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Abstract—In the present paper, ImTCP-bg, a new background TCP data
transfer mechanism that uses an inline network measurement technique, is
proposed. ImTCP-bg sets the upper limit of the congestion window size of
the sender TCP based on the results of the inline network measurement,
which measures the available bandwidth of the network path between the
sender and receiver hosts. ImTCP-bg can provide background data trans-
fer without affecting the foreground traffic, whereas previous methods can-
not avoid network congestion essentially. ImTCP-bg also employs an en-
hanced RTT-based mechanism so that ImTCP-bg can detect and resolve
network congestion, even when reliable measurement results cannot be ob-
tained. The performance of ImTCP-bg is investigated through simulation
experiments, and the effectiveness of ImTCP-bg in terms of the degree of
interference with foreground traffic and the link bandwidth utilization is
also investigated.

I. I NTRODUCTION

Due to the rapid development of networking technologies in
both access and core computer networks, as well as the sud-
den increase of the Internet population, various IP-based net-
work services are emerging and currently co-exist on the Inter-
net. Although these services compete for network link band-
width, Transmission Control Protocol (TCP) currently plays a
major and important role for avoiding and solving network con-
gestion collapse by using the congestion control algorithm [1]
between the sender/receiver endhosts. Thus, TCP provides ef-
fective usage and fair sharing of network resources among com-
peting data transmission flows.

However, some of the Internet services do not necessarily re-
quire fair resource allocation with respect to other flows and
should be operated in the background through prioritization
mechanisms. For example, in Content Delivery/Distribution
Networks (CDNs) [2] such as Akamai [3], Web servers transfer
various types of data (e.g. backup, caching [4], and prefetching
[5]), in addition to the data in response to the document trans-
fer request from Web clients. In this case, the user-requested
data should be transferred with the higher priority than the other
traffic. Data backup and synchronization in Storage Area Net-
works (SAN), online updating of operating systems (e.g. Mi-
crosoft’s Background Intelligent Transfer Service [6]), and data
caching in peer-to-peer network [7] are other examples of tasks
that should be performed without affecting the foreground traf-
fic.

In previous studies, such prioritized behaviors were realized
by either IP-based mechanisms or application-based mecha-
nisms. In IP-based mechanisms, such as DiffServ [8], the In-
ternet routers are equipped with prioritization mechanisms and
process the incoming packets according to pre-defined prioritiza-
tion policies. For instance, Assured Forwarding in DiffServ has

four classes and three dropping levels at the router buffer to dif-
ferentiate the incoming flows. However, such mechanisms have
well-known shortcomings in scalability, because the prioritiza-
tion mechanisms should be implemented on all routers between
the sender and receiver endhosts.

In application-based mechanisms, the prioritization mecha-
nisms are provided by upper-level programs, or sometimes by
service administrators. For example, cache synchronization and
prefetching in CDNs is performed when there is little user-
requested foreground traffic. Data backup is usually scheduled
to be performed at midnight in order to avoid degrading the
throughput of other higher-prioritized flows during the daytime.
In such cases, the programs/administrators must monitor the net-
work traffic to determine the time during which the network is
underutilized. However, successfully realizing such mechanisms
is difficult due to large fluctuations in Internet traffic.

Therefore, TCP-based approaches such as TCP Nice [9] and
TCP-LP [10], which are herein referred to as background TCP,
have been introduced in order to handle background (lower-
prioritized) data transfer on the Internet. These approaches ob-
serve the Round Trip Times (RTTs) of the data packets of a TCP
connection and decrease the congestion window size when the
RTTs increase, whereas the original TCP Reno continues to in-
crease its congestion window size until packet loss occurs, re-
gardless of increases in RTTs. By this mechanism, background
data transfer against the TCP Reno connections is achieved be-
cause in practical networks the RTTs increase before the packet
loss occurs.

Although both TCP Nice and TCP-LP can realize data trans-
fer without affecting the foreground (higher-prioritized) traffic,
these protocols are unable to utilize the available bandwidth of
the network efficiently. This is because the degree to which the
congestion window size can decrease when the RTTs increase is
fixed, and is too large, regardless of the network condition, sim-
ilarly to TCP Reno which halves the window size when packet
loss occurs.

In the present paper, a novel background TCP mechanism
based on bandwidth measurement is proposed, with the goal of
achieving both background transfer and network bandwidth uti-
lization. The proposed background TCP variant uses the inline
network measurement mechanism proposed in [11, 12], which
can measure the available bandwidth of the network path be-
tween sender and receiver endhosts. This inline network mea-
surement mechanism uses the data and ACK packets of a TCP
connection for the measurement task, without injecting addi-



tional traffic, which is ideal for background data transfer. The
proposed mechanism sets the maximum value of the conges-
tion window size of the sender TCP by using the measurement
results of the available bandwidth. In addition, an RTT-based
mechanism that dynamically determines the degree to which the
congestion window size can decrease according to the observed
RTT value is employed, whereas TCP Nice and TCP-LP use a
constant degree for the possible decrease.

