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Abstract— In our previous studies, we proposed ImTCP, an inline net-
work measurement technique that can obtain available bandwidth informa-
tion of the network path between sender and receiver hosts continuously
and in an inline fashion. We also introduced ImTCP-bg, a background TCP
data transfer mechanism based on the measurement results of ImTCP. In
the present paper, we report implementation issues of the proposed mech-
anisms on a FreeBSD system and evaluate them on an experiment network
and in the actual Internet. We investigate the performance through the ex-
tensive experiments and verify that ImTCP can measure well the available
bandwidth of the network path, independent of the degree of its change, and
that ImTCP-bg can utilize the available bandwidth well, without degrading
the performance of competing traffic. From these experiment results, we
confirm the effectiveness of our concept, which is the inline network mea-
surement technique, in an actual network.

I. I NTRODUCTION

Due to the rapid development of networking technologies in
both access and core computer networks, as well as the sud-
den increase of the Internet population, new and varied types
of service-oriented networks have emerged and currently co-
exist in the Internet. Referred to as service overlay networks,
these networks include Content Delivery/Distribution Networks
(CDNs) [1, 2], P2P network [3, 4], Grid network [5, 6], and IP-
VPN [7]. Service overlay networks are upper-layer networks
that provide special-purpose services built onto the lower-layer
IP network. Under these circumstances, we believe that informa-
tion concerning bandwidth availability in a network path is im-
portant in adaptive control of the network. For example, in P2P
networks, when a resource discovery mechanism finds multiple
peers having the same requested contents, the bandwidth infor-
mation is used to determine which peer should transmit the con-
tent. Transmission Control Protocol (TCP) [8], which is a major
network transport protocol, can use such information to optimize
link utilization [9] or improve transmission performance [10].

The term “available bandwidth” in this paper means the band-
width information that is the unused portion of the network path
between sender and receiver hosts. Although a large number
of studies have examined methods for measuring the available
bandwidth [11–13], these algorithms have fundamental disad-
vantages, when we intend to use them for service overlay net-
works. It includes the disadvantage that many probe packets are
sent at a high transmission rate. For instance, PathLoad [12]
sends several 100-packet measurement streams for a measure-
ment. PathChirp [13] is a modification of PathLoad for the pur-
pose of decreasing the number of probe packets. However, the
required number of packets to be sent at one time in PathChirp
is still large. The probe traffic can affect other traffic along the

path, for example by degrading traffic throughput and increas-
ing the packet loss ratio and packet transmission delay. Exist-
ing measurement algorithms also require a long time to obtain
one measurement result. Long-term measurement can provide
an accurate result but cannot follow the dynamic traffic in the
IP network. Against the above problems, our research group
has proposed a novel inline network measurement technique,
ImTCP [14], which can continuously obtain the available band-
width information of the network path between sender and re-
ceiver hosts. ImTCP does not inject extra traffic into the net-
work, but rather estimates the available bandwidth of the net-
work path from data and ACK packets transmitted by an active
TCP connection in an inline fashion. Since the ImTCP sender
obtains bandwidth information every 1–4 RTTs, ImTCP can fol-
low the traffic fluctuation of the underlying IP network well.

We have also proposed the background TCP data transfer,
which is referred to as ImTCP-bg [15]. This application tech-
nique is based on the measurement results of ImTCP. When
background data transfer is realized, the quality of several net-
work services can be improved. For example, in CDNs, Web
servers transfer various types of data (e.g., backup, caching [16],
and prefetching [17, 18]), in addition to the data transferred in
response to the document transfer request from Web clients. In
this case, the user-requested data can be transferred quickly,
while the other data are transferred in the background. Gener-
ally, background data transfer should satisfy the following two
objectives:

1. no adverse effect on other traffic
2. full utilization of the network link bandwidth

In previous studies, several transport-layer approaches have been
introduced in order to handle background data transfer [19, 20].
These approaches observe the Round Trip Times (RTTs) of the
data packets of a TCP connection and decrease the congestion
window size when the RTTs increase, whereas the original TCP
Reno continues to increase its congestion window size until
packet loss occurs, regardless of increases in RTTs. Although
these approaches can realize data transfer without affecting other
traffic, they are unable to utilize the available bandwidth of the
network efficiently because the degree to which the congestion
window size is decreased when the RTTs increase is fixed and is
too large, regardless of the network condition. On the other hand,
ImTCP-bg can achieve both of the above two objectives by con-
trolling the congestion window based on the measurement result
of the available bandwidth of the network path.

