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Abstract

Interest in the TCP overlay network, which controls the data
transmission quality at the transport layer, has grown as the user
demand for sophisticated and diversified services in the Internet
has increased. In the TCP overlay network, TCP proxy is a fun-
damental mechanism that transparently splits a TCP connection
between sender and receiver hosts into multiple TCP connec-
tion at some nodes in the network and relays data packets from
the sender host to the receiver host via the split TCP connec-
tions. In the present paper, we investigate the performance of
the TCP proxy mechanism through experiments using the actual
public network. The TCP proxy mechanism is shown to enhance
the data transfer throughput without any change in the TCP/IP
protocol stack of the endhost. In addition, we evaluate the per-
formance of gentle High-Speed TCP, as proposed in a previous
study, on the TCP connection between the TCP proxy nodes.

1 Introduction

The remarkable degree to which the Internet has grown is due
in part to access/backbone network technologies such as xDSL
and optical fiber. In addition, user demand for diversified ser-
vices has increased due to the rapid growth of the Internet popu-
lation. Some of these applications require high-quality transport
services in terms of, for example, end-to-end throughput, packet
loss ratio, and delay. However, data transmission quality across
the current Internet cannot be assured, essentially because of the
best-effort basis of the Internet.

IntServ [1] and DiffServ [2] are possible solutions to this
problem that add control mechanisms at the network layer. For
example, the DiffServ architecture is based on a simple model in
which traffic entering a network is classified, and possibly con-
ditioned, at the boundaries of the network and is then assigned
to different behavior aggregates. However, implementation of
DiffServ architecture would require additional mechanisms to
be deployed to all routers through which traffic-flows traverse
in order to achieve sufficient benefit from the introduction of
IntServ/DiffServ into the network. Therefore, due to factors
such as scalability and cost, we believe that these schemes have
almost no chance of being deployed on large-scale networks.

Figure 1: TCP overlay network

Proxy cache servers in Contents Delivery Networks (CDNs)
[3] and media streaming in P2P (Peer-to-Peer) networks are typ-
ical examples of the overlay networking approach. One disad-
vantage of such methods is the need for complicated control
mechanisms specific to each application. In addition, parame-
ter setting is very sensitive to various network factors.

We are now investigating TCP overlay network architecture
[4], which controls data transmission quality at the transport
layer, meaning that the IP layer remains providing only min-
imum fundamental functions, such as routing and packet for-
warding. One of the important mechanisms of TCP overlay net-
works is to divide the end-to-end TCP connection into multiple
split TCP connections and relay data packets from the sender
host to the receiver host via the split TCP connections (Figure
1). In the present paper, we refer to this splitting mechanism
as TCP Proxy. TCP Proxy is expected to enhance the end-to-
end data transfer throughput, mainly because the feedback-loop
of the TCP connection becomes short, meaning that the round
trip time and packet loss ratio of each split TCP connection is
reduced.

In some previous studies [4, 5], we confirmed the effect of
the TCP proxy mechanism from simulation and mathematical
analysis results. We found that, with a TCP proxy mechanism,
the end-to-end throughput of data transmission is increased and
the file transfer delay is shortened. In the present paper, we in-
vestigate the performance of the TCP proxy mechanism by con-



Figure 2: TCP proxy mechanism

ducting experiments using the public network. Furthermore, we
also evaluate the performance of TCP variants for high-speed
networks [6, 7] when used on a TCP connection between TCP
proxy nodes.

The remainder of the present paper is organized as follows.
In Section 2, we explain the TCP proxy mechanism and High-
Speed TCP. In Section 3, we explain the environment and set-
tings used in the experimental evaluation and present experi-
mental results for the characteristics of the actual public network
used in the present study. We evaluate the effect of TCP proxy
and High-Speed TCP in Section 4. Section 5 summarizes the
conclusions of the present study and discusses areas for future
consideration.