II. BACKGROUND DATA TRANSFER WITH TCP

TCP adjusts the data transmission speed by changing the con-
gestion window size in response to network congestion. The
TCP algorithm allows a TCP sender to continue to increase
its congestion window size additively until network congestion
is detected. TCP decreases the window size multiplicatively
when network congestion occurs. As a indicator of the net-
work congestion, TCP Reno uses packet losses in the network
(referred to herein as a loss-based mechanism). On the other
hand, TCP Nice and TCP-LP introduce another congestion indi-
cator, namely the increase of RTTs for data packets (RTT-based
mechanism). These protocols provide background data trans-
fer without affecting the foreground traffic based on the follow-
ing assumption. Consider an output link of an Internet router
equipped with an output buffer. When the packet incoming rate
of the traffic destined for the output link is larger than the output
link bandwidth, the excess traffic is stored in the output buffer,
which causes some queuing delay, and eventually results in the
packet losses when the buffer becomes full. That is, for a TCP
connection, the RTTs usually increase before packet losses oc-
curs when the network is congested. Therefore, TCP Nice and
TCP-LP connections can detect network congestion earlier than
TCP Reno connections.

The present paper considers the following two objectives for
background data transfer: (1) unaffected foreground traffic and
(2) fully utilization of the network link bandwidth. That is, a
perfect background data transfer mechanism can fully utilize the
bandwidth that is unused by the foreground traffic, while not
degrading the performance of the foreground traffic. However,
realizing such a complete mechanism is quite difficult because a
trade-off relationship exists between these two objectives. The
difficulty in realizing a good background data transfer mecha-
nism lies in balancing this trade-off relationship. For example,
TCP Nice and TCP-LP are unable to efficiently utilize the avail-
able bandwidth of the network path, especially when the number
of background TCP connections is small [9, 10]. This is mainly
because these protocols use fixed parameters in detecting net-
work congestion and decreasing the congestion window size.
That is, these two background TCP variants set the parameters
by which to satisfy objective (1), while sacrificing objective (2).
RTT-based mechanisms such as those of TCP Nice and TCP-LP
encounter this trade-off problem due to their trial-and-error na-
ture. These mechanisms continue to increase the window size
when RTT becomes increased, and then decrease the window
size to some degree.

In order to satisfy the above two objectives, another conges-
tion indicator is proposed, i.e. the available bandwidth of the

network path between the sender and receiver hosts (bandwidth-
based mechanism). The available bandwidth is the most straight-
forward information by which to describe background data
transfer. If the TCP sender obtains the available bandwidth in-
formation exactly and quickly, then an ideal background data
transfer mechanism, in terms of both the background nature and
link utilization can be created.

Many algorithms and tools by which to measure the available
bandwidth of network paths have been proposed in the literature
[13–17]. However, the existing methods cannot be directly em-
ployed for the newly proposed background TCP because these
methods utilize numerous test probe packets and require too
much time to obtain a single measurement result. In order to ad-
dress this problem, a method referred to as Inline measurement
TCP (ImTCP) has been proposed in [11, 12]. ImTCP does not
inject extra traffic into the network, but rather estimates the avail-
able bandwidth of the network path from data and ACK packets
transmitted by an active TCP connection in an inline fashion.
Since the ImTCP sender obtains bandwidth information every
1–4 RTTs, ImTCP can follow the traffic fluctuation of the under-
lying IP network well. In addition, because the ImTCP mech-
anism is implemented at the bottom of the TCP layer, various
types of TCP congestion control mechanisms can include this
measurement mechanism. Therefore, the ImTCP mechanism is
integrated into the proposed background TCP in order to obtain
the available bandwidth information of the network path.

However, the RTT-based mechanism cannot be discarded even
when the bandwidth-based mechanism is employed, because
ImTCP does not always provide accurate measurement results
for the available bandwidth. For example, when the congestion
window size of the ImTCP sender is small, ImTCP cannot mea-
sure the available bandwidth [12]. Furthermore, the measure-
ment accuracy of ImTCP depends on the network environment,
e.g. the RTT, the physical link bandwidth, and the number of ac-
tive connections. When the measured available bandwidth value
is inaccurate, the background data transfer based on the mea-
sured value may affect the foreground traffic. Therefore, the
RTT-based mechanism should be used in conjunction with the
bandwidth-based mechanism.

