(1 − a) +
a

m
} (2)

a =
cF

cF + Tc
(3)

The Tc is the sum of time taken to transmit the
first video segment to the last PC (which is denoted
by PC(m) in Fig.17, and the time taken to transcode
overlapped 2GOP data as described in 3.2 and com-
munication setup overhead. We assume the latter time
is constant for each segment and denoted as TOH , and
assume that segment merging time can be neglected,
because the merging time is relatively small compared
to the transcoding time and the only few last segments
contribute to Tc. Then, the Tc can be estimated as

Tc =
dRsm

Rdemux
+

TOHF

dm
(4)

where Rs and Rdemux are source video coding rate in
bits/ sec, demultiplexing speed in bits/sec, respectively.
Therfore,using above equations,

Ttotal =
dRsm

Rdemux
+

cF

m
+

TOHF

dm
(5)

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 18 Overview of the distributed transcoding system

1300

1350

1400

1450

1500

1550

1600

0 50 100 150 200 250 300 350

Segment Length (sec)

T
o
ta
l
T
ra
n
s
c
o
d
in
g
 T
im
e
 (
s
e
c
)

↑d
opt
=60 Experimental

Estimated

Fig. 19 Performance of the distributed transcoder using 5
transcoding PCs

The optimum length of segment dopt for minimiz-
ing the total transcoding time Ttotal can be calculated
by differentiating (5) with respect to segment length d.

dopt =
√

RdemuxTOHF

RsM2
(6)

5. Experimental Results

In order to verify the performance model and the opti-
mum segment length, we conducted experiments using
the one-hour football video introduced in the previous
section and the transcoding parameters in Table 1. The
overview of experimental system is shown in Fig. 18.
All PCs had two 1.26GHz Intel’s Pentium processors,
and are connected by 1000Base-T LAN.

Figure 19 shows the total transcoding time for var-
ious segment lengths from 10 sec to 360 sec, using 5
transcoding PCs and Fig. 20 shows that of 10 transcod-
ing PCs, respectively. Estimated performance and op-
timum segment length, calculated by Eq.(5) and Eq.(6)

700

750

800

850

900

950

1000

0 50 100 150 200 250 300 350

Segment Length (sec)

T
o
ta
l
T
ra
n
s
c
o
d
in
g
 T
im
e
 (
s
e
c
)

↓d
opt
=30

Experimental

Estimated

Fig. 20 Performance of the distributed transcoder using 10
transcoding PCs

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9 10

T
o
ta
l
T
ra
n
s
c
o
d
in
g
 T
im
e
 (
s
e
c
)

Number of transcoding PCs

Experimental

Estimated

Fig. 21 Performance of the distributed transcoder

well predict the experimental results. The estimation
used c, Rdemux and TOH values of 2.0, 120Mbit/sec
and 1.5 sec, respectively; these values were obtained in
a preliminary experiment. The performance of merg-
ing is 30 Mbit /sec to form each output video listed
in Table 1. Figure 21 shows how the total transcoding
time decreases with the number of transcoding PCs. In
this experiment, each segment length was determined
by (6).

With 10 PCs, the proposed transcoding system de-
creases the total transcoding time achieved with one
PC by a factor of 7. While performance seems to sat-
urate at about 10 processors due to the bottleneck of
the de-multiplexing process in our current implemen-
tation, higher performance can be achieved by improv-
ing the demultiplexing algorithm and tuning operations
such as like disk I/O. Also, to achieve higher perfor-
mance, the optimum segment allocation taking into
account of the fluctuation in the segment transcod-
ing time needs to be investigated. Figure 22 shows

SAMBE et al.: HIGH-SPEED DISTRIBUTED VIDEO TRANSCODING FOR MULTIPLE RATES AND FORMATS
9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350

500Kb/s

500Kb/s + 1Mb/s

500Kb/s + 1Mb/s + 2Mb/s

Segment Length (sec)

T
o
ta
l
T
ra
n
s
c
o
d
in
g
 T
im
e
 (
s
e
c
)

Estimated

Fig. 22 Performance of the distributed transcoder for simulta-
neous multiple transcoding

the simultaneous multiple MPEG-4 transcoding per-
formance using 10 transcoding PCs. The estimation
used c is 2.0 for 500Kb/s, 2.6 for 500Kb/s + 1Mb/s,
and 4.7 for 500Kb/s + 1Mb/s + 2Mb/s, calculated
by Eq.(1), respectively. These results show that the
distributed transcoding is efficient for speedup of mul-
tiple transcoding. If three kinds of transcoding are
done on one transcoding PC, it will take about 16920
(= 3600×4.7) seconds. The distributed transcoding on
10 PCs decrease the total time by a factor of about 9.5
(= 16920/1780). The performance become improved
for multiple transcoding compared with that of single
transcoding. The performance improvement is because
decoding process is done only once and eliminate the
multiple decoding time. The reason that the estimated
performance at short segment length doesn’t well pre-
dict for multiple transcoding is because segment han-
dling overhead time TOH is assumed to be constant and
merging time is neglected. These may cause underesti-
mation of total segment overhead time.

