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SUMMARY  Ants-based routing algorithms have attracted the attention
of researchers because they are more robust, reliable, and scalable than
other conventional routing algorithms. Since they do not involve extra mes-
sage exchanges to maintain paths when network topology changes, they are
suitable for mobile ad-hoc networks where nodes move dynamically and
topology changes frequently. As the number of nodes increases, however,
the number of ants (i.e., mobile agents or control messages) also increases,
which means that existing algorithms have poor scalability. In this paper,
we propose a scalable ant-based routing algorithm that keeps the overhead
low while keeping paths short. Our algorithm uses a multistep TTL (Time
To Live) scheme, an effective message migration scheme, and an efficient
scheme for updating the probability of packet forwarding. Simulation ex-
periments have confirmed that our proposed algorithm can establish shorter
paths than the conventional ant-based algorithm with the same signaling
overhead.
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1. Introduction

Driven by the emerging need for impromptu communication
between mobile and wireless equipment, many researchers
are developing proactive and reactive routing algorithms for
mobile ad-hoc networks (MANETS). DSR [1] and AODV
[2] are reactive algorithms, which investigate and estab-
lish paths only when they are needed. When a node has
some data to send to another node, it searches for a path
by flooding the network with control messages. The node
does not need to keep exchanging control messages in order
to maintain paths, but their dissemination introduces some
delay before data packets can be sent and reactive rout-
ing algorithms are inefficient when there is much continu-
ous but intermittent traffic in the network. OLSR [3] and
TBRPF [4], on the other hand, are typical proactive rout-
ing algorithms. They prepare paths to all destination nodes
beforehand and maintain them by exchanging control mes-
sages periodically. Although proactive routing algorithms
immediately route a data packet toward a destination node
through a pre-established and well-maintained path, they
require each node to perform complicated controls for the
discovery, maintenance, and updating of appropriate paths
while keeping all paths consistent through the whole net-
work. They also require a network to carry a lot of con-
trol traffic into a network. Proactive routing algorithms are
therefore not applicable to networks composed of nodes that
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have low-performance CPUs with small amounts of mem-
ory and that operate on battery power. This means they
are not applicable to networks made up of PDAs, mobile
phones, and wireless sensor nodes.

Another type of routing algorithms—one inspired by
the behavior of social insects, more specifically, the forag-
ing behavior of ants—has recently attracted the attention of
researchers [5-8]. Ants establish the shortest path between
food and their nest in a fully-distributed and autonomous
fashion. An ant first wanders to find food. When it finds
some, it returns to the nest while leaving a trail of chem-
ical substances called pheromones on its way back. The
pheromones attract other ants and guide them to the food.
Although pheromones evaporate and decay, the following
ants also leave additional pheromones and thus reinforce the
path. Since the number of ants that complete their journeys
to food in a given time is larger on a shorter path than on a
longer path, a shorter path can accumulate more pheromone
and attract more ants. Finally, the shortest of alternative
paths comes chosen preferably and the most of ants take
the shortest way to the food. Longer paths, however, are
also maintained because some ants are attracted to them by
remnants of pheromones. This makes the routing scheme
robust and adaptable. When the shortest path is acciden-
tally broken, a longer alternative path eventually becomes
the new shortest path. Some papers [8, 9] verified that ant-
based routing algorithms provided more reliable delivery of
data packets on shorter paths than other conventional rout-
ing algorithms.

Such ant-based routing algorithms are simple but also
robust as well as adaptive to topology changes because each
ant carries only a fraction of the routing information and has
a little influence on routing control. This has disadvantages
as well as advantages. For example, control messages are
necessary for constructing, maintaining, and updating rout-
ing tables, but data packets are delivered to their destinations
even if some of the control messages are lost or carry in-
correct information. An ant-based routing algorithm, how-
ever, cannot establish the shortest or appropriate path before
enough control messages have been emitted. This means
that as the number of nodes increases, the control messages
needed to establish and maintain the shortest paths to all
nodes increase the load on the network considerably.

