
Experimental Evaluations of Gentle HighSpeed TCP for
Long-Fat Networks

Zongsheng ZHANG, Go HASEGAWA, and Masayuki MURATA
Graduate School of Information Science and Technology, Osaka University

1–32 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
{zhang, hasegawa, murata}@ist.osaka-u.ac.jp

Abstract
It is well-known that TCP Reno cannot provide satis-

factory performance in high-speed long-delay networks.
As a means addressing this problem, gentle HighSpeed
TCP (gHSTCP) has been proposed in [1]. However, its
effectiveness has only been demonstrated in simulation
experiments. In the present paper, a refined gHSTCP al-
gorithm is proposed for application to real networks. The
performance of the refined gHSTCP algorithm is then as-
sessed experimentally. The refined gHSTCP algorithm is
based on the original algorithm, which uses two modes
(Reno mode and HSTCP mode) in the congestion avoid-
ance phase and switches modes based on RTT increas-
ing trends. The refined gHSTCP algorithm compares two
RTT thresholds and judges which mode will be used. The
experimental results demonstrate that gHSTCP can pro-
vide a better tradeoff in terms of utilization and fairness
against co-existing traditional TCP Reno connections.

1 Introduction
Transmission Control Protocol (TCP) [2] has been

widely used as a transport-layer protocol in the current
Internet from its inception. TCP has played a great role in
the advancement of the Internet. However, the infrastruc-
tures of networks have been changing both with respect
to end-hosts and network links. End-hosts are becoming
faster, and network link bandwidths are becoming wider
at an amazing rate. Moreover, an increasing number of
new applications, such as data grids and storage area net-
works (SANs), have begun to appear. These applications
are placing new demands on networks, especially in terms
of transmission speed. At present, networking infrastruc-
ture has the capability to transmit data quickly, and the
problem is how TCP uses it. Current TCP implementa-
tions, which are primarily based on TCP Reno, cannot
fully utilize Long Fat Networks (LFNs) [3], which are
high-speed long-delay networks. Essentially, the charac-
teristics of TCP Reno, i.e. the congestion window size is
halved when packet loss occurs and is increased by one
packet per Round Trip Time (RTT) when no packet is
dropped, limit its performance. In order to address this
problem, a number of improvements have been proposed
[1, 3–8].

One traditional method by which to improve TCP per-
formance on LFNs is to tune certain TCP parameters,
e.g. using the Selective ACKnowledgement (SACK) op-
tion [4] and tuning the TCP socket buffer size [5]. How-
ever, TCP cannot achieve satisfactory throughput in LFNs
because the TCP algorithm itself is a limitation. Another
solution is the use of parallel TCP mechanism, which uti-

lizes multiple TCP connections concurrently to transmit
a large amount of data. Parallel TCP has been widely
used to increase TCP performance, primarily because of
its easy implementation. For example, GridFTP [6] sup-
ports parallel TCP connections to transfer data. Funda-
mental to the use of parallel TCP is the selection of the
number of TCP connections. This number affects both
the aggregate throughput of parallel TCP and the impact
on other competing traffic that shares the same links. Se-
lecting the optimal number of parallel TCP connections
in order to maximize the performance without affecting
the fairness is not an easy task.

In recent years, efforts to improve the TCP perfor-
mance in LFNs have focused on modifying the congestion
control mechanism of TCP itself. These efforts include
HSTCP [3], FAST TCP [7], XCP [8] and gHSTCP [1].
In particular, HSTCP is a simple, representative exam-
ple that uses the Additive Increase and Multiplicative De-
crease (AIMD) principle of TCP Reno and so is easily
deployed in the current Internet. In addition, HSTCP is
currently the only protocol that is recommended by IETF
as an Experimental RFC in LFNs [3].

However, the fairness between these new TCP variants
and the traditional TCP Reno is quite an important issue
when we consider the migration paths of new TCP vari-
ants. It is very likely that HSTCP connections between
server hosts and the many traditional TCP Reno connec-
tions for Web access and e-mail transmissions share the
same high-speed backbone links. Note that this does not
mean that HSTCP connections and TCP Reno connec-
tions receive the same throughput; however, the HSTCP
connections should not achieve high performance by sac-
rificing the performance of the TCP Reno connections.

Based on our previous study [1], we have demonstrated
that the fairness is a weakness of HSTCP. That is, HSTCP
achieves high throughput, whereas the throughput of the
competing TCP Reno is decreased when HSTCP and TCP
Reno share the link bandwidth. In order to address this
problem, we proposed the gHSTCP mechanism in [1].
gHSTCP, which is based on HSTCP, uses two modes
in the congestion avoidance phase according to the in-
creasing RTT trends. The simulation results presented in
a previous study [1] indicate that, compared to HSTCP,
gHSTCP provides better throughput on LFNs and main-
tains higher fairness against the traffic that passes through
the same network paths.