III. I MTCP-BG MECHANISMS

ImTCP-bg consists of two major mechanisms: a bandwidth-
based mechanism with inline network measurement and an en-
hanced RTT-based mechanism for adjusting the window size
when the first mechanism does not work well.

A. Bandwidth-based mechanism

In ImTCP-bg, the congestion window size is controlled us-
ing the available bandwidth information of the network path be-
tween the sender and receiver hosts, as measured by the ImTCP
mechanism. ImTCP-bg smoothes the measurement results of
ImTCP using a simple exponential weighted moving average, as
follows:

Ā ← (1 − γ) × Ā + γ × Acur (1)



whereAcur denotes the current result of the available bandwidth
measured by ImTCP mechanism,γ (0 < γ < 1) is a smooth-
ing parameter, and̄A is the smoothed available bandwidth. The
ImTCP-bg sender then sets the upper limit of the congestion
window size (maxcwnd) using the following equation:

maxcwnd ← Ā × RTTmin (2)

whereRTTmin is the minimum RTT experienced throughout
the lifetime of the connection.

As shown above, the proposed bandwidth-based mechanism
is quite simple: the upper-limit of the congestion window size is
simply set as the product of the measured available bandwidth
and the minimum RTT. In Section 4, this simple mechanism is
demonstrated to be effective for background data transfer.

B. Enhanced RTT-based mechanism

The effectiveness of the above-described bandwidth-based
mechanism depends largely on the accuracy of the measure-
ment by ImTCP of the available bandwidth. In [12] the au-
thors demonstrated that ImTCP can give the reasonably accurate
measurement results every 1–4 RTTs. However, ImTCP does
not always provide reliable measurement results, as explained
in Section 2, and may result in the congestion of the bottle-
neck link. Therefore, the RTT-based mechanism is employed to
quickly detect and resolve the undesirable network congestion.
The RTT-based mechanism is enhanced in order to be used with
the bandwidth-based mechanism.

ImTCP-bg detects network congestion using only the current
and minimum values of RTT, whereas TCP Nice and TCP-LP
also use the maximum RTT, which is difficult to observe in
the actual network. When an increase in RTT is detected, the
ImTCP-bg sender decreases its congestion window size imme-
diately in order to resolve the congestion. Next, denoteRTT as
the smoothed RTT value that is calculated by the traditional TCP
mechanism andRTTmin as the minimum RTT. Here,δ (> 1.0)
is the threshold parameter to judge whether network congestion
occurs. The ImTCP-bg sender detects the network congestion
when the following condition is satisfied:

RTT

RTTmin
> δ (3)

When Equation (3) is satisfied, the ImTCP-bg sender decreases
its congestion window size (cwnd) according to the following
calculation.

cwnd ← cwnd × RTTmin

RTT
(4)

Equation (4) implies that ImTCP-bg determines the degree of
decrease of the congestion window size based on the ratio of the
current value of RTT and its minimum value. Thereby, ImTCP-
bg avoids unnecessary the underutilization of the link bandwidth
while maintaining the background-based data transfer. Note that
this modification of the RTT-based mechanism is effective be-
cause the bandwidth-based mechanism is used concurrently.

Fig. 1. Network model

IV. PERFORMANCE EVALUATION

In this section, simulation results are shown to evaluate the
performance of ImTCP-bg proposed in Section 3. ns-2 [18] is
used for the simulation experiments. Traditional TCP Reno,
TCP Nice and TCP-LP were chosen for performance compar-
ison.

The network model used in the simulation is depicted in Fig-
ure 1. This model consists of sender/receiver hosts, two routers,
and links between the hosts and routers. The bandwidth of the
bottleneck link is set to 100 Mbps, and the propagation delay is
10 msec. A DropTail discipline is deployed at the router buffer,
and the buffer size is set to 1000 packets. The packet size is
1500 Bytes. Web traffic is assumed to be foreground traffic.
Nweb Web servers transfer Web documents to 200 Web clients.
The bandwidth of the access link of each Web node is set ran-
domly between 10 and 100 Mbps, and the propagation delay is
also a random value between 10 and 100 msec. The amount of
foreground Web traffic is adjusted by changingNweb. In addi-
tion, one or more TCP connections are established in order to
perform background data transfer. The performance of the back-
ground TCP variants are compared with respect to the following:
the transfer time of the foreground Web traffic, the queue length
of the bottleneck link buffer, the throughput of the background
data transfer, and utilization of the available bandwidth. The
control parameters for ImTCP-bg are set asγ = 1

8 andδ = 1.2
which are determined by simulation trials, and for TCP Nice and
TCP-LP are configured according to [9, 10].