One way to solve this load problem and attain scala-
bility is by using hierarchical routing. Adaptive-SDR [9],
for example, groups sensor nodes into clusters and directs



data packets from a source node to a destination by using
intra- and inter-cluster routing. And MABR [10] uses ge-
ographical information to divide a network into zones and
uses intra- and inter-zone routing. These are more scalable
ant-based routing algorithms, but they are complex and re-
quire additional information such as geographical location.

In this paper, we propose a simple and scalable ant-
based routing algorithm that can keep the overhead low
while keeping paths short. It is based on the uniform ant
algorithm [11], which is a simple and basic ant-based al-
gorithm in which each node has a probabilistic routing ta-
ble. In the uniform ant algorithm, each entry of a table gives
the probability of a neighboring node being chosen to be
sent a data packet bound for a destination node. To update
its corresponding entry in the tables of other nodes, each
node periodically emits a control message without specify-
ing a destination. When a node receives a message from
a neighboring node, it increases the probability of forward-
ing a data packet bound for the source of the message to
that neighboring node because it must be on a path leading
to the source node of the message. In [11], it was shown
that the uniform ant algorithm accomplished as low deliv-
ery delay as distance vector and link state algorithms, but
it was more resilient to router state corruptions than those
algorithm. However, to maintain routing tables up-to-date,
nodes frequently emit control messages. Consequently, as
the number of nodes increases, the load on a network in-
creases considerably.

To make the uniform ant algorithm scalable to the num-
ber of nodes, we first control the range of message propaga-
tion by our multiple TTL scheme. It is based on an idea
of the Hazy Sighted Link State (HSLS) algorithm [12] to
limit TTL values. The HSLS algorithm was proposed in or-
der to make a link-state algorithm scalable without using a
complicated method like clustering or layering. HSLS uses
a flooding scheme to effectively disseminate control mes-
sages over the whole network, whereas ant-based routing al-
gorithms have control messages moving around the network
in a node-by-node fashion. We therefore proposed the effi-
cient message migration scheme and the forwarding prob-
ability updating scheme that let control messages travel to
distant nodes and update routing tables effectively. We con-
ducted simulation experiments to evaluate basic character-
istics of our algorithm in stable ad-hoc networks. Then, we
verified that our algorithm can establish drastically shorter
paths than the uniform ant algorithm with the same signal-
ing overhead can.

The rest of this paper is organized as follows. Section 2
describes the uniform ant algorithm on which our algorithm
is based and Section 3 introduces the HSLS algorithm we
adapted to our algorithm. Section 4 describes our algorithm,
which consists of schemes for multistep TTL, effective mes-
sage migration, and efficient updating of forwarding proba-
bilities. Section 5 evaluates our algorithm with regard to the
shortestness of established paths. Section 6 summarizes this
paper and shows a future direction of our research.

IEICE TRANS. COMMUN.,, VOL.Exx-??, NO.xx XXXX 200x

Tablel Example of a routing table
Next Hop
node1l | node?2 | node3
Destination node 4 0.65 0.2 0.15
node 5 0.1 0.2 0.7

2. Uniform Ant Algorithm

In this section we explain the uniform ant algorithm [11],
the basic ant-based algorithm on which our algorithm is
based. In the uniform ant algorithm, packet forwarding is
performed in a probabilistic way at each node. A node pe-
riodically emits an ant - that is, a control message - in order
to maintain its entry in the routing tables of other nodes.

2.1 Routing Table

In the uniform ant algorithm, each node has a probabilistic
routing table like Table 1 to perform multipath routing. Each
row in the table corresponds to a destination and each col-
umn corresponds to a neighboring node. Neighboring nodes
are nodes the node can communicate with directly. In this
example, the node has three neighbors - node 1, node 2 and
node 3 - and it knows of distant nodes 4 and 5. The value of
an entry (i, j) in a table defines the forwarding probability
of a data packet bound for node i to neighboring node j. For
example, when the node generates or receives a data packet
for node 5, it sends the packet to node 3 with a probability of
0.7, to node 2 with a probability of 0.2, and to node 1 with a
probability of 0.1 according.