In [14, 15], the effectiveness of the proposed mechanisms



(ImTCP and ImTCP-bg) are evaluated through the simulation
experiments. Ns-2 [21] is used for the performance evaluation.
In [14], ImTCP is confirmed to be able to measure well the avail-
able bandwidth, independent of the degree of change in available
bandwidth. Furthermore, ImTCP can also measure the avail-
able bandwidth continuously using only a small number of pack-
ets. We also confirmed that ImTCP preserves the characteristics
of the original TCP and maintains TCP compatibility. In [15],
background TCP data transfer based on the measurement results
is confirmed to be able to effectively utilize the bandwidth that is
unused by the other traffic, while not degrading the performance
of the other traffic. However, simply evaluating the effectiveness
of the inline network measurement algorithm and its application
technique is insufficient. Simulation plays a vital role in attempt-
ing to characterize a protocol, whereas the simulation condition
is relatively ideal compared to the actual network. Because the
heterogeneity of the actual network ranges from individual links
and network equipments to protocols that inter-operate over the
links and a ”mix” of different applications in the Internet, the
protocol behavior in the simulation may be quite different from
that on an actual network. Therefore, the measurement-related
mechanisms must be tested on actual networks in order to eval-
uate the effectiveness of the proposed mechanisms.

In the present paper, we implement the inline network mea-
surement algorithm, ImTCP, proposed in [14] and the back-
ground TCP data transfer mechanism based on the measurement
results, ImTCP-bg, proposed in [15]. We evaluate the effective-
ness of these mechanisms on actual networks. We implement
ImTCP and ImTCP-bg in a FreeBSD 4.10 [22] kernel system,
and evaluate the measurement accuracy of ImTCP and the per-
formance of ImTCP-bg in terms of the utilization of the available
bandwidth and the degree of interference with other traffic in the
experimental network. Through these experiments, we confirm
the effectiveness of the concept,inline network measurement, on
actual networks.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the algorithms of ImTCP and
ImTCP-bg. Section III describes the outline of implementa-
tion design in the FreeBSD 4.10 kernel system. In Section IV,
we present the results of the implementation experiments in or-
der to evaluate the performance of the ImTCP and ImTCP-bg
mechanisms. Section V describes the performance of the pro-
posed mechanism in an actual Internet environment. Finally, we
present conclusions and areas for future study in Section VI.

II. A LGORITHMS FORIMTCP AND IMTCP-BG

In this section, we introduce the algorithms of ImTCP and
its application technique, ImTCP-bg. The ImTCP algorithm is
described in detail in [14], and the ImTCP-bg algorithm is de-
scribed in detail in [15].

A. ImTCP algorithm

ImTCP measures the available bandwidth of the network path
between sender and receiver hosts. In TCP data transfer the
sender host transfers a data packet and the receiver host replies
the data packet with an ACK packet. ImTCP measures the avail-
able bandwidth using this mechanism. That is, ImTCP adjusts
the interval of data packets according to the measurement algo-

Fig. 1. Inline network measurement by ImTCP

rithm, and then calculates the available bandwidth by observing
the change of ACK intervals as shown in Figure 1.

During each measurement, ImTCP uses a search range to find
the value of the available bandwidth. The search range is a range
of bandwidth that is expected to include the current available
bandwidth. ImTCP searches for the available bandwidth only
within a given search range. By introducing the search range,
ImTCP can avoid sending probe packets at an extremely high
rate, which seriously affects other traffic. ImTCP can also keep
the number of probe packets for the measurement quite small.
The search range is determined using the previous measure-
ment results. Therefore, when the available bandwidth changes
rapidly according to changes in the network condition, the avail-
able bandwidth does not exist in the search range. ImTCP can
guess the new available bandwidth through a few measurement
trials. The following are the steps of the proposed algorithm for
one measurement:

1. Send a packet stream (a group of packets sent simultane-
ously) according to the Cprobe [23] algorithm to obtain a
very rough estimation of the available bandwidth and use
the result to set the initial search range.

2. Divide the search range into multiple sub-ranges of iden-
tical width of bandwidth. Send a packet stream for each
of sub-range. The transmission rates of the packets vary to
cover the sub-range of the bandwidth range.

