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Abstract
The development of low-cost microsensor equipment
having the capability of wireless communications has
caused sensor network technology to attract the atten-
tion of many researchers and developers. In this paper,
we propose a fully-distributed and self-organizing data
gathering scheme for a network where a large number
of sensor nodes are deployed. To accomplish the pe-
riodic data gathering without centralized controls, we
adopt the pulse-coupled oscillator model based on bi-
ological mutual synchronization such as that observed
in flashing fireflies. By adjusting parameters and func-
tions in the model according to application’s require-
ments and conditions surrounding a sensor network,
we can control the frequency, the form, and the direc-
tion of information propagation which is observed as
a wave. In this paper, we show how to organize trav-
eling waves in the model and how to adapt the model
to data gathering in sensor networks.

1 Introduction
The development of low-cost microsensor equipment
having the capability of wireless communications has
caused sensor network technology to attract the atten-
tion of many researchers and developers [1]. One can
obtain information on behavior, condition, and posi-
tion of elements in a region by deploying a network of
battery-powered sensor nodes there. Each sensor node
in such a sensor network has a general purpose pro-
cessor with a limited computational capacity, a small
amount of memory, and a radio transceiver. Data
gathered by sensor nodes are transmitted directly or
indirectly to a base station or a sink.

Since a sensor node is typically powered by a battery
that can not be replaced often, a sensor network must
use a data gathering scheme that is energy-efficient. In
addition, because sensor nodes are often deployed and
distributed in an uncontrolled way, a data gathering
scheme can not be centralized one with a single node
or a server maintaining all information and having all
control functions.

In our previous research work [2], we proposed a

fully-distributed, self-organizing, robust, adaptable,
scalable, and energy-efficient data gathering scheme
for a network with a large number of sensor nodes. We
considered an application that periodically collected
sensor information from sensor nodes to a base sta-
tion. In the scheme, sensor information periodically
propagates and aggregates from the edge of a sensor
network to the base station as the propagation forms
a wave on concentric circles. More specifically, sensor
nodes on the same circumference periodically broad-
cast their sensor information at the same time with
the same frequency, before the sensor nodes on the in-
ner circumference broadcast their information, so that
inner nodes can forward their sensor information.

To accomplish the periodic data gathering without
centralized controls, each sensor node should indepen-
dently determine the cycle and the timing at which
it emits a message to advertise its sensor information
based on locally available information. For this pur-
pose, we adopted the pulse-coupled oscillator model
based on biological mutual synchronization such as
that observed in flashing fireflies [3]. Through sim-
ulation experiments and implementation, we verified
that our scheme could accomplish concentric circle-
shaped data gathering. However, according to applica-
tion’s requirements, there should occur different types
of traveling waves. For example, we also need a travel-
ing wave of the form of concentric circles where infor-
mation propagates from the center to the edge to dis-
tribute information or control signal from a base sta-
tion or a sensor node. When we consider a base station
is located at the edge of a sensor network, we prefer
a wedge-shaped traveling wave propagating from the
opposite side of the network to the base station.

In this paper, we propose a fully-distributed and
self-organizing data gathering scheme which can or-
ganize a variety of traveling waves on application’s
requirements. In our scheme, we adopt the pulse-
coupled oscillator model described in [4]. In this
model, it is shown that not only a global synchroniza-
tion where all oscillators fire synchronously, but a trav-
eling wave, where oscillators behave synchronously but
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Figure 1: PRC of QIF model ΔQIF
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Figure 2: PRC of RIC model ΔRIC

with fixed phase differences, appears depending on ini-
tial conditions of oscillators. By adjusting parameters
and functions in the pulse-coupled oscillator model, we
can control the frequency, the form, and the direction
of a wave. In our scheme, each sensor node broadcast
its sensor information in accordance with the phase of
its own timer. When a sensor node receives a radio sig-
nal of other, it adjusts the phase of its timer. Through
mutual interactions among neighboring sensor nodes,
they reach the state, called a phase-lock, where differ-
ences among phases are kept constant, and they emit
sensor information alternately.

The rest of this paper is organized as follows. First,
in Section 2, we briefly introduce the pulse-coupled
oscillator model we adopted in this paper. Next, we
investigate initial conditions that lead to desired form
of a traveling wave in Section 3. Then, in Section 4, we
present a scenario to apply the pulse-coupled oscillator
model to data gathering in sensor networks. Finally,
we conclude the paper and describe future research
works in Section 5.

2 Pulse-Coupled Oscillator Model
The pulse-coupled oscillator model is developed to ex-
plain synchronous behaviors of biological oscillators
such as pacemaker cells, fireflies, and neurons. In this
section, mainly following the model described in [5],
we give a brief explanation of the model.