The probability of successful data delivery in a dynam-
ically changing network is higher when such a probabilistic
routing table is used than it is when a deterministic routing
algorithm is used. Even if a neighboring node has a low for-
warding probability, some of data packets are forwarded to
it. This contributes to the robustness and adaptability of the
algorithm. When the shortest path becomes unavailable be-
cause of a link failure or node disappearance, the other data
packets on the alternative paths can arrive at the destination.

2.2 Route Discovery, Maintenance, and Updating

Each node periodically emits control messages to maintain
and update, in routing tables of other nodes, a row in which
it is the destination node. A control message is of the form
of (hs, ¢, TTL), where hgis an identifier of the source node
of the control message, c is the sum of the costs of links
that the message has traversed, and TTL (Time To Live)
represents the number of hops that it can move further. A
control message does not have any specific destination, and
it wanders around a network until its TTL becomes zero.
When a control message arrives a node, the cost of the link
from which it came is first added to the sum c, a routing table
is updated, and a next hop node is then chosen at random
from all n neighboring nodes. The probability q; that node
j is chosen as a next-hop of a control message among all n
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neighboring node except for the previous node i is given as

1
9 =r"7" (1)

Finally, the TTL is decreased by 1, and if it is still greater
than 0 the control message is sent to the chosen neighbor.

A node receiving a control message updates its routing
table. A key to the construction of the shortest path by ran-
domly wandering control messages is that the direction from
which a control message came indicates the direction of the
source node of the message. Thus, a better (i.e., shorter)
path is expected to be established by increasing the probabil-
ity that the neighboring node, from which the node receives
a control message, is chosen as the next-hop node of data
packets whose destination is the source of the control mes-
sage. In some cases, a control message takes a long walk
and arrives from a wrong neighboring node, and the prob-
ability is updated inappropriately. The number of control
messages received from a correct direction, however, grows
faster than the number of control messages from the other
directions, so the probability of forwarding a data packet to
an appropriate neighboring node is reinforced as time passes
and the number of control messages increases. In addition,
in updating the forwarding probability, the uniform ant al-
gorithm takes into account the goodness of the path that a
message traversed.

Consider that a node which has n neighbors
(N1, No, ..., Npy) received a control message from neighbor-
ing node N; (1 < i < n). The probability that N; will be
chosen as the next-hop node for the source of the message
is represented as p;. The node updates forwarding probabil-
ities as follows:

pj+Ap . . . _
, if j=i (@<j<n)
p=4 1pAP - 2)
<1 <L
T+ Ap j#i (1<j<n),

where Apis given by

k
Ap=—= k> 0). 3
Prtg >0 ®)
Here f(c) is a non-decreasing function of the total cost c,
and the constant k is called the learning rate of the algorithm.
The learning rate defines the weight of one control message,
and it is generally less than 0.1.

3. HSLSAIlgorithm

HSLS (Hazy Sighted Link State) [12] is an algorithm that
improves the scalability of a link-state routing algorithm for
ad-hoc networks. In generalized link-state routing, at reg-
ular intervals the nodes advertise link status to the other
nodes (extremely, to the whole network) by means of mes-
sage flooding whenever there was any change in the network
topology (e.g., link failure or addition of a new node) dur-
ing the preceding interval. Consequently, when the topol-
ogy changes frequently, as it does in mobile ad-hoc net-
works, the network is flooded with messages. HSLS avoids
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Fig.1 Example of TTL changes in HSLS
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this flooding by advertising topology changes more gradu-
ally and moderately by limiting the range of dissemination.
Since topology changes influence paths traversing distant
nodes far less than they do paths around points of changes,
they need not be promptly reported to distant nodes.

When a node joins a network, it first advertises its ap-
pearance by emitting a global LSU (link state update), which
is a LSU that has an infinite TTL and spreads over the whole
network. We should note here that an infinite TTL does not
imply that the message is immortal and remains in a net-
work forever, because nodes discard control messages that
have the same identifier that an already received message
had. After the global advertisement, the newly joined node
wakes up every te seconds and sends a LSU with TTL 2
if there had been any topology changes in the last te sec-
onds. It also wakes up every 2 x te seconds and sends a
LSU with a TTL equal to 4 if there had been any changes
in the last 2 x te seconds. In short, a node wakes up every
21 xte (i = 1,2,3,...) seconds and transmits a LSU with
TTL 2' if there had been any changes in the last 211 x t,
seconds. If the TTL of a LSU becomes larger than the dis-
tance from the node to the most distant node in a network,
that LSU becomes a global LSU and all counters and timers
are initialized. Even when there are no topology changes, a
node sends a global LSU at least every t,, seconds. Figure
1 illustrates how TTL changes in HSLS. If a change only
takes place during 0 and te, a node sends messages at te, 2te,
4te, and 8te in the figure, where the range of message prop-
agation is increased gradually.