3. Find a sub-range that is expected to include the available
bandwidth by checking to see if an increasing trend exists in
the transmission delay of each stream. Because the increas-
ing trend of the transmission delay in a stream indicates that
the transmission rate of the stream is larger than the cur-
rent available bandwidth of the network path, ImTCP can
choose a sub-range that is most likely to include the correct
value of the available bandwidth.

4. Determine the available bandwidth from the arrival rates
of every two successive packets of the stream correspond-
ing to the sub-range chosen in Step 3. Since arrival inter-
vals being larger than the transmission intervals indicates
that the transmission rate of the two packets is larger than
the available bandwidth, ImTCP determines the available
bandwidth as the largest rate of the packet pairs, for which
the arrival interval is the same as the transmission interval.

5. Create a new search range using the 95% confidence in-
terval of the previous results and use the current available
bandwidth as the center of the search range. When the



Fig. 2. Change of congestion window size in TCP Reno and ImTCP-bg

available bandwidth can not be found within the search
range, the network status may have changed greatly so
that the available bandwidth shifts out of the search range.
ImTCP then widens the search range in the possible direc-
tion of change of the available bandwidth. Return to Step 2
after determining the new search range.

B. ImTCP-bg algorithm

In order to realize the background data transfer, we measure
the available bandwidth of the network path using the ImTCP
mechanism and utilize the information of the available band-
width to control the congestion window size of a TCP connec-
tion as shown in Figure 2. ImTCP-bg smoothes the measurement
results of ImTCP using a simple exponential weighted moving
average, as follows:

Ā ← (1 − γ) · Ā + γ · Acur (1)

whereAcur denotes the current result of the available bandwidth
measured by the ImTCP mechanism,γ is a smoothing parame-
ter, andĀ is the smoothed available bandwidth. The ImTCP-bg
sender then sets the upper limit of the congestion window size
(maxcwnd) using the following equation:

maxcwnd ← Ā · RTTmin (2)

whereRTTmin is the minimum RTT experienced throughout
the lifetime of the connection.

The effectiveness of the above-described mechanism depends
largely on the accuracy of the measurement by ImTCP of the
available bandwidth. However, ImTCP does not always provide
reliable measurement results, and may result in the congestion
of the bottleneck link. For example, when the current window
size if smaller than the number of packets required for a mea-
surement, ImTCP does not measure the available bandwidth. In
addition to this, when the other traffic send data packets in a
bursty manner,　 the intervals of ImTCP data packets are dis-
turbed by the bursty traffic, making the measurement result in-
accurate. Therefore, the RTT-based mechanism is employed to
quickly detect and resolve the undesirable network congestion.

If the value of RTT tends to increase despite controlling the
congestion window by Equation (2), then the measurement result

is inaccurate and ImTCP-bg cannot perform background data
transfer. Therefore, ImTCP-bg observes the change of RTTs and
decreases the congestion window size. ImTCP-bg detects net-
work congestion using the current and minimum values of RTT.
Note that we do not use the maximum RTT value. When an in-
crease in RTT is detected, the ImTCP-bg sender decreases its
congestion window size immediately in order to resolve the con-
gestion. DenoteRTT as the smoothed RTT value that is calcu-
lated by the traditional TCP mechanism andRTTmin as the min-
imum RTT. Here,δ (> 1.0) is the threshold parameter by which
to judge whether network congestion occurs. The ImTCP-bg
sender detects network congestion when the following condition
is satisfied:

RTT

RTTmin
> δ (3)

When Equation (3) is satisfied, the queuing delay occurs at the
bottleneck router. Since we treat the increase of queuing delay
as an indication of network congestion, ImTCP-bg decreases its
congestion window size according to the following equation so
as not to affect the foreground traffic.

cwnd ← cwnd · RTTmin

RTT
(4)

wherecwnd is the current congestion window size,RTT is the
smoothed RTT value andRTTmin is the minimum RTT. Equa-
tion (4) implies that ImTCP-bg determines the degree of de-
crease of the congestion window size based on the ratio of the
current value of RTT and its minimum value. As such, ImTCP-
bg avoids unnecessary the underutilization of the link bandwidth
while maintaining the background-based data transfer.