Consider a set of oscillators. Each oscillator i has
phase φi (dφi/dt = 1). As time passes, φi shifts toward
one and, after reaching it, an oscillator fires and the
phase jumps back to zero. Oscillators coupled with the
firing oscillator are stimulated and advance its phase
by an amount Δ(φ). Then, we have

φ
′
i = 1 + Δ(φi)δ(φj), (1)

where δ(φ) is the Dirac impulse function. Δ(φ) is called
a phase-resetting curve (PRC). For example, for the
quadratic integrate-and-fire (QIF) model, ΔQIF(φ) =
−a sin 2πφ (Fig. 1) and for the radial isochron clock
(RIC) model, ΔRIC(φ) = a(1−cos 2πφ) (Fig. 2). Here,
let F (φ) = φ + Δ(φ) where F

′
> 0, F (0) = 0, and

F (1) = 1.

Through mutual interactions, depending on initial
conditions of oscillators, a set of oscillators reach either
of the global synchronization where they have the same
phase and fire all at once, or the phase-lock condition
where phases are kept constant and different among
oscillators and the propagation of fires seems like a
traveling wave.

3 Generation of Traveling Waves
In this section, we investigate initial conditions that
lead to desired phase-lock conditions, i.e., traveling
waves. We start from the simplest case, two alter-
nately firing oscillators, then move to a ring, a line,
two types of concentric circles, a wedge, and a radar-
shaped traveling wave.

3.1 Two Oscillators
First, we consider phase-lock condition in a pair of
oscillators [5]. Suppose that when oscillator 1 fires at
time 0, oscillator 2 is at φ2 so that the new phase
for oscillator 2 becomes F (φ2). At t1 = 1 − F (φ2)
oscillator 2 fires, then oscillator 1 at φ1 = t1 = 1 −
F (φ2) moves to the new phase F (t1) = F (1 − F (φ2)).
At t2 = 1−F (t1) oscillator 1 fires once again, and the
phase of oscillator 2 is 1−F (t1) = 1−F (1−F (φ2)). To
have the phase-lock condition, φ2 = 1−F (1−F (φ2)).
Consequently, when initial conditions are comply with
φf = 1 − F (1 − F (φf )), oscillators fire alternately. In
the case of φ

′
= 1, the occurrence condition is |φ1 −

φ2| = 1 − φf .

3.2 Ring
Next we consider the case of a ring of N oscillators [4].
Since an oscillator is stimulated by two neighboring
oscillators, Eq. (1) becomes as

φ
′
i = 1 + Δ(φi)[δ(φi−1) + δ(φi+1) − δ(φi−1)δ(φi+1)], (2)

where we identify 0 with N and N + 1 with 1. Con-
sider oscillators fire in order of 1 → 2 → · · · → N at
constant phase-difference τ . When oscillator N fires,
oscillator N − 1 and 1 are stimulated. At this time,
the phase of oscillator N − 1 is τ and its new phase
becomes F (τ). Oscillator 1 is at (N − 2)τ + F (τ) and
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Figure 3: Timing of Firing in a Ring
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Figure 4: Firing Pattern in a Line

its new phase φ1 becomes F ((N − 2)τ + F (τ)). Here,
φ1 = 1 − τ holds because oscillator 1 will fire after τ .
Therefore, the phase of each oscillators in a traveling
ring wave should satisfy the following conditions.

φN−1 = F (τ)
φN−2 = τ + F (τ)

... =
...

φi = (N − i − 1)τ + F (τ)
... =

...
φ2 = (N − 3)τ + F (τ)
φ1 = F ((N − 2)τ + F (τ)) = 1 − τ.

From this, we have the following formula.

F ((N − 2)τ + F (τ)) + τ = 1. (3)

Waves with multiple cycle replace the 1 with m.
Figure 3 shows the timing of firing in a ring of os-

cillators, where N = 10. We used the RIC PRC with
a = 0.1. τ was set at 0.0964 derived from Eq. (3).
In Fig. 3, we can see that a fire travels along a ring.
X-axis corresponds to time and y-axis corresponds to
identifiers of oscillators. Each dot stands for the tim-
ing that an oscillator fires.

3.3 Line
In this subsection, we consider a line of N oscillators.
Consider oscillators fire in order of 1 → 2 → · · · → N
at constant phase-difference τ , and oscillator 1 fires

 1

 2

 3

 4

 0  1  2  3  4  5

O
sc

ill
at

or

Time

Figure 5: Timing of Firing in a Line
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Figure 6: Multiple-Firing Pattern in a Line

after T unit of time from a fire of oscillator N as illus-
trated in Fig. 4 where dashed arrows stand for stimuli
given by a firing oscillator to neighboring oscillators.