4. Scalable Ant-based Routing Algorithm

In the uniform ant algorithm, as the number of nodes in-
creases, the number of control messages increases and the
network becomes heavily loaded. To reduce the load on a
network and achieve higher scalability while providing low-
delay delivery of data packets, in this section we propose the
multistep TTL scheme, the message migration scheme, and
the probability updating scheme.



4.1 Multistep TTL Scheme

In our proposal, TTL of the k-th control message is given as

Ty = 2%+, (4)
where
Xk = Min(Xmax, max(xk = 0 (mod 2%))) . (5)

Xmax 1S the maximum value used for preventing TTL from
growing infinitely. We need to introduce a maximum bound
on the TTL, since the way that a control message propa-
gates a network differs between HSLS and ant-based al-
gorithms. HSLS distributes control messages by using a
flooding scheme. An original message is replicated and for-
warded in a network, and the nodes within the range of the
TTL are fully covered by copies of the message. On the
other hand, an original control message itself walks around
in a node-by-node fashion and does not clone in an ant-
based scheme. In addition, no node discards a control mes-
sage until its TTL becomes zero. Therefore, if we give an
infinite TTL, a control message lives forever in our proposed
scheme. For example, simulation results indicate that Xmax
should be set to the half of the number of nodes in a network.

4.2 Message Migration Scheme

In the uniform ant algorithm, a control message chooses
a next-hop node at random when it moves. Such random
walking leads to inefficient updates of routing tables because
a control message often moves toward the source and the
forwarding probability to a neighboring node in the oppo-
site direction is reinforced. In addition, the routing tables of
distant nodes cannot be updated efficiently because a control
message walking randomly tends to stay around the source
node. Thus, a control message with a TTL of x does not
necessarily mean that it always reach a node x hops away
from the source node. Furthermore, the number of control
messages with a large TTL becomes particularly small when
we use a multistep TTL scheme to attain higher scalability.
Consequently, the probability that a control message reaches
distant nodes decreases considerably.

We can consider that the higher the forwarding prob-
ability is, the closer the neighboring node to the destina-
tion of a data packet in a routing table. In other words, a
neighboring node whose probability of being chosen as the
next-hop node is small is in the direction opposite the des-
tination node. Since the destination node in a routing table
is the source node of a control message, a control message
can move toward distant nodes by choosing as the next-hop
node a neighboring node with lower forwarding probability.
Therefore, in our algorithm, we use a probabilistic message
migration scheme instead of random walking. In our mes-
sage migration scheme, Eq. (1) is written as

1

bj
Q=71 T (6)
T2
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Fig.2  Frequency distribution of maximum distance reached

To verify the effectiveness of our proposed migration
scheme, we conducted a simulation experiment. The fre-
quency distribution of the maximum distance that control
messages reached is shown in Figure 2. The simulated net-
work consisted of 100 nodes randomly distributed in a re-
gion 4550 m by 4550 m, and links were established between
nodes whose separation was less than 250 m. The average
degree was 9.3 and the diameter of the network was 33 hops.
A node sent 1000 control messages with a fixed TTL value
of 64. The x axis corresponds to the distance of nodes from
the source of the control message, and the y axis shows the
number of control messages. We show the results of the uni-
form ant algorithm and the uniform ant algorithm with our
migration scheme. From the figure, it is clear that with our
proposed migration scheme the control messages moved to-
ward distant nodes effectively. One reason that not all mes-
sages moved effectively is that there was still a high prob-
ability of ineffective movement. Since the average degree
of nodes was rather high and there were several neighboring
nodes which were at the same or closer distance from the
source node, the probability to choose the most preferable
node became relatively small.