III. I MPLEMENTATION OF IMTCP AND IMTCP-BG

In this section, we describe the outline of the implementation
of ImTCP and ImTCP-bg in the FreeBSD 4.10 kernel system.
In addition, we discuss the resolution of the kernel timer, which
is an important issue when implementing packet-pair/train based
measurement mechanisms.

A. Implementation of ImTCP

When new data is generated at the application, the data is
passed to the TCP layer through the socket interface. The data
(packet) is passed to the IP layer after TCP protocol process-
ing by thetcp output() function and is injected into the net-
work. Because the program for inline network measurement
must know the current size of the congestion window of TCP,
it should be implemented at the bottom of the TCP layer as
shown in Figure 3. Therefore, the measurement program is im-
plemented in thetcp output() function. When a new TCP data
packet is received from the application and is ready to be trans-
mitted, it is stored in an intermediate FIFO buffer (hereafter re-
ferred to as the ImTCP buffer) before being passed to the IP
layer. The stored packets are passed to theip output() func-
tion in the intervals based on the measurement algorithm. The
measurement program records the transmission time of the data
packet when it departs the ImTCP buffer.



Fig. 3. Outline of ImTCP architecture

On the other hand, the measurement program should also
be implemented in thetcp input() function. An ACK packet
that arrives at the IP layer of the sender host is passed to the
tcp input() function for TCP protocol processing. The mea-
surement program records the time when the ACK packet ar-
rives at thetcp input() function. The measurement program
also guesses the current available bandwidth based on the send-
ing time of data packets and the receiving time of ACK packets
according to the algorithm explained in Section II-A.

B. Implementation of ImTCP-bg

The congestion window size of a TCP connection is updated
when an ACK packet is passed to thetcp input() function for
TCP protocol processing. Therefore, the congestion window
control program for ImTCP-bg should be implemented in the
tcp input() function. That is, whenever the congestion win-
dow size is updated by thetcp input() function, the conges-
tion window control program determines the congestion window
size and its upper limit according to the ImTCP-bg algorithm.
ImTCP-bg uses some of the information stored by the TCP con-
nection to control the congestion window. This is referred to as
called thetcpcbstructure. ImTCP-bg also adds the new variable
snd maxcwnd to thetcpcbstructure in order to record the upper
limit of the congestion window size.

When the ACK packet is passed to thetcp input() func-
tion and the original TCP updates the congestion window size,
ImTCP-bg first checks the variablet srtt, the smoothed RTT
value, andt rttbest, the minimum RTT. Whent srtt reaches
the RTT threshold, which is calculated asδ·t rttbest, ImTCP-bg
decreases thesnd cwnd, i.e., the congestion window size based
on thet rttbest andt srtt. At the same time, ImTCP-bg sets
the variablesnd maxcwnd based on the measurement result of
ImTCP. Whensnd cwnd is larger thansnd maxcwnd, ImTCP-
bg set the value ofsnd maxcwnd to snd cwnd.

C. Issues in kernel timer resolution

The measurement algorithm for ImTCP adjusts the transmis-
sion intervals of data packets and guesses the current available
bandwidth by observing ACK intervals corresponding to the data

Fig. 4. Experimental network environment

packets. Data packets are stored in the ImTCP buffer before be-
ing passed to the IP layer, and are passed to theip output()
function in intervals based on the measurement algorithm, as ex-
plained in Subsection III-A. This mechanism is realized by using
the task scheduling function offered by the kernel system. When
the measurement program utilizes this function, the resolution of
the task scheduling timer becomes an issue. The resolution of the
kernel system timer is generally coarser than that of the applica-
tion timer [24]. For example, the default value of the resolution
of the kernel system timer is 10 msec, while that of the appli-
cation timer is 1µsec in FreeBSD. Therefore, this coarse timer
resolution may reduce the accuracy of measurement results.

