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Abstract— Distributed denial-of-service attacks on public
servers have recently become more serious. The most effective
way to prevent this type of traffic is to identify the attack nodes
and detach (or block) attack nodes at egress routers of them.
However, existing traceback mechanisms are currently not widely
used for some reasons, such as the necessity of replacement
of many routers to support traceback capability, or difficulties
in distinguishing between attacks and legitimate traffic. In this
paper, we propose a new scheme that enables a traceback from
a victim to the attack nodes. More specifically, we identify the
egress routers that attack nodes are connecting to by estimating
the traffic matrix between arbitral source-destination edge pairs.
We identify the edge routers that are forwarding the attack
traffic, which have a sharp traffic increase to the victim, by
monitoring the traffic variations obtained by the traffic matrix,
we identify the edge routers forwarding attack traffic which
have a sharp traffic increase to the victim. We also evaluate the
effectiveness of our proposed scheme through simulation, and
show that our method can identify attack sources accurately.

Index Terms— Distributed Denial of Service (DDoS), Trace-
back, Traffic matrix, Simple Network Management Protocol
(SNMP)

I. INTRODUCTION

The recent rapid growth and the increasing utility of the
Internet are making Internet security issues increasingly im-
portant. Denial-of-service (DoS) attacks are one of the most
serious problems and must be resolved as soon as possible.
These attacks prevent users from communicating with service
providers and have damaged many major web sites all over
the world.

The number of attacks has been increasing, and the tech-
niques used to attack servers have become more complex. In
the distributed denial-of-service (DDoS) attacks often seen
recently, multiple distributed nodes attack a single server
concurrently. A malicious user tries to hack the remote nodes
by exploiting the vulnerabilities of the software running on
them, installs an attack program on the hijacked nodes, and
keeps them waiting for an order to attack a victim server.
When the malicious user sends a signal to them, they begin
to attack the same server. Even if the rate of attack for each
node is small, the attack traffic can cause serious damage to

the victim server when the number of hijacked nodes is large.
If we can identify the attack sources, we can effectively cut

off the link to the attacker or filter attack packets by an edge
router connected to the attacker. However, because attackers
can easily spoof the source address fields of the attack packets,
we cannot identify the attack sources by only using the source
address of the attack packets.

For this reason, several methods for identifying the attack
sources are proposed. In general, these methods for identifying
the sources of the packets are called IP tracebacks. One of
them is proposed in [1], [2], which uses ICMP packets. In this
method, when a router forwards a packet, the router generates
an ICMP traceback packet to the destination of the packet
with a low probability. The victim can identify the source
of the packet by using the received ICMP traceback packets.
With the method, described in [3], [4], [5], a router marks
forwarded IP packets with identification information instead of
generating ICMP packets. The victim can identify the source
of the packets using the identification information.

With another method, proposed in [6], [7], each router stores
packet digests. The victim queries its upstream routers to see
whether an attack packet has passed through them or not.

However, these methods have several problems. One is
that they cannot work with legacy routers because they need
router support. Another is that they may erroneously identify
legitimate clients as attack sources. This is because these
methods can only identify the source nodes of attack packets.
Since there is no difference between legitimate and attack
packets, identifying attack packets from the mixture of attack
and legitimate traffic is difficult..

In DoS attacks, attackers send a large number of packets to
exhaust the network resources. That is, when an attack starts,
there is a rapid increase in the traffic from the attack sources
to the victim. Therefore, we can identify the attack sources
that are increasing the traffic to the victim by monitoring the
traffic in the network. Identification of the attack sources by
monitoring the increased traffic can distinguish the attackers
from the legitimate clients, which do not sharply increase
traffic. Lakhina et al propose a method for identifying the



attack sources by monitoring the traffic on each link in
the network [8] . In this method, the measured traffic is
separated into normal and abnormal subspaces. The normal
subspace indicates the time-of-day variation of the traffic.
Other variations are categorized into the abnormal subspace.
Since we cannot clearly understand which traffic between the
two edge nodes directly affects the abnormal subspace from
measurements of the network links, we test the influence to the
abnormal subspace by removing each traffic between the two
edge nodes. We then identify the attack source that explains the
largest amount of anomalous subspace. Although this method
can identify the attack source in a single attacker case, this
method has difficulty in identifying attack sources for multi
source attacks like DDoS, because we need to test all cases,
including changing the number of attackers. It requires a huge
computation overhead.