4.3 Forwarding Probability Updating Scheme

The scheme described in 4.2 enables control messages with
a large TTL can to reach distant nodes effectively. In the
uniform ant algorithm, however, the amount by which the
forwarding probability in a routing table is increased or de-
creased inversely proportional to the cost of a path as given
by Eg. (3). Therefore, even if a control message traversed
the shortest path, the routing table on a distant node will
not be updated often enough. We therefore modified the
f(c) term in Eq. (3) to f(c — Cpin), Where Crin COrresponds
to the minimum cost among all preceding control messages
from the same source node. Consequently, a control mes-
sage which successfully reaches a distant node can put a
sufficient amount of pheromone on the path it traversed. To
maintain the minimum cost ¢, up-to-date, a node has to
check the cost of every new control messages and compare
the value with cin. However, since the original uniform ant
algorithm always evaluate the cost ¢ and a node only needs
to keep one minimum value for each of source nodes, the
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Fig.3  Network topology

overhead is not high. When we consider mobility of nodes
and changes of quality of wireless links, we have to intro-
duce a timer mechanism or a smoothing function to avoid
the influence of out-of-date conditions. However, this re-
mains a future research work.

5. Simulation and Evaluation

We conducted simulation experiments to evaluate the per-
formance of our algorithm.

5.1 Simulation Model

We generated a network by randomly placing 1024 nodes in
a 4550x4550-m region and, assuming the range of the radio
signals to be 250 m, establishing links between nodes less
than 250 m apart. Nodes were stable and did not move. The
average degree of a node was 9.3, and the maximum dis-
tance between two arbitrary nodes was 33 hops. An exam-
ple of the simulated network topology is illustrated in Fig.
3. The cost between all links was identical and was set to 1.
Parameters were set as f(c) = 0.1 x cand k = 0.1. We con-
ducted ten simulation experiments and used averaged values
to draw each line and point in the following figures.

5.2 Basic Characteristics

We first evaluated the basic characteristics of our proposed
algorithm. For comparison, we conducted simulation ex-
periments with the uniform ant algorithm, our proposed al-
gorithm, and three different combinations of our proposed
schemes. Method A used f(c — cqin) instead of f(c) in Eq.
(3), but the other terms were the same as in the uniform ant
algorithm. Method B additionally used our message migra-
tion scheme. And method C used the multistep TTL scheme
and f(c — cmin). The algorithms and methods we evaluated
are summarized in Table 2. First, one designated node was
randomly chosen in a network. It became a source of control
messages and tried to establish paths from the other nodes
to itself by emitting control messages. Then, at the timing
appropriate for evaluation, all other nodes sent a data packet
to the chosen node. To compare the algorithms and meth-
ods from the viewpoint of routing efficiency, we defined a

5
Table2 Evaluated algorithms and methods
prob. update | migration | multiTTL
uniform ant
method A (0]
method B 0] 0}
method C (0] 0}
proposed alg. 0} (e} o

measurement of the average hop ratio. Before the experi-
ments, we calculated the optimal shortest hop count from
each of the other nodes to the chosen node. The optimal hop
count corresponds to the distance to a node. By dividing the
observed number of hops by the optimal hop count, we ob-
tained the hop ratio for each of the nodes. Finally, by taking
an average of hop ratios of nodes on the same distance, i.e.,
optimal hop count, from the chosen node, the average hop
ratio was calculated for each distance.

To compare methods fairly, we should consider the
load on the network. Of the five evaluated algorithms and
methods, our proposed algorithm and method C use the
multistep TTL scheme, whereas the other three emit con-
trol messages with the fixed TTL 2%=+1 \When we assume
that, independently of algorithms and methods, a node emits
control messages at regular and identical intervals and Xmax
is set to 8, (i.e., the maximum fixed TTL is set to 512), the
total number of control messages in the network per unit
time when the algorithm and method using multistep TTL
are used is about 1/50 of what it is when the algorithm and
methods using a constant TTL are used. Thus, to carry out
comparisons fairly from the viewpoint of the load on a net-
work, we consider the case that the total number of hops
that all control messages took (i.e., the amount of network
resource consumed) are the same among the algorithms and
methods. For example, when the total hop count is 10000,
the number of control messages sent in the uniform ant,
method A, and method B is about 20, whereas in method
C and the proposed algorithm it is about 1024.