2 Research Background

2.1 TCP proxy mechanism

TCP proxy is a fundamental mechanism that splits a TCP
connection between the sender and receiver hosts into multi-
ple TCP connection at some nodes in the network. TCP proxy
modes relay data packets from the sender host to the receiver
host via the split TCP connections. TCP proxy also use a
local ACK packet; a TCP proxy node sends back a pseudo
ACK packet to the upward sender/proxy when it receives a data
packet, without waiting to receive an ACK packet from the
downward receiver/proxy. TCP proxy is expected to improve
the data transfer throughput of connections by shortening the
RTT. Furthermore, a TCP proxy has send/receive socket buffers
for storing data packets, just like a regular TCP host. When a
data packet is lost between the TCP proxy and the receiver host,
the dropped packets can be retransmitted from the TCP proxy

instead of the sender host. TCP proxy is also expected to im-
prove data transfer performance, compared to regular TCP con-
nections. Figure 2 depicts the mechanisms used in processing
and forwarding TCP packets via split TCP connections, where
there are two proxy nodes between the sender and receiver hosts
and three split TCP connections are used. One advantage of the
TCP proxy mechanism is its transparent behavior. TCP connec-
tions traversing TCP proxy nodes are split automatically, and
there is no need to modify the protocol stack of sender/receiver
hosts.

2.2 High-Speed TCP

In high-speed networks having bandwidths greater than 100
Mbps, obtaining sufficient throughput by TCP based on TCP
Reno is difficult, as pointed out in [6]. Therefore, a number of
TCP modifications related to High-Speed TCP that are capable
of achieving high throughput by modifying the congestion con-
trol algorithm have been proposed in [6–9]. In the present paper,
we evaluate the performance of High-Speed TCP (HSTCP) [6]
and its improvement variant, gentle High-Speed TCP (gHSTCP)
[7], on the TCP connection between TCP proxy nodes. The ex-
pected benefit of using HSTCP/gHSTCP between TCP proxy
nodes is that the advantage of HSTCP/gHSTCP can be obtained,
while retaining the TCP/IP stack of the sender/receiver endhosts.

2.2.1 High-Speed TCP (HSTCP)

To overcome the problems inherent in TCP, HSTCP was pro-
posed in [6]. The HSTCP algorithm employs the principle of
Additive Increase Multiplicative Decrease (AIMD), as in stan-
dard TCP, but HSTCP is more aggressive in its increases and
more conservative in its decreases. HSTCP addresses this by
altering the AIMD algorithm for the congestion window adjust-
ment, making it a function of the congestion window size rather
than a constant, as is the case in standard TCP. That is, the“ in-
crease”parameter becomes larger, and the“decrease”parameter
becomes smaller, as the congestion widow size increases (Figure
3). In this way, HSTCP can sustain a large congestion window
and fully utilize the high-speed long-delay network. HSTCP is
described in detail in [6].

However, a number of problems regarding HSTCP have been
reported in [7]. For example, the relative fairness between stan-
dard TCP and HSTCP worsens as the link bandwidth increases.
When HSTCP and TCP Reno compete for bandwidth on a bot-
tleneck link, we do not attempt to provide the same throughput
that they are capable of achieving. However, in this case, high
throughput by HSTCP should not occur by excessively sacrific-
ing TCP Reno throughput, i.e., HSTCP should not pillage too
many resources at the expense of TCP Reno.

2.2.2 Gentle High Speed TCP (gHSTCP)

Based on HSTCP, gHSTCP, as proposed in [7], can achieve
better fairness with competing traditional TCP flows, while ex-



Figure 3: Change of cwnd using HSTCP

Figure 4: Change of cwnd using gHSTCP

tending the advantage of high throughput provided by HSTCP.
The original HSTCP increases the congestion window size
based solely on the current congestion window size. This may
lead to bursty packet losses because the window size contin-
ues to increase rapidly even when packets begin to be queued at
the router buffer. In addition, differences in speed gains among
the different TCP variants result in unfairness. To alleviate this
problem, gHSTCP changes the behavior of HSTCP for speed
increases so as to account for full or partial utilization of bottle-
neck links. In addition, gHSTCP regulates the congestion avoid-
ance phase in two modes and switches between these modes
based on the trend of changing RTT. When an increasing trend
in the observed RTT values occurs, gHSTCP adopts the conges-
tion control algorithm of TCP Reno (Figure 4). This is expected
to reduce the rate of packet loss in the buffer of routers and im-
prove fairness with TCP Reno. gHSTCP is described in detail
in [7].

3 Experimental Environment

3.1 Experimental Network and Settings

We prepared the public Internet environment between Tokyo
and Osaka, as depicted in Figure 5.