If we can use not only the traffic data on each link, but also
the traffic data between the source and destination, we can
accurately identify the attack sources, even in multi-source
attacks.

We propose a new method for identifying attack sources us-
ing the increase in traffic between each source and destination.
The traffic transmitted between every pair of ingress and egress
points is typically described as a traffic matrix. However,
directly monitoring a traffic matrix is difficult because all edge
routers need to hold the flow statistics of all pairs of sources
and destinations. We estimate the increase in traffic between
each source and destination. In our method, we modify the
traffic matrix estimation method proposed by Zhang et al [9]
to enable the estimation of the increases in traffic. Our method
can work with existing routers because we can obtain link load
data through Simple Network Management Protocol (SNMP).

In Section II, we explain an overview of our proposed
method. In Section III we evaluate our method. In Section IV
we conclude by briefly summarizing the paper and mentioning
some of the future works we intend to do.

II. IDENTIFICATION OF ATTACK SOURCES BY ESTIMATING

TRAFFIC MATRIX

Our method identifies attack sources by estimating the
increases in traffic between every pair of sources and destina-
tions. We estimate the increases in traffic from the monitored
link load. In the estimation of the traffic matrix, we don’t focus
on the total amount of traffic, but only focus on the amount
of increase from the previous measurement. The reason why
we use only the increases in traffic for the traffic estimation is
discussed in the next subsection. In this section, we first show
a brief overview of our proposed scheme.

Figure 1 shows an overview of our proposed method. In our
method, we introduce a control node to perform the process of
identification of attack sources. We call this node a monitoring
node, and we also define the region where the monitoring
node controls as a monitored network. The monitoring node
identifies the attack sources by periodically performing the
following operations.

Monitored Network

Monitoring Node

1. Collecting link load 

data from every router

2. Estimation of the        

increase of traffic

3. Identification of 

attack sources

Edge link

Edge link

Edge router

Fig. 1. Overview of proposed method

1) Obtains the statistics of the link load data from all
routers in the monitored network.

2) Estimates a matrix of the increase in traffic between all
arbitrary pairs of edge routers in the monitored network.

3) Identifies the attack sources from the estimated increase
traffic matrix.

We can obtain link load data through SNMP. SNMP is
supported by essentially every device in IP networks and is
used to monitor or manage the device. That is, our method
can work with existing routers.

The interval for obtaining the statistics affects the time for
identifying the attack sources. If we set the interval to a larger
value, the identification takes more time. On the other hand, if
we set the interval to a smaller value, the loads on the routers
increase though we can identify attack the sources soon after
the attack starts. Thus, we should properly set this interval.

In the following sections, we describe the details about how
to estimate the increase in traffic and how to identify the attack
sources.

A. Increase in Traffic Estimation

1) Traffic Matrix Estimation using Gravity Model: First, we
assign a set of links outside the monitored network as E. We
call these links edge links. The router, which is connected by
an edge link, is called the edge router. We assign a set of all
the links in the monitored network, including the edge links,
as L.

Traffic matrix T is defined as the |E| × |E| sized matrix,
whose element ti,j (i, j ∈ E) indicates the amount of
traffic traversing from edge link i to edge link j. We can
obtain the link loads from each router through SNMP. The
link loads can be denoted by the 2|L|-size link load matrix X



as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xf
1

xb
1

xf
2

xb
2
...

xf
|L|

xb
|L|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

In matrix X , elements xf
l (l ∈ L) and xb

l (l ∈ L) indi-
cate the amount of traffic on link l in the forward and backward
directions respectively, because most of the network links are
bidirectional. We only use the words forward/backward to
distinguish the direction of the link. Therefore, there is no
policy for determining the forward or backward direction of
each link. However, we must distinguish between the ingress
and egress traffic. To distinguish between them, we denote the
ingress traffic measured on edge link i as xin

i (i ∈ E) and
egress traffic measured on the edge link j as xout

j (j ∈ E) .
We estimate the traffic matrix of each pair of edge links

from the link loads and routing information in monitored
network. [9] uses a gravity model to estimate the traffic matrix.
The gravity model assumes that traffic from a source to a
destination is proportional to the total traffic at the source and
at the destination. Using this model, we can estimate the traffic
matrix from

ti,j = xin
i

xout
j∑

∀k∈E
xout

k

(i, j ∈ E) , (2)

where xin
i is the element of X corresponding to the amount

of ingress traffic to the monitored network measured on the
edge link i and xout

j is the egress traffic measured on the edge
link j.