We define the signaling overhead as @ where sis

the size of the control message, TTL is TTL value of control
messages, i is the interval at which control messages are
emitted, and d is the average degree. Itis derived by dividing

the amount of control messages in a network @ by the

number of links dTN where N corresponds to the number of
nodes. The signaling overhead corresponds to the amount
of control traffic per link. When we assume that the size of
a control message is 100 bytes, each node emits 8 messages
per sec, the average degree is 10, and maximum TTL is set to
512, the overhead is 655 kbps in the uniform ant algorithm
and is only 12 kbps in the proposed algorithm.

Results are shown in Figs. 4(a) through 4(d). Each fig-
ure shows how the average hop counts between nodes de-
pends on the distance from the chosen node. On x-axis, the
distance of the source node of data packets to the chosen
node is shown in terms of the number of hops. On y-axis,
the average hop count that data packet experienced is shown.
Figures 4(a), 4(b), 4(c), and 4(d) respectively correspond to
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total hop counts of 10 000, 30 000, 60 000, and 90 000.

First, by comparing the uniform ant algorithm and
method A, we can see that the average hop count is ap-
parently reduced by using our scheme for updating the for-
warding probability. In the uniform ant algorithm, a con-
trol packet that reaches a distant node has little influence on
a routing table. Therefore, the quality of paths from dis-
tant nodes stays low even if some control messages reach
them. Although when the uniform ant algorithm is used,
paths gradually improved as time passes and the total num-
ber of control messages increases from Fig. 4(a) to Fig. 4(d),
the average hop count is much larger than that it is when the
other algorithm or methods are used.

Second, as shown in Fig. 4(a), paths from distant nodes
are better when method B is used than when method A is
used. When our migration scheme is used, control messages
move toward distant nodes effectively and the routing ta-
bles of those nodes are updated often. Furthermore, as time
passes from Fig. 4(a) to Fig. 4(d), the average hop ratio at
closer nodes also becomes smaller with method B than with
method A. This is because randomly walking control mes-
sages in method A wrongly and wastefully update routing
tables around the source nodes of control messages.

Third, by comparing methods A and C in Fig. 4(a),
we can see that the multistep TTL scheme improves paths

around the source of control messages at the cost of paths
from distant nodes, but the average hop ratio at distant nodes
is still far smaller than it is when the uniform ant algorithm
is used. In addition, Fig. 4(d) shows that paths gradually
improve as time passes when method C is used. When we
consider an ad-hoc network, not necessarily a mobile one,
where the topology changes and is not stable, it is ineffi-
cient to maintain the exact and optimal routing information
at distant nodes by consuming much bandwidth with control
messages [12,13]. Even if routing information is abstract at
distant nodes, data packets can be appropriately guided and
delivered as they approach the destination node as long as
the information around the destination is well-maintained
and up-to-date. Thus, we consider that in mobile ad-hoc
networks the multistep TTL scheme works better that the
uniform ant algorithm does.

Finally, Fig. 4(a) shows that our proposal outperforms
the others in sending data packets from nodes at distance of
less than 20 hops. The quality of paths to more distant nodes
is still small, though, and is similar to that when method A
is used. This is because the number of control messages that
reach distant nodes is small in the proposal due to the mul-
tistep TTL scheme. However, the quality of paths was im-
proved by our migration scheme in comparison with method
C. As time passed more control messages reached distant
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nodes, then the proposed scheme further improved all paths
and yielded the shortest paths.