When oscillator i (1 ≤ i < N − 1) fires, the new
phase of oscillator i + 1 becomes

F ((N − 3)τ + T + F (τ)) = 1 − τ. (4)

Similarly, when oscillator N − 1 fires, the new phase
of oscillator N becomes

F ((N − 2)τ + T ) = 1 − τ. (5)

Finally, when oscillator N fires, the new phase of os-
cillator 1 becomes

(N − 2)τ + F (τ) = 1 − T. (6)

Equations (4) through (6) describe the condition for
the existence of traveling waves on a line of oscillators.
Figure 5 shows the timing of firing in a line, where
N = 4, T = 0.25, and τ = 0.25. We used Δ(φ) =
−a sin 4πφ as PRC, where a = 0.05.

Next, we consider another pattern of traveling wave
in a line illustrated in Fig. 6. In this case, oscillators
which are distant by m (m is a natural number) fire at
the same time. Suppose that oscillator i (1 < i < N)
fires at time 0. At time τ , oscillator i +1 fires and the
new phase of oscillator i becomes F (τ). After (m−1)τ
unit of time, oscillator i − 1 fires, and the new phase
of oscillator i becomes,

F ((m − 1)τ + F (τ)) = 1 − τ. (7)
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Figure 7: Firing Pattern in a Concentric Circle
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Figure 8: Location of Oscillators in a Concentric Circle

Similarly, let us consider oscillator 1. Oscillator 1 fires
at time 0. At time τ , oscillator 2 fires and the new
phase of oscillator 1 becomes F (τ). After mτ , oscilla-
tor 1 will fire again. Therefore,

(m − 1)τ + F (τ) = 1 − τ. (8)

Finally, we consider oscillator N . Oscillator N−1 fires
after mτ from oscillator N fires.

F (mτ) = 1 − τ. (9)

Equations (7) through (9) describe the condition for
the existence of traveling waves. We should note that
Eqs. (7) through (9) are identical to Eqs. (4) through
(6) when m is equal to N − 1 and T is equal to τ .

3.4 Concentric Circle
In this subsection, we consider a traveling wave draw-
ing a concentric circle as in [2]. Figure 7 illustrates in-
teractions among firing oscillators in concentric circles.
The number in each circle, i.e., an oscillator, indicates
the number of hops from the center of circles called
level in [2]. Oscillators fires in order of levels. We as-
sume an oscillator ignores all stimuli at the moment of
firing [5], and an oscillator identifies multiple stimuli
received at the same time as one stimulus. Following
this assumption, we can regard oscillators on the same
level as one oscillator. Therefore, we can apply the
same condition derived in subsection 3.3 by defining
the same initial condition for oscillators on the same
level.

We confirmed the existence of phase-lock condition
to generate a concentric circle-shaped traveling wave.
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Figure 9: Timing of Firing in a Concentric Circle
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Figure 10: Firing in a Wedge

Figure 8 illustrates the simulated network of 25 oscil-
lators. For easier understanding, oscillators are placed
to form concentric circles. However, we can generate
a traveling wave of the form of a concentric circle on a
sensor network with arbitrary node distribution. Os-
cillators are numbered from the center to the edge.
Each oscillator interacts with all other oscillators that
are within distance of 1.5. We used T = 0.25 and
τ = 0.25 on Eqs. (4) through (6). In Fig. 9, we can
observe a traveling wave propagating from the cen-
ter toward the edge where all oscillators on the same
circumference fire synchronously. When we give the
initial conditions of oscillators in reverse, a wave prop-
agates from the edge toward the center.

3.5 Wedge

In this subsection, we consider another type of a trav-
eling wave. Taking into account spatial correlation of
sensor information, we can expect efficient and effec-
tive aggregation of data by relaying sensor information
as illustrated in Fig. 10. To save battery power in ac-
tivating a transceiver, it is desirable for sensor nodes
(shaded circles in Fig. 10) whose next hop is the same
(filled circle) to emit their information simultaneously.
Such information propagation can be attained by set-
ting level value as shown in Fig. 11 and applying the
same condition in subsection 3.3.

Figure 12 illustrates the simulated network of 48 os-
cillators. Each oscillator interacts with all other oscil-
lators that are within distance of 1.5. We used m = 3
and τ = 0.25 in Eqs. (7) through (9). Figure 13 shows
that a traveling wave appeared as expected.
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3.6 Radar
In this subsection, we consider a radar-shaped trav-
eling wave as illustrated in Fig. 14. The number in
each circle indicates the order of firing on a circumfer-
ence, and we call it as level. Oscillators with the same
level value on different circumferences do not neces-
sarily fire simultaneously. On the contrary, oscillators
with different level values on different circumferences
fire simultaneously if they are on the same radius. For
example, at time 0, oscillators 0, 0′, and 0′′ on the
same radius fire simultaneously. When we consider a
cycle of T , T/8 unit of time later, oscillator 1, 2′, and
3′′ fire at the same time. Between them, oscillator 1′

fires at T/16, and oscillators 1′′ and 2′′ fires at T/24
and T/12, respectively.