However, we cannot accurately estimate increases in traffic
accurately using Eq. (2) as follows. We assume that an attack
traffic whose rate is tattack traverses from i to j. We also
assume legitimate traffic ti,j can be accurately estimated by
Eq. (2). Traffic from i to j, including the attack traffic is
estimated from

t′i,j = (xin
i + tattack)

xout
j + tattack∑

k xout
k + tattack

, (3)

where t′i,j is the traffic traversing from i to j including attack
traffic. Then, the increased traffic by the attack is estimated
by

t′i,j − ti,j =
t2attack + tattack(xin

i + xout
j )∑

k∈E xout
k + tattack

, (4)

where ti,j is the legitimate traffic from i to j. For example,
we assume the total rate of traffic in the monitored network
is 20 GBytes/sec, both xin

i and xout
j are 2 GBytes/sec. We

also assume the attack traffic from the edge link i to j has
the rate of 1 GBytes/sec. From Eq. (4), the total traffic,
including the attack traffic from edge link i to j is estimated
as 0.23 GBytes/sec, which is quite different from the attack
rate (1 GBytes/sec).

As previously mentioned, when attack traffic is injected, the
estimated increase in traffic is proportional to the total rate
of traffic monitored at the source. That is, the gravity model
is infeasible for directly estimating the attack traffic because
the impact of the attack traffic is distributed among the edge
links that have legitimate traffic to the victim. As a result, the
estimated attack rate is significantly lower than the rate of the
attack traffic that is really generated.

2) Traffic matrix estimation focusing on increased traffic:
To accurately estimate the increase in traffic, we propose a
matrix estimation method focusing not on the total rate of
traffic but on the increase in traffic.

First, we calculate the increases in traffic on each link from

Gn = Xn − X̄n, (5)

where Gn is the 2|L|-size vector in which the elements
gf

i,n (i ∈ L) and gb
i,n (i ∈ L) indicate the increase in

traffic on link i in the forward and backward directions at time
n, respectively. Xn is the link load vector at time n and X̄n

is the 2|L|-size vector in which x̄f
i,n is the average rate of

legitimate traffic on the link i in the forward direction before
time n and x̄b

i,n is one on the same link in the backward
direction. We explain how to calculate X̄n in Subsection II-
A.4.

Then, by using Gn, we estimate the increases in traffic
between every pair of sources and destinations. The increase
in traffic can be shown as a |E|×|E| matrix Fn whose element
fi,j,n (i, j ∈ E) indicates the increase in traffic traversing

from edge link i to edge link j.
Eq. (2) cannot be used to estimate the traffic increase

matrix from Gn, which may include negative values, because it
supports only positive values. Therefore, we modify Eq. (2) to
support negative values. We define the traffic increase matrix
Fn, having the traffic increase fi,j,n, from edge link i to j
between the time n−1 and n. The value of fi,jn is calculated
from

fi,j,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gin
i,n

gout
j,n∑

{k:(gout
k,n

>0)} gout
k,n

(gin
i,n > 0, gout

j,n > 0)

−
∣∣∣∣∣gin

i,n
gout

j,n∑
{k:(gout

k,n
<0)} gout

k,n

∣∣∣∣∣ (gin
i,n < 0, gout

j,n < 0)

0 (others).
(6)

Focusing on the increase in the traffic, we can eliminate
the effect of the amount of legitimate traffic and estimate the
increase in the traffic more accurately. That is, we can estimate
that the increase in traffic from attack sources to the victim is
large by checking the increase in traffic when the attack starts.
If the monitored network suffers from multiple attacks whose
sources and victims are different, some traffic from different
sources to different destinations concurrently increases. In this
case, the estimated increase in traffic is proportional to the
increase in traffic measured at the sources. That is, traffic from
a source of an attack to a victim of another attack is estimated
as increased. However, we can identify the attack sources that
generate the attack traffic, even if we could not identify the



victim node exactly where the attack source sends the attack
traffic to.