There are two TCP proxies in Tokyo network and Osaka net-
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Figure 5: Experimental environment

work, and the TCP connection between the sender and receiver
hosts is split into three TCP connections when the TCP proxy
mechanism is activated. We compare the data transfer through-
put using a single TCP connection between the sender and re-
ceiver hosts (Case 1), and that using the split TCP connections
by TCP proxy 1 and TCP proxy 2 (Case 2). In case 1, data is
transferred between Osaka B and Tokyo B. In Case 2, the TCP
connection between Osaka A and Tokyo A is split in three con-
nections (Osaka A - TCP proxy 1, TCP proxy 1 - TCP proxy 2,
TCP proxy 2 - Tokyo A), and data is relayed via the split TCP
connections with TCP proxy mechanism. Furthermore, we used
a network emulator at Tokyo network to emulate the long-delay
network between the sender and receiver hosts. We tested the
Osaka-Tokyo case with no delay emulated at the network emu-
lator, and the Okinawa-Tokyo case with a 25-msec delay.

In the experiment, we inject TCP traffic into the network
using the measurement tool iperf [10] and measure the aver-
age throughput at the receiver host. Note that we define the
throughput as the amount of data arriving at the receiver host
per unit time. In addition, we measure the round-trip times
(RTTs) and congestion window size (cwnd) using the log of
/proc/net/tcp in Linux system in order to analyze the de-
tailed TCP behavior.

In the present paper, we show the experimental result for the
case of using the hosts at Osaka (Osaka A, Osaka B) as the
sender hosts and using the hosts at Tokyo (Tokyo A, Tokyo B) as
the receiver hosts, because the connection from Osaka to Tokyo
could obtain higher throughput than the connection in the oppo-
site connection, indicating less background traffic.

3.2 Investigation of Experimental Environment

First, we show a number of experimental results using regular
TCP traffic in order to investigate the characteristics of the ac-
tual public network used in the present study. In this experiment,
we used multiple TCP connections simultaneously and checked
the average throughput of two minutes data transmissions every
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Figure 6: Average throughput with normal TCP

five minutes in Jan. 21, 2005. Figure 6 shows the change in
the average throughput when the number of simultaneous TCP
connections is set to 1, 2, 5, 10, and 20. The figure shows that
the upper-limit of the bottleneck link bandwidth in the experi-
mental network can be estimated to be approximately 70 Mbps
because the throughput increases only slightly when the number
of connections is more than 5.

Figure 7 shows the changes of the round-trip times (RTTs)
and the congestion window size (cwnd) of the TCP connection
when only one TCP connection is utilized. From this figure, the
following observations can be made regarding the experimental
network:

• The change of the cwnd is synchronized with that of the
RTT, meaning that the TCP connection itself causes the
network congestion.

• The minimum RTT is approximately 18 msec.

• The buffer size at the bottleneck router is approximately
12 msec (equivalent to approximately 100 KBytes when
the bandwidth is 70 Mbps), because the maximum RTT is
approximately 30 msec.

• The buffer at the bottleneck router is equipped with the
drop tail discipline because the RTT is stable when the
packet loss occurs.

• In most cases of packet loss, only one packet is dropped
because the cwnd is halved when packet loss occurs.

Note that these characteristics are equivalent to the typical re-
sults of simulation using ns-2 [11]. This means that we can ob-

 0

 10

 20

 30

 40

 50

 60

302520151050
 0

 50

 100

 150

 200

 250

 300

R
T

T
 [m

se
c]

cw
nd

 [p
kt

s]

Time [sec]

RTT
cwnd

Figure 7: Typical change of the RTT and the congestion
window size

tain results for the performance of TCP proxy in the experimen-
tal network similar to those reported in the simulation studies in
[4, 5, 7].

4 Evaluation Results

In this section, we evaluate the effectiveness of TCP proxy
mechanism and High-Speed TCP based on extensive data trans-
mission experiments.

4.1 Effect of TCP proxy

Figures 8 and 9 show the average throughput of data transfer
with and without TCP proxies when the size of the TCP socket
buffer at the sender and receiver hosts and the propagation delay
between the hosts are varied. The average throughput is calcu-
lated from five two-minute data transmission experiments. Case
1 is that for data transfer without TCP proxies: the TCP con-
nection between sender and receiver hosts is set. Case 2 is that
for data transfer with TCP proxies: three split TCP connections
with two TCP proxies are used, as shown in Figure 5. Note that
the socket buffer size at the TCP proxies is set to be sufficiently
large.