A radar-shaped traveling wave can be generated
by first organizing oscillators into concentric circles.
Next, on each of a circumference, a ring-shaped travel-
ing wave is generated while making oscillators on a ra-
dius fire simultaneously. For this purpose, we assume
that an oscillator receives stimuli only from neighbor-
ing oscillators on the same circumference and those in
the same radius as shown by dashed arrows in the fig-
ure. In addition, we assume that the center node does
not fire, or oscillators on the most inner circle ignore
firing of the center node.

Figure 15 illustrates the simulated network of 60 os-
cillators. Oscillators from 1 to 10 are on the most inner
circle which has a radius of one unit of distance. Oscil-
lators from 11 to 30 are on the middle circle, and ones
from 31 to 60 are on the third. Each oscillator interacts
with all other oscillators that are within distance of 1.
Derived from Eq. (3), τ was set at 0.0964, 0.0482,
and 0.0323 for the most inner, the middle, and the
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Figure 13: Timing of Firing in a Wedge
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Figure 14: Firing Pattern in a Radar

third circle, respectively. Figure 16 shows the timing
of firing. A solid line indicates the time that oscilla-
tor 1 fired. In Fig. 16, we can observe a radar-shaped
traveling wave where oscillators on the same circum-
ference fire in order the same time and those on the
same radius fire at.

4 A Distributed and Self-organizing
Data Gathering Scheme

In this section, we present a scenario to apply the
pulse-coupled oscillator model to data gathering in
sensor networks. Here, we make some assumptions.
First, we consider a static and stable sensor network
where there is no addition, removal, and movement
of sensor nodes. Second, the communication delay is
negligible in comparison with temporal granularity of
control. A sensor node has a timer which shifts from
zero to one at the frequency of data gathering and
jumps back to zero when it expires.

We denote a set of n sensor nodes as S =
{S1, · · · , Sn}. Initial setting of a sensor network for
data gathering is performed as follows. First, a sen-
sor node or a base station that gathers or dissemi-
nates information determines PRC function Δ(φ) and
the phase-difference τ to generate a desired traveling
wave. The node is called a core node. A core node
broadcasts a message within its range of radio signals.
The message contains Δ(φ), τ , an identifier of a type
of a traveling wave, the direction of information prop-
agation, i.e., fusion or diffusion, and a level value zero
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(diffusion) or N (fusion). Then, on receiving a message
from node Sj, node Si adjusts its level and phase in
accordance with a type of a traveling wave. For exam-
ple, in a case of a concentric circle wave (fusion), level
li is determined as the maximum level value among
all messages it receives minus one. When its level is
changed, a sensor node also adjusts the phase as 1−τ .
In a case of a radar wave, we assume that each sen-
sor node knows its geographical or relative location.
Based on messages it received from sensor nodes which
are on the same circumference and in the opposite di-
rection of a wave, node Si initializes its level li as the
minimum level plus one and phase φi as 1 − τ .

Once the initial phase is set, a sensor node begins to
shift a timer and periodically emits messages addition-
ally including sensor information and its level value.
On receiving a message, a sensor node examines the
message to decide whether it has to be stimulated or
not. In a case of a concentric circle wave, node Si is
stimulated by a message with level li −1 and one with
level li + 1. If a message is from a sensor node with
li−1, node Si deposits sensor information into its local
memory and emits them together with its own sensor
information at the timing of message emission. Oth-
erwise, the message is ignored. In a case of a radar
wave, node Si is stimulated by a message emitted by
a sensor node with level li + 1 or li − 1 or on the same
radius. The latter can be identified by their location
information.

5 Conclusion and Future Work
In this paper, we considered to adopt the pulse-
coupled oscillator model for a fully distributed and
self-organizing data gathering scheme in sensor net-
works. We first investigated initial conditions that lead
to desired phase-lock conditions, i.e., traveling waves
in the pulse-coupled oscillator model. Next, we pre-
sented a brief sketch of a scenario to apply the pulse-
coupled oscillator model to data gathering in sensor
networks.

As the next step of this research work, we first con-
sider a data gathering scheme in more details taking
into account changes in network topology and radio
conditions. We also consider several application sce-
narios which benefit much from our scheme.
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