6. Conclusion

In this paper, we investigated high-speed distributed
video transcoding for multiple rates and formats, us-
ing our proposed segment handling method and rate-
control to ensure uniform transcoded video quality.
Experimental results show the distributed transcoding
system with 10 PCs decrease the total transcoding time
by a factor of 7. More work needs to be done on a
better video rate-control for variable bit rate encoding,
and a better scheduling algorithm for unequal PC per-
formance [13] and that can deal with PC failure during

operation.

Acknowledgment

The Authors would like to thank Professor Masayuki
Murata of Osaka Univ. for his valuable suggestions on
distributed multimedia networks and Dr. Sakuichi Oht-
suka of NTT DATA corp. for his comments on video
coding quality.

References

[1] ITU-T H.262/ISO-IEC 13838-2, MPEG-2, H.262, 1996.
[2] G. Morrison, “Video transcoders with low delay,” IEICE

Trans. Commun., vol.E80-B, no.6, pp.963–969, June, 1997.
[3] T. Shanableh and M. Ghanbari，“Heterogeneous video

transcoding to lower spatio-temporal resolutions and dif-
ferent encoding formats,” IEEE Trans. Multimedia，Vol.
2，No. 2，pp.101–110，June, 2000.

[4] Z. Lei and N.D. Georganas, “Rate adaptation transcod-
ing for precoded video streams,” Proc. ACM Multimedia02,
pp.127–136, Juan-les-Pins, Dec., 2002.

[5] J. Youn, M.T. Sun and J. Xin, “Video transcoder architec-
ture for bit rate scaling of H.263 bit streams,” Proc. ACM
Multimedia, pp.243–250, Orlando, Nov., 1999.

[6] J. Xin, M.T. Sun and B.S. Choi and K.W. Chun, “An
HDTV-to-SDTV spatial Transcoder,” IEEE Trans. Circuits
& Systems Video Technology, vol.12, no.11, pp.998–1008,
Nov., 2002

[7] Y. Nakajima and M. Sugano, “MPEG bit rate and for-
mat conversions for heterogeneous network/storage appli-
cations,” IEICE Trans. Electron., vol.E85-C, no.3, pp.492–
504, Mar., 2002.

[8] Y. Sambe, S. Watanabe, Dong Yu, T. Nakamura, N.
Wakamiya, “A High Speed Distributed Video Transcoding
for Multiple Rates and Formats,” Proc. ITC-CSCC2003,
pp.921–924, 2003.

[9] J.L. Hennesy and D.A. Patterson, “Computer architecture
: A quantitative approach,” Morgan Kaufmann Inc., 1990.

[10] Test Model 5, ISO/IEC JTC1/ SC29/ WG11/ N0400,
MPEG93/457, April, 1993.

[11] P. Tiwari and E. Viscito，“A parallel MPEG-2 video en-
coder with look-ahead rate control,” Proc. IEEE Interna-
tional Acoustics, Speech and Signal Processing Conf., vol.4,
pp.1994–1997，1996．

[12] R. Egawa，A. A. Alatan，and A. N. Akansu，“Compressed
domain MPEG-2 video editing with VBV requirement,”
IEEE Proc. ICIP2000, 2000.

[13] Y. Sambe, S. Watanabe, Dong Yu, T. Nakamura, N.
Wakamiya, “Distributed video transcoding and its applica-
tion to grid delivery,” IEEE Proc. APCC2003, vol.1, pp.98–
102, 2003.

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Yasuo Sambe received the B.E. and
M.E. degrees from Osaka University, in
1984 and 1986, respectively. Since 1986,
he has been with NTT Data Corpora-
tion and engaged in research and develop-
ment of multimedia communication sys-
tems and video coding. He ia a member
of IEICE, ACM and IEEE.

Shintaro Watanabe received his
B.S. degree from Tokyo Institute of Tech-
nology in 1994 and M.E. degree from
Nara Institute of Science and Technology
in 1996. He has been working for Re-
search and Development Headquarters at
NTT DATA Corporation since 1996. His
main interests are in image processing and
video processing.

Dong Yu received the M.E. and Ph.D
degrees from University of Tokyo, in 1994
and 1991, respectively. Since 1994, he
has been with NTT Data Corporation and
engaged in research and development of
multimedia communication systems.

Taichi Nakamura received the B.E.
and M.E. degrees from Chiba Univer-
sity, Japan, 　 in 1972 and 1974, respec-
tively. He received the Ph.D. degree
from Hokkaido University in 1988. Since
1974, he worked with NTT Research Lab-
oratory and engaged in research of im-
age communications. Since 1988, he was
with NTT DATA and engaged in research
and development of multimedia systems.
Since 2003, He is a Professor of the School

of Computer Science, Tokyo University of Technology. He is a
member of IEICE and IEEE.

Naoki Wakamiya received the M.E.
and Ph.D. degrees from Osaka Univer-
sity in 1994 and 1996, respectively. He
was a Research Associate of the Gradu-
ate School of Engineering Science, Osaka
University, from 1996 to March 1997, and
a Research Associate of the Educational
Center for Information Processing, Osaka
University, from 1997 to March 1999. He
is an Assistant Professor of the Graduate
School of Information Science and Tech-

nology, Osaka University, since April 1999. His research interests
include performance evaluation of computer communication net-
works, and distributed multimedia systems. He is a member of
IEICE, ACM and IEEE.