A. Case of one connection

First, the simulation results are presented for the case in which
one background data transfer connection is established, and the
degree of interference with the foreground traffic and the utiliza-
tion of network bandwidth are evaluated. The number of Web
servers,Nweb, is changed from 10 to 50. Figures 2, 3 show the
change in the average throughput of the background TCP con-
nection and the average download time of foreground Web doc-
uments. The results labeled as “available bandwidth” in Figure 2
and “no background traffic” in Figure 3 show the results for the
case in which no background data transfer exists.

Figure 2 shows that although the TCP Reno connection
achieves the highest throughput, the throughput exceeds the
available bandwidth. Furthermore, Figure 3 shows that the av-
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Fig. 2. Average of throughput in the case of one connection
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Fig. 3. Average of download time in the case of one connection

erage download time of the foreground Web documents is larger
than for the case in which no background traffic exits. That is,
TCP Reno cannot be used for background data transfer. On the
other hand, for TCP Nice, TCP-LP and ImTCP-bg, the average
download time in Figure 3 is almost identical to the case of no
background traffic. This means that these protocols do not affect
the foreground Web traffic, satisfying one of the objectives of the
background data transfer. Furthermore, Figure 2 shows that the
average throughput of the ImTCP-bg connection is the closest to
the available bandwidth. Therefore, ImTCP-bg is determined to
have the most ideal characteristics for background data transfer,
which satisfies objectives (1) and (2) in Section 2.

B. Case of multiple connections

Finally, the results for the case in which two or more back-
ground data transfer connections are established are shown, and
the effect of multiple background TCP connections is evaluated.
In this simulation, five background TCP connections join the net-
work at 0, 50, 100, 150, and 200 seconds, and end data transmis-
sions at 500, 450, 400, 350, and 300 seconds. This means that
the number of active background TCP connections in the net-
work is as follows: 1, 2, 3, 4, 5, 4, 3, 2, and 1. Table I shows the
average queue length at the output link buffer of the bottleneck
router and Figure 4 shows the throughput of background data
transfer connection as functions of time. Here,Nweb is set to 20.

TCP Reno shows the worst behavior for the background data
transfer, in terms of large queue length at the bottleneck link
(Table I) and over-utilization of the available bandwidth of the

network (Figure 4(a)). Table I also shows that the average of
queue length of TCP Nice is the smallest among the four vari-
ants, meaning that TCP Nice is the best choice for satisfying ob-
jective (1), described in Section 2. However, Figure 4(b) shows
that the throughput of the background data transfer is the lowest
among the four variants, especially when the number of connec-
tion is small.

Figure 4(c) shows that when TCP-LP is used for background
data transfer, packet losses occur immediately after a new con-
nection is established. This is because TCP-LP needs the max-
imum RTT to control its congestion window size. TCP Nice
and TCP-LP detect network congestion by using the minimum
and the maximum RTT (or one-way packet delay). However,
essentially, monitoring the maximum RTT by background TCP
is difficult because these TCP variants decrease the congestion
window size at an early stage of network congestion. Therefore,
TCP-LP intentionally continues to increase its congestion win-
dow size until packet losses occur at the first slow start phase,
while monitoring the maximum RTT value. Furthermore, in Fig-
ure 4(c) we can see that the throughput of TCP-LP connections
are shown to be quite low for some time after the packet loss.
This is because the fast retransmission and fast recovery mecha-
nism of TCP Reno is activated.

Figure 4(d) shows that ImTCP-bg connections can utilize the
available bandwidth of network path effectively even when only
one connection exists. This is because ImTCP-bg controls its
congestion window size appropriately using the results of in-
line network measurement. Furthermore, when multiple con-
nections exist in the network, ImTCP-bg connections can main-
tain high utilization of the available bandwidth and the change
in the throughput of each ImTCP-bg connection is stable com-
pared with other background TCPs. That is because ImTCP-bg
dynamically changes the degree of decrease congestion window
size according to the change in the RTT. From these simulation
results, the bandwidth-based algorithm with inline measurement
and the RTT-based algorithm are determined to co-exist well in
ImTCP-bg to realize background data transfer.

V. CONCLUSION

In the present paper, ImTCP-bg, a new background TCP data
transfer mechanism that uses an inline network measurement
technique, was proposed. ImTCP-bg provides a background data
transfer without interfering with the foreground traffic by setting
the upper limit of its congestion window size based on the re-
sults of the inline network measurement. ImTCP-bg also em-
ploys an enhanced RTT-based mechanism, which dynamically
determines the control parameters. ImTCP-bg can detect and
resolve network congestion even when reliable measurement re-
sults cannot obtained. Through simulation evaluations, the effec-
tiveness of ImTCP-bg in terms of the degree of interference with
foreground traffic and utilization of the available bandwidth was
confirmed. In future studies, ImTCP-bg will be implemented
and its performance will be evaluated in an actual network.
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