From the results for the Osaka-Tokyo connection, shown
in Figure 8, when the TCP proxies are not used, sufficient
throughput cannot be obtained with a small socket buffer at
the sender/receiver hosts. Therefore, the socket buffer must
be set to a large value in order to effectively utilize the bottle-
neck link bandwidth because the socket buffer can not utilize the
link bandwidth with a 64-Kbyte socket buffer for the 150-Kbyte
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Figure 8: Average throughput without a TCP proxy

bandwidth-delay product of the experimental network. In addi-
tion, the results for the Okinawa-Tokyo case reveal that the link
bandwidth cannot be used, even with the larger buffer, because
TCP Reno cannot effectively utilize the large bandwidth-delay
product [6]. A TCP Reno connection increases its window size
only one packet per RTT, and reduces its window size by half
when packets are lost.

On the other hand, for the Osaka-Tokyo case, when the TCP
proxies are used (Figure 9), high throughput could be obtained,
even with a small socket buffer. This is the case because the
data transmission throughput of the split TCP connection be-
tween TCP proxies is sufficiently large since the TCP proxies
utilize the large socket buffer and since high data transmission
throughput between the sender/receiver host and the TCP proxy
can be obtained with a small socket buffer as a result of the small
bandwidth-delay products. This is one of the advantages of the
TCP proxy mechanism, that is, it is not necessary to modify the
settings of the sender and receiver terminals in order to obtain
higher throughput.

On the other hand, based on the results obtained for the
Okinawa-Tokyo case, similar results can be obtained with the
small and large socket buffers. However, compared to the
throughput for the Tokyo-Osaka case, the throughput for the
Okinawa-Tokyo case is lower, even with the TCP proxies.
This is the case because the TCP proxies are located near the
sender/receiver and the propagation delay between the TCP
proxies is approximately equal to that between the endhosts.
The effectiveness of a TCP proxy depends on its location. In [5],
the TCP proxy was reported to be most effective when located
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Figure 9: Average throughput with a TCP proxy

such that the delay between the endhosts is divided equally.

4.2 Effect of High-Speed TCP

To solve the above-mentioned problem, the use of TCP vari-
ants for high-speed and long-delay networks is one possible so-
lution. Figure 10 shows the results of data transfer experiments
for the Okinawa-Tokyo case using HSTCP/gHSTCP for the con-
nection between TCP proxies. Based on this result, the through-
put was found to be increased by using HSTCP. In addition, we
found that a higher throughput could be obtained with gHSTCP,
which uses the refined HSTCP algorithm proposed in [7]. This
is because it takes less time to retransmit packets using gHSTCP
because the number of dropped packets is decreased. However,
we cannot obtain the maximum possible value of throughput
(approximately 70 Mbps), even with gHSTCP because timeout
often occurs with packet loss, since the propagation delay be-
tween the sender and receiver hosts is large.

Finally, we evaluate the fairness property for the case in
which both connections are used. Figure 11 shows the results for
the three protocols for TCP proxies for the Okinawa-Tokyo case.
The figure shows that, higher throughput can be obtained by us-
ing HSTCP between TCP proxies, by decreasing the throughput
of the normal TCP data transmission. This is one of the short-
comings of HSTCP, that is, although HSTCP can obtain high
data transmission throughput in high-speed networks, it ignores
the effect on the performance of co-existing connections.

On the other hand, when gHSTCP is used between the TCP
proxies, we can obtain higher throughput and the throughput of
TCP Reno is not decreased because gHSTCP controls its win-
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Figure 10: Effect of High-Speed TCP

dow size depending on the condition of congestion in the net-
work. That is, gHSTCP achieves high throughput while not af-
fecting the performance of co-existing connections.

5 Conclusions

In the present paper, we investigate the performance of the
TCP proxy mechanism and HSTCP/gHSTCP through experi-
ments using the actual public network between Tokyo and Os-
aka. The results of these experiments revealed that higher
throughput can be obtained without changing the TCP proto-
col or the size of the socket buffer of the endhost. When
HSTCP/gHSTCP is used on the TCP connection between the
TCP proxy nodes, we showed that we can obtain high through-
put in the environment where TCP Reno cannot obtain enough
throughput such as the long-delay network. However HSTCP
make co-existing connection’s throughput decrease, and gH-
STCP solves this problem.

In future studies, we would like to evaluate the TCP proxy
mechanism in a larger experimental network using more than
three networks and to set the parameters of gHSTCP. In addition,
we would like to evaluate the performance of the TCP proxy
mechanism in a high-speed network.
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