3) Modification of traffic matrix: Although Fn is a |E|×|E|
matrix, Fn can be denoted as following the |E|2-size vector;

Fn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1,1,n

f1,2,n

...
f1,|E|,n
f2,1,n

...
f|E|,|E|,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Due to the fact that the total amount of traffic on the link is
the summation of the traffic of flows that are passing the link,
Fn and Gn satisfy

Gn = AFn, (8)

where A is a 2|L| × |E|2 routing matrix which is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

af
1,1,1 af

1,2,1 · · · af
|E|,|E|−1,1 af

|E|,|E|,1
ab
1,1,1 ab

1,2,1 · · · ab
|E|,|E|−1,1 ab

|E|,|E|,1
af
1,1,2 af

1,2,2 · · · af
|E|,|E|−1,2 af

|E|,|E|,2
ab
1,1,2 ab

1,2,2 · · · ab
|E|,|E|−1,2 ab

|E|,|E|,2
...

...
. . .

...
...

af
1,1,|L| af

1,2,|L| · · · af
|E|,|E|−1,|L| af

|E|,|E|,|L|
ab
1,1,|L| ab

1,2,|L| · · · ab
|E|,|E|−1,|L| ab

|E|,|E|,|L|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)
af

i,j,k (i, j ∈ E, k ∈ L) is equal to 1 if the traffic from
edge link i to edge link j traverses on link k in the for-
ward direction, or set to zero otherwise. In a similar way,
ab

i,j,k (i, j ∈ E, k ∈ L) is equal to 1 if the traffic from
edge link i toedge link j traverses on link k in the backward
direction or zero otherwise. Matrix A can be obtained by
monitoring the routing messages, such as the Link State Ad-
vertisement (LSA) of OSPF [10] or by simulating routing [11].

The traffic matrix estimated by the gravity model cannot
satisfy Eq. (8) because Eq. (6) does not use the traffic statistics
on the internal links of the monitored network, but uses only
the traffic measurements of the edge links. Therefore, we
adjust the traffic matrix estimated by the gravity model to
satisfy Eq. (8). We can obtain the final estimation results for
Fn from

Fn = F ′
n + pinv(A)(Gn − AF ′

n), (10)

where F ′
n is the |E|2-size vector indicating the results esti-

mated by Eq. (6), and pinv(A) is a pseudo inverse of A.
pinv(A) can be obtained by using a function of Scilab [12].

4) How to estimate average of legitimate traffic: Our
method for estimating the increase in traffic uses the average
rate of legitimate traffic. The rate of legitimate traffic varies
according to the time of day. To follow the time-of-day
variation of this traffic, we assume that the average rate of
legitimate traffic X̄n is basically estimated by the weighted
average of the monitored traffic rate from

X̄n+1 = αXn + (1 − α)X̄n (0 < α < 1) . (11)

However, when the traffic suddenly and rapidly increases
suddenly and rapidly (we call these spikes throughout the rest
of this paper), X̄n becomes large after the spike. The large X̄n

value causes difficulties in the identification of the increase in
traffic after the spike, because the larger X̄n value makes the
impact of (Xn − X̄n) small, even for cases of increases in
traffic. For this reason, we must estimate the average of the
legitimate traffic without the effect of spikes.

We can eliminate the effect of spikes by updating only
the elements of X̄n corresponding to the link on which the
increase in traffic is under a threshold. However, as described
in the previous subsection, our method assumes the situation
covered by Eq. (8). For this reason, we should update X̄n by
satisfying Eq. (8).

For this purpose, we update X̄n using an element from
estimated Fn, which is not rapidly increasing. First, we extract
the element not increasing rapidly from Fn. We denote the
|E|×|E| matrix of the extracted elements as F̂n. Each element
f̂i,j,n (i, j ∈ E) is defined by

f̂i,j,n =
{

fi,j,n (fi,j,n < μi,j + βσi,j)
0 (others) . (12)

where μi,j is the average of the last J values of
fi,j,k (i, j ∈ E, n − J < k ≤ n) and σi,j is the variance

of the last J values of fi,j,k (i, j ∈ E, n − J < k ≤ n) .
β is the parameter by which we can set the threshold. By
Eq. (12), when the traffic from i to j sharply increases at time
n beyond the threshold, f̂i,j,n is zero, while in other cases,
f̂i,j,n is fi,j,n.

After that, we update X̄n+1 with the following equation.