The resolution of the timer is determined by the parameter
HZ, which is defaulted to 100 in FreeBSD kernel system. When
HZ is chosen to be 100, the timer resolution becomes 10 msec.
Under this setting, ImTCP can only measure the available band-
width up to 1.2 Mbps with 1500-Byte data packets. Moreover,
the bandwidth resolution becomes coarse as the measurement re-
sult approaches the upper limit. Therefore, if ImTCP measures
the available bandwidth in the broadband networks,HZ should
be set larger. For example, ifHZ is set to 100,000, then the reso-
lution of the timer becomes 10µsec and ImTCP can measure the
available bandwidth up to 1.2 Gbps. However, whenHZ is set to
such large value, the timer interrupts by the kernel system occur
frequently and the overhead for processing interrupts affects the
performance of the system. Our concept of inline network mea-
surement means that a TCP data transfer and a bandwidth mea-
surement task are conducted simultaneously on a single endhost,
so too much large overhead for measurement should be avoided.
For example, Table I summarizes the required time for the com-
pilation of the kernel source code in the FreeBSD system in a PC
having a 3.0-GHz CPU (Intel) and a memory of 1,024 MBytes
and the upper limit of the bandwidth measurement. The results
show that the processing time becomes large rapidly, meaning
that the performance of the system is degraded, asHZ becomes
large. Therefore, when determining the value ofHZ, we should
consider the trade-off relationship between the timer resolution
and the performance.



TABLE I

KERNEL COMPILATION TIME AND UPPER LIMIT OF MEASUREMENT BANDWIDTH

HZ Kernel compilation time [sec] Upper limit of measurement bandwidth [Mbps]
100 168.20 1.2

1,000 170.09 12
10,000 183.38 120
20,000 199.78 240
50,000 277.84 600

100,000 734.10 1,200

TABLE II

PC SPECIFICATIONS OF THE EXPERIMENTAL NETWORK ENVIRONMENT

Sender Receiver PC Router Traffic generator
CPU Intel Pentium 4 3.0 GHz Intel Pentium 4 3.4 GHz Intel Pentium 4 3.0 GHz Intel Pentium 4 3.4 GHz

Memory 1,024 MB 1,024 MB 1,024 MB 1,024 MB
OS FreeBSD 4.10 FedoraCore 4 FreeBSD 4.10 FedoraCore 4

Network 100 Base-TX Ethernet 100 Base-TX Ethernet 100 Base-TX Ethernet (× 3) 100 Base-TX Ethernet

IV. PERFORMANCE EVALUATIONS USING AN

EXPERIMENTAL NETWORK

In this section, we evaluate ImTCP and ImTCP-bg on an
experimental network. Figure 4 shows the experimental net-
work environment. This network environment consists of a PC
router in which DUMMYNET is installed, an endhost that gen-
erates cross traffic (Traffic generator), an endhost that measures
the available bandwidth and performs background data transfer
based on the measurement result (Sender), and an endhost that
receives packets from each endhost (Receiver). All endhosts and
the PC router are connected by a 100-Mbps Ethernet connec-
tion. Table II shows the specifications of the PCs of the exper-
imental network environment. The value ofHZ at the sender
host (Sender) is set to 20,000. We configured the DUMMYNET
setting so that the minimum RTT of an ImTCP(-bg) connection
between the Sender and the Receiver becomes 30 msec. We first
evaluate the measurement accuracy of ImTCP in Subsection IV-
A, and then evaluate the performance of ImTCP-bg in Subsec-
tion IV-B. The performance of ImTCP-bg is compared to those
of TCP Reno and TCP-LP [20], which is the previously pro-
posed background data transfer mechanism. The source code of
TCP-LP can be obtained from the TCP-LP Web page [25].

A. Evaluations of ImTCP

We conducted two types of experiments in which we utilized
UDP and TCP traffic for the cross traffic between the Traffic gen-
erator and the Receiver. We then observed the measurement ac-
curacy in each case in order to check the performance of ImTCP
competing TCP traffic, which has a bursty nature. Note that the
experiments with UDP traffic were conducted to check the fun-
damental behavior of ImTCP.

A.1 Case of UDP cross traffic

We first evaluate the measurement accuracy of ImTCP for the
case when UDP traffic exists as cross traffic. Figure 5 shows the
measurement results of the available bandwidth for an experi-
ment time of 60 sec. During the experiment, the rate of the cross
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Fig. 5. Change of the available bandwidth and the measurement result (UDP
cross traffic case)

traffic is changed so that the available bandwidth of the bottle-
neck link is 70 Mbps from 0 sec to 20 sec, 30 Mbps from 20
sec to 40 sec and 50 Mbps from 40 sec to 60 sec. We also plot
the correct values of the available bandwidth. Figure 5 shows
that ImTCP can measure well the available bandwidth in the ex-
perimental network. Moreover, the measurement accuracy is as
high as the evaluation of simulation experiments in [14]. There-
fore, we can conclude that the measurement algorithm described
in [14] is also effective in actual network environments. In addi-
ton, we checked the CPU load during the experiments. Table III
shows the average CPU loads when we use ImTCP and the orig-
inal TCP Reno for the data transfer. These results show that the
measurement algorithm proposed in [14] can be realized without
a heavy load on the CPU.