5.3 Setting of Maximum TTL Value

In this subsection, we consider the influence of the maxi-
mum TTL 2%=*1 Figure 5 illustrates the transition of the
average hop ratio for cases of maximum TTL = 32, 64, 128,
256, 512 and 1024. The x axis corresponds to the total hop
count (i.e, time) and the y axis shows the hop ratio aver-
aged over all nodes. As the maximum TTL increases, more
control messages can reach distant nodes and update their
routing tables. Thus the average hop ratio is expected to
decrease. However, the maximum TTL of 1024 leads to
slightly larger average hop ratios when the total hop count
is low. This is because the total number of hops of 10 000
means that 987 control messages have been sent when the
TTL is 1024 whereas 1024 control messages have been sent
when the TTL is 512. For routing tables to be well updated,
the sufficient number of control messages should be sent.
Thus, a scheme with a TTL of 1024 needs more time to
establish appropriately short paths than the others do. The
difference is not large, however, and we think that our pro-
posed algorithm is insensitive to the maximum TTL at about
half of the number of nodes in a network.

We do not define the method for setting the maximum
TTL of control messages in our proposed algorithm. We
cannot assume that all nodes know the exact number of
nodes in a network. One possible way for a node to es-
timate the number of nodes independently is to derive the
maximum number of nodes from its own degree d, (i.e., the
number of neighboring nodes) and the maximum distance
Tmax Of nodes which it knows as d™™=. Although this is a
rough and over-estimation, we consider that it is effective
enough for the insensitivity of the proposal to the maximum
TTL shown in Fig. 5. The verification of this idea and con-
siderations on a better estimation remain as future research
works.

5.4  Setting of Multistep TTL

In our proposed algorithm, we empirically use the same se-
quence of multistep TTL as in HSLS. Although this way
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14 + . sequence o, —--X--- |
sequence B ---*---
1k " sequence y —&-— |
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average hop ratio
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Fig.6 Influence of TTL sequence

was shown to be optimal for HSLS [12], we should con-
sider the difference in the way of message dissemination as
mentioned in 2.1. In this subsection, we consider three other
sequences given as follows:

2%+l (sequence @)
T =4 3%+t (sequence ) )
Xi2 (sequence y) .

where X is the same as in Eq. (5). We evaluated those al-
ternatives in simulation experiments. In our proposed al-
gorithm, the frequency that a control message with a given
TTL appears is defined by a function of log, TTL. Sequence
a generates control messages of larger TTL more often than
our Proposed algorithm does. Sequence B corresponds to
a function of log; TTL, and sequence y generates control
messages as a function of VTTL. To have similar maxi-
mum TTL values for all the sequences, we respectively set
Xmax 10 8, 4, 5, and 22 for the proposed algorithm, sequence
a, sequence B, and sequence y. They lead to maximum TTL
values of 512, 512, 729, and 529.

The results shown in Fig. 6 indicate that the sequence
does not influence much except for sequence y. Since the
number of control messages with a large TTL is too small
in sequence vy, the quality of paths from distant nodes is
low and reduces the average hop ratio. The proposed al-
gorithm provides paths slightly worse than sequences « and
B do when the total number of hops, which corresponds to
the number of control messages, is small. As time passes,
the quality of paths improves, however, and the proposed al-
gorithm outperforms the others. However, the difference is
small in our simulation environments.

6. Conclusionsand Future Works

We obtained a scalable ant-based routing algorithm by us-
ing a multistep TTL scheme proposed in HSLS, and we
also proposed several schemes for effective message diffu-
sion and efficient table updating. Through simulation ex-
periments, we showed that the overhead of our proposed
algorithm is about 12/655=1.8% that of the uniform ant al-
gorithm and that our proposed algorithm constructs better
paths that the uniform ant algorithm does.

Although we have shown the basic characteristics of



our proposed algorithm, we need to evaluate its effective-
ness in some other environments where the network topol-
ogy is different and changes often where nodes are mobile.
Conjectured from inherit features of ant-based algorithms,
e.g., robustness, adaptability, and reliablity, and known re-
sults of performance evaluations of proactive routing pro-
tocols with a multistep TTL scheme such as FSR (Fisheye
State Routing) and FZRP (Fisheye Zone Routing Protocol),
we consider that our proposal attains good performance in
mobile environments. We also plan to conduct comparisons
with other routing algorithms such as the above two. In ad-
dition, we based our algorithm on the uniform ant routing
algorithm, but we think our approach would be viable if cou-
pled with other ant-based algorithms. We therefore plan to
consider other combinations.
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