X̄n+1 = α(X̄n + AF̂n) + (1 − α)X̄n (13)

In Eq. (13), we calculate the increase in traffic on each link
from F̂n by AF̂n. Using the increase in traffic, we calculate
the amount of traffic at time n as X̄n +AF̂n. Then, we update
X̄n+1 as the weighted average of the monitored traffic using
the amount of traffic at time n.

With the above stated equations, we can update X̄n+1

without the effect of any spikes in Fn. By deciding whether
each element of Fn should be used to update, we can satisfy
Eq. (8).

B. Identification of attack sources

When an attack starts, the traffic sharply increases from
the attackers to the victim. Moreover, the larger the increase
is, the more serious the impact on the network resources is.
We identify the sources increasing the traffic on the victim
as attack sources. However, when many attack sources are
widely distributed, the impact of the attack is serious, even
if each attack source generates a small rate of attack traffic.
Thus, the identification of the attack sources, by setting a
static threshold to the increase in traffic, is not sufficient.
Instead of setting a threshold, we identify the attack sources
by comparing the increase in traffic from each edge link to
the victim. When the victim detects an attack, it is reasonable
enough to assume that the source generating more traffic to



the victim has more likelihood of being considered an attack
source. With this assumption, we identify attack sources from
the nodes generating a lot of traffic to the victim node. We
also use the total rate of traffic to detect the event of an attack.
By using the total rate of attack traffic, we can identify the
attack sources even in cases of DDoS. The total rate of attack
traffic can be estimated from the increase of the egress traffic
to the victim.

When an attack starts, the egress traffic increases with the
rate of the attack traffic. However, the rate of legitimate traffic
may also change according to the time-of-day. Assuming the
increase of egress traffic to the victim is attack traffic may
be an overestimation of the attack traffic, because an increase
in egress traffic includes both legitimate and attack traffic. As
a result of this overestimation, the source node sending only
legitimate traffic may be mislead as an attack source. For this
reason, we estimate the rate of the attack traffic g̃out from
results of traffic estimation. When an attack to edge link j
starts at the time n, g̃out is estimated from

g̃out = gout
j,n − μout

j − γ, (14)

where gout
j,n is the egress traffic on edge link j to the outside

of the monitored network, μout
j is the average of the last J

values of gout
j,k (n − J ≤ k < n) , and γ is the parameter

indicating the variation in the rate of the legitimate traffic.
In this equation, μout

i represents the effect of the time-of-day
variation of the legitimate traffic and γ mitigates the effect
of the other variations of the legitimate traffic. By adequately
setting γ, we can estimate g̃out as the value which may be
a little smaller than the actual attack rate, but is never larger
than the actual attack rate.

Then, we identify source i as attack source when source i
satisfies ∑

(k:fk,j,n>fi,j,n)

fk,j,n ≤ g̃out, (15)

where fi,j,n is the element of the estimated increase traffic
matrix Fn corresponding to the traffic from edge link i to
victim edge link j. Before using Eq. (15), we must first sort
out the set of fk,j,n(1 ≤ k ≤ N) by descending order based
on their values. We then calculate the total of the top m traffic
to the victim node. We compare the total top m traffic with
the estimated egress traffic gout. We increment m by one and
calculate the total top m traffic until the total traffic exceeds
gout. Finally, we identify these m nodes as the attack sources.

Let us denote the actual rate of attack traffic as tattack and
that the sum of the top m increases of the egress traffic to the
victim as ttop(m). If ttop(m) is smaller than g̃out and ttop(m+1)

is larger than g̃out, then we can identify m+1 attack sources.
In this case, the total rate of attack traffic from the identified
attack sources is ttop(m+1), which is larger than gout. That
is, the rate of the attack traffic from the unidentified attack
sources is at most tattack − g̃out, which is calculated from
γ + μ − fnormal where fnormal is the increase in legitimate
traffic. Therefore, by adequately setting γ adequately, we can
identify most of the attack sources and limit the rate of attack
traffic from the unidentified attack sources.