A.2 Case of TCP cross traffic

We next evaluate the measurement accuracy of ImTCP for the
case in which TCP traffic exists as the cross traffic. In the exper-
iment, 10 TCP connections (C0, C1, ..., C9) exist for generating



TABLE III

CPU LOAD

ImTCP TCP Reno
Average CPU load [%] 19.12 18.62
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Fig. 6. Change of the available bandwidth and the measurement result (TCP
cross traffic case)

cross traffic. Ci (i = 0, 1, 2..., 9) joins the network ati sec.
Each connection performs data transfer for 60 seconds. We limit
the maximum data transmission rate of each TCP connection to
4 Mbps by setting the receive socket buffer size at the receive
host. Figure 6 shows the measurement results of the available
bandwidth and the correct values of the available bandwidth. this
figure shows that the measurement accuracy of ImTCP is as high
as the result in Figure 5, which means that ImTCP can also mea-
sure the available bandwidth of the network path even when the
TCP cross traffic exists in the network.

B. Evaluations of ImTCP-bg

We performed the background data transfer using ImTCP-bg
in the same network environment as in the previous subsection,
and observed the utilization of the available bandwidth and the
degree of interference with co-existing TCP cross traffic. As in
Subsubsection IV-A.2, 10 TCP connections (C0, C1, ..., C9) ex-
ist for generating cross traffic.Ci (i = 0, 1, 2..., 9) joins the
network ati sec. Each connection performs data transfer for 60
seconds. We limited the maximum data transmission rate of each
TCP connection to 4 Mbps by setting the advertised window size
at the receive host. Figure 7 shows the change of the congestion
window size and those of the RTTs. The line ”Max CWND” in-
dicates the upper limit of the congestion window size set by the
ImTCP-bg mechanism and the line ”RTT threshold” is calcu-
lated asδ ·RTTmin. We can see from this figure that ImTCP-bg
can limit the congestion window size to ”Max CWND”, which
is determined by the measurement result. Moreover, when the
value of RTT reaches the threshold, ImTCP-bg decrease the con-
gestion window size based on Equation (4).

Figure 8 shows the changes in throughput of the background
TCP connection, and Figure 9 shows the changes in the through-
put of co-existing cross traffic. These figures also show the
results for the case in which TCP Reno and TCP-LP perform
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Fig. 8. Change of throughput for a background TCP connection

background data transfer for comparison with the performance
of ImTCP-bg. Figure 8 shows that although the TCP Reno con-
nection achieves the highest throughput, the throughput exceeds
the available bandwidth. Furthermore, Figure 9 shows that the
throughput of cross traffic is much lower than for the case in
which no background traffic exists. That is, TCP Reno cannot
be used for background data transfer. On the other hand, TCP-
LP and ImTCP-bg do not decrease the throughput of the cross
traffic. This means that these protocols do not affect the co-
existing foreground traffic. Furthermore, Figure 8 shows that
the throughput of the ImTCP-bg connection is the closest to the
available bandwidth. Therefore, ImTCP-bg can utilize the avail-
able bandwidth better than TCP-LP. These results clearly show
that the proposed background data transfer mechanism, which
utilizes the available bandwidth information obtained by the in-
line network measurement, performs well in the experimental
network environment.

V. EXPERIMENTS IN THE ACTUAL INTERNET

We finally confirm the performance of ImTCP and ImTCP-bg
in the actual Internet. Figure 10 shows the network environment,
which consists of two endhosts in Osaka, Japan and an endhost
in Tokyo, Japan. We perform the data transfer and measure the
available bandwidth in the network path from Osaka to Tokyo.
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Fig. 10. Network environment of the actual Internet

The value ofHZ at the sender host (Sender) is set to 20,000,
as in Section IV. Through preliminary investigations, we con-
firmed the following with regard to the network between Osaka
and Tokyo:

• Sixteen hops exist in the network path from Osaka to Tokyo.
• The minimum value of RTTs is 17 msec.
• The upper limit of the bandwidth between Osaka and Tokyo

is 70 Mbps.