Fig. 2. Backbone Topology of the Abilene

III. EVALUATION

We evaluated our method using simulations. In all our
simulations, we used the topology shown in Figure 2 for the
monitored network. We used statistics of traffic monitoring
from the gateway of Osaka University for the legitimate traffic
in the simulation. More specifically, we captured all of the IP
headers that passed the gateway of Osaka University. We then
made a group of packets based on a 16 bit prefix of the source
address, so that the number of the kinds of 16 bit prefixes
in each group was equal. We then calculated the aggregated
traffic rate for each group with a 60 seconds interval. The
topology, shown in Figure 2, has 11 edge nodes. There are
11 × 10 = 110 source-destination pairs. For each pair, we
assigned the above-mentioned aggregated traffic rate as the
legitimate traffic. In our simulations, we set α to 0.1 and β to
3, which allows a time-of-day variation of the traffic.

A. Accuracy in estimating the increase of traffic

First, we validated that our method can accurately estimate
the increase in traffic. Figure 3 shows the time-dependent
variation of the arrival rate of each packet between a source
and a destination. Figure 4 compares the actual time-dependent
variation of the increase in arrival traffic with its estimated rate.
Comparing Figures 3 and 4, we can see that by monitoring the
increase in traffic, we can eliminate the time-of-day variation
of the traffic. That is, by monitoring the increase in traffic, we
can identify the attack sources without the affect of a time-of-
day variation in the traffic. From Figure 4, we also see that in
the cases where a rapid increase in traffic occurs, our method
can accurately estimate it.

We performed another simulation to evaluate accuracy when
attacks from several sources start. We injected attack traffic
from four sources to a single destination. Figures 5 and 6com-
pare the results of the estimations with actual values. The
horizontal axis is the actual rate of traffic and the vertical
axis is the estimated value. In Figure 5, the attack rate from
each source is 200 packets/sec. In Figure 6, the attack rates
from the four sources are 1000 packets/sec, 830 packets/sec,
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Fig. 4. Time-dependent variation of increase of arrival rate of packets
between source and destination.

660 packets/sec and 500 packets/sec. The lines in both figures
show x±50. These figures show we can accurately estimate the
increase in traffic. Even for large attacks, we can estimate the
increase in traffic with an error rate of less than 50 packets/sec.

B. Accuracy of identification of attack sources

1) Definition of false-positive and false-negative: The accu-
racy of our method for identifying attack sources is evaluated
by two metrics, false-positive and false-negative. We define
false-positive as a case where a source not generating attack
traffic is erroneously identified as an attack sources. We define
false-negative for cases where an attack source cannot be
identified. That is, the number of false-positives indicates the
number of sources erroneously identified as attack sources and
the number of false-negatives indicates the number of attack
sources that cannot be identified. We also define the false-
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660 packets/sec and 500 packets/sec attacks injected)

negative and false-positive rates as follows:

false-negative rate =
# of false-negative
# of attack sources

false-positive rate =
# of false-positive

# of sources not generating attack traffic

2) Number of attack sources vs. false-positives and false-
negatives: We simulated our method to identify attack sources,
changing the number of attack sources. We injected attack
packets at 16 different times. We changed the number of attack
sources from one to five. In this simulation, the total rate of
attack traffic is 1000 packets/sec irrespective of the number
of attack sources and the attack rate from each attack source
is equal. For example, for one attack source, the attack rate
from the attack source is 1000 packets/sec and for five attack
sources, the attack rate from an attack source is 200 Packets.
In this simulation, we set γ to 200 packets/sec.



TABLE I

NUMBER OF ATTACK SOURCES VS. FALSE-POSITIVES AND

FALSE-NEGATIVES

# of # of false-negatives # of false-positives
attack sources (false-negative rate) (false-positive rate)

1 0 (0.00) 2 (0.01)
2 0 (0.00) 0 (0.00)
3 0 (0.00) 3 (0.02)
4 3 (0.04) 4 (0.04)
5 12 (0.15) 4 (0.05)
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Fig. 7. γ vs. false-negative and false-positive (attack rate = 500 packets/sec)

Table I shows the total number of false-positives and false-
negatives of 16 attacks and their rates. From these results,
we can accurately identify the attack sources regardless of
the number of attack sources. Although there are a few false-
positives, these false-positives are caused by the rapid increase
in traffic traversing to the link that is near the link to the victim.
In these cases, the rapid increases cause errors because most
of the path of the increased traffic is common with the path
from the source of the increased traffic to the victim.

3) γ vs. false-positive and false-negative: We evaluate
the relationship between γ and the false-positives or false-
negatives in our method by using a simulation with various
values of γ. In addition, we injected attack packets from four
sources at 16 different times. Figures 7 and 8 show the results.
In Figure 7, the total rate of attack traffic is 500 packets/sec.
The total rate of attack traffic is 1000 packets/sec in Figure 8.
From these figures, we can see that the proposed method can
reduce the number of false-positives by setting γ to a larger
value. However, a large γ causes many false-negatives. In
addition, when comparing these figures, we can also see that
if we set γ to the same value, we have less false-negatives in
cases of larger attacks than in smaller attacks.

Figure 9 compares the false-positives for attacks at various
rates. In this figure, the total rates of attack traffic are 200 pack-
ets/sec, 400 packets/sec, 600 packets/sec, 800 packets/sec and
1000 packets/sec. When we set γ to a larger value than
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200 packets/sec, the number of false-positives is larger for
larger attacks than smaller ones. However, these false-positives
are caused by the rapid increase, as mentioned in the previous
section. From this figure, we can also see that the number of
false-positives is almost the same, regardless of the injected
attack rate, when we set γ to the same value of less than
200 packets/sec. That is, the attack rate does not affect the
number of false-positives.

4) γ vs. attack rate from unidentified attack sources: To
evaluate the relationship between γ and the total rate of attacks
from unidentified attack sources, we simulated our method
to identify attack sources, changing the attack rate. In this
simulation, we injected attack packets from four sources at 16
different times and the attack rate from each source is equal.

In Figure 10, the horizontal axis is the total rate of the attack
traffic. Each line shows γ, which can identify one of the four
attack sources, two of the four attack sources, three of the
attack sources or all of the attack sources at all time. From
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Fig. 10. Relationship between attack rate and γ to identify attack sources

this figure, we can see that a smaller γ is needed to identify
attack sources for smaller attacks or to identify more attack
sources. This figure also shows that even when we set γ to
the same value, we can identify more attack sources for large
attacks. For example, by setting γ to 100 packets/sec, we can
identify only one attack source when the total rate of attacks
is 200 packets/sec. However, by setting γ to the same value,
we can identify three attack sources when the total rate of the
attacks is 600 packets/sec.

Figure 11 shows the relationship between γ and the total
rate of attack traffic from unidentified attack sources. In this
figure, the three lines indicate the false-positive rate and the
maximum and average of the total rate of attack traffic from the
unidentified attack sources. From this figure, we can see that
by setting γ to a smaller value, the attack rate from unidentified
attack sources can be small while a smaller γ causes more
false-positives. We can also see that the average of the total
rate of attack traffic from unidentified attack sources is near γ.
That is, the total rate of attack traffic from unidentified attack
sources is closely related to γ.

When we set γ to a value less than 300 packets/sec, the
maximum total rate of attack traffic from unidentified attack
sources is near γ + 100. This is because in this simulation
the increased value of legitimate traffic varies within ±100
and the minimum increase in legitimate traffic on the link to
the victim is −100 packets/sec. When we set γ to a value
larger than 300 packets/sec, the maximum total rate of the
attacks from unidentified attackers is near γ + 200. This is
caused by errors in our method for estimating the increases
in traffic. Our method for estimation has errors in the range
of ±50 packets/sec. That is, the estimated increase in traffic
from an attack source may be 50 packets/sec less than the
actual increase, while the difference from one to another attack
source may be 50 packets/sec larger than the actual increase.
In this case, this error causes 100 packets/sec attack traffic
from unidentified attack sources. However, we can accurately
identify attack sources sending attack traffic whose estimated
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Fig. 11. γ vs. total rate of traffic from unidentified attack sources

rate is larger than γ+μ−fnormal. That is, by adequately setting
γ, we can identify attack sources even when the estimated
increases have several errors.

As previously mentioned, the total rate of attack traffic from
unidentified attack sources is closely related to γ. That is,
by defining the maximum attack rate that does not affects
the network resources, we can adequately set γ to limit the
total attack rate from unidentified attack sources to the defined
maximum attack rate.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new method for identify-
ing attack sources by estimating traffic matrices. Our method
periodically collects link load data from each router through
SNMP and estimates the increase in traffic between each
source and destination. When attacks start, our method identi-
fies the sources of the attack using the estimated increase. We
have also shown that our method can accurately identify attack
sources without any false-positives by setting the adequate
parameters of γ.

One of our future projects will be to simulate our method
using real traffic data.
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