A. Experiments of ImTCP

We first check whether ImTCP can also measure well the
available bandwidth in the actual Internet, as well as in the ex-
periment network. In this experiment, we injected the UDP traf-
fic as cross traffic. We also performed the data transfer using
one ImTCP connection and measured the available bandwidth.
Figure 11 shows the measurement results for the available band-
width for an experimental time of 60 sec. During the experiment,
we changed the rate of the cross traffic as follows: 0 bps from
0 sec to 20 sec, 50 Mbps from 20 sec to 40 sec, and 30 Mbps
from 40 sec to 60 sec. We have no way to obtain the exact in-
formation about the available bandwidth of the network path.
However, since we know that there the traffic in the network is
relatively light, we expected that the available bandwidth would
be approximately 70 Mbps from 0 sec to 20 sec, 20 Mbps from
20 sec to 40 sec, and 40 Mbps from 40 sec to 60 sec. From this
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Fig. 11. Change of the available bandwidth and the measurement results

figure we observe that ImTCP can measure well the available
bandwidth in the actual Internet. We can observe the spike of the
measurement results at around 24 sec. This may be caused by the
short burst-traffic injected onto the Internet at that time. Sudden
changes in the network bandwidth often occur in the Internet.
When we use the measurement results obtained by ImTCP, the
results are smoothed, as indicated by the line labeled ”Smoothed
measurement” in the figure. This is one of the advantages of
ImTCP, that is, we can smooth the sudden spikes in the observed
results because ImTCP obtains the available bandwidth informa-
tion continuously.

B. Experiments of ImTCP-bg

Next, we confirm the behavior of ImTCP-bg in the actual In-
ternet environment. In this experiment, five TCP connections
join the network at 60 sec and perform data transfer for 240 sec-
onds. In addition to this, another five TCP connections join at
120 sec and send data for 60 sec. We limit the maximum data
transmission rate of each TCP connection to 7 Mbps by setting
the receive socket buffer size at the receive host. Therefore, the
total throughput of the cross traffic is 0 bps from 0 sec to 60 sec,
35 Mbps from 60 sec to 120 sec, 70 Mbps from 120 sec to 180
sec, and 35 Mbps from 180 sec to 300 sec. In the network en-
vironment, we send data using ImTCP-bg for 240 seconds. We
expect that the throughput of the ImTCP-bg connection is 70
Mbps from 0 sec to 60 sec, 35 Mbps from 60 sec to 120 sec, 0
bps from 120 sec to 180 sec, and 35 Mbps from 180 sec to 240
sec. We also check whether ImTCP-bg affects the cross traf-
fic. Figure 12 shows the total throughput of the cross traffic, the
throughput of ImTCP-bg and the measurement results of ImTCP,
and Figure 13 shows the change of RTTs in the network path. In
this figure, we can see that when the available bandwidth exists,
ImTCP-bg can limit the throughput within the measurement re-
sults. When the rate of the cross traffic becomes 70 Mbps from
120 sec to 180 sec, the available bandwidth of the network path
is limited. In this case, we can see from the figure that the mea-
surement results of ImTCP are inaccurate. However, even when
the measurement results are inaccurate, ImTCP-bg can decrease
the amount of data transmission by using RTT-based mechanism
and does not affect cross traffic. We can also see that the total
throughput of the cross traffic does not decrease and the change
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of the RTTs are smooth. Therefore, we can confirm that the de-
gree of interference with the cross traffic is not so large. Through
these results, we conclude that the proposed background data
transfer mechanism can also perform well in the actual Internet.

VI. CONCLUSIONS

In the present paper, we implemented an inline network
measurement algorithm, ImTCP, and its application technique,
ImTCP-bg. Through evaluation in an experimental network,
we confirmed that ImTCP can measure well the available band-
width, independent of the degree of change in available band-
width. We also confirmed that ImTCP-bg can utilize the avail-
able bandwidth well, while not degrading the performance of
other traffic. Moreover, we confirmed the basic performance of
these mechanisms in the actual Internet. The source codes of
ImTCP and ImTCP-bg can be found at our web site:http:
//www.anarg.jp/imtcp/ .

In future studies, we will evaluate the performance of these
mechanisms in other actual network environments. In addition,
we will propose other useful mechanisms based on the measure-
ment results, and will implement and evaluate these mechanisms
in actual networks.
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