However, we have investigated the characteristics of
gHSTCP only by simulation experiments. Simulation
plays a vital role in attempting to characterize a proto-
col, whereas the simulation condition is relatively ideal

Window Size

Time

Bandwidth*Delay

TCP Reno

HSTCP

Figure 1: Congestion Window (TCP Reno and HSTCP)

compared to the real network. Because the heterogeneity
of the real network ranges from individual links and net-
work equipments to the protocols that inter-operate over
the links and the “mix” of different applications in the
Internet, the protocol behavior in the simulation may be
quite different from that in a real network. Therefore,
emulating a protocol in a test-bed network is important
with respect to its application to real networks, because
the emulation network is more similar to a real network.
In addition, the repetition of experiments under controlled
conditions can be easier than in a real network. Thus, we
herein present the evaluation results of gHSTCP in the
test-bed network.

The present paper makes the following three contribu-
tions:

• A refined gHSTCP algorithm that improves the be-
havior of gHSTCP in real networks is proposed.
• The performances of TCP Reno, HSTCP and

gHSTCP are evaluated experimentally in an emulat-
ing test-bed network.
• The parallel TCP mechanism is evaluated as a pos-

sible candidate for the high-speed transport mecha-
nism in LFNs.

The remainder of this paper is organized as follows.
In Section 2, we provide a short description of HSTCP
and gHSTCP. In Section 3, a refined gHSTCP algo-
rithm is proposed. The experimental results for TCP
Reno/HSTCP/gHSTCP and parallel TCP implementation
in the test-bed network are presented in Section 4. Sec-
tion 5 summarizes the conclusions of the present study
and discusses future areas for investigation.

2 HSTCP and gHSTCP
In this section, we briefly describe the algorithms of

HSTCP and gHSTCP. (For more detailed descriptions,
please refer to [1, 3].)

2.1 HSTCP
In order to overcome the problems associated with us-

ing TCP Reno in LFNs, HSTCP was proposed in [3].
Figure 1 shows a rough sketch of the changes in the
congestion window sizes of TCP Reno and HSTCP. The
HSTCP algorithm uses the AIMD principle of TCP Reno
but is more aggressive with respect to increases and more
conservative with respect to decreases in the congestion
avoidance phase.

HSTCP addresses this behavior by altering the para-
meters of the AIMD algorithm for the congestion win-
dow adjustment, making these parameters functions of
the congestion window size, rather than constants, as in

Window Size

Time

Reno mode

HSTCP mode

Bandwidth*Delay

gHSTCP

HSTCP

Figure 2: Congestion Window (HSTCP and gHSTCP)

the case of TCP Reno. In response to a single acknowl-
edgment, HSTCP increases the number of segments in its
congestion window w as:

w←w+
a(w)

w

In response to a congestion event, HSTCP decreases the
number of segments in its congestion window as:

w←(1−b(w))×w

Here, a(w) is a monotonically increasing function of w,
whereas b(w) is a monotonically decreasing function of
w. Based on this characteristic, TCP connections us-
ing the HSTCP mechanism can maintain large congestion
windows in LFNs, as shown in Figure 1 so that the net-
work link bandwidth can be better utilized.

2.2 gHSTCP
HSTCP increases the congestion window size based

solely on the current congestion window size. This may
lead to bursty packet losses, because the congestion win-
dow size continues to be rapidly increased even when
packets are queued at the router buffer, that is, when the
network becomes congested. In addition, differences in
speed gains among TCP Reno and HSTCP result in un-
fairness when these protocols co-exist in the network. In
order to alleviate this problem, we considered changing
the behavior of HSTCP in [1]. Two modes, the HSTCP
mode and the Reno mode, are used in the congestion
avoidance phase. Mode switching is based on the trend of
changes in RTT values. Figure 2 shows the concept of the
gHSTCP mechanism. The HSTCP mode is used before
the link bandwidth is fully utilized, and the Reno mode
is used if the link bandwidth is fully utilized. Therefore,
TCP flows using gHSTCP can catch the link bandwidth
as quickly as the original HSTCP, while providing better
fairness with respect to competing TCP Reno flows.

For this purpose, the following algorithm is employed.
Denote the departure time and the RTT value of the i-th
transmitted packet as di and ti, respectively, the correla-
tion between di and ti is tested statistically. If a positive
correlation is recognized, that is, if an increasing trend in
the observed RTT values is present, then the sender de-
termines that congestion is occurring. The sender should
therefore slow down the increase in the sending rate in or-
der to maintain fairness against TCP Reno connections.
The process during this period is referred to as Reno
mode, in which the sender increases its congestion win-
dow in a manner identical to that in the standard TCP
Reno. This will maintain fairness between TCP Reno and
gHSTCP connections. On the other hand, if there is a

em0
172.16.100.121

em1
172.16.200.121

172.16.100.210

IRC

IPC

172.16.100.10

172.16.200.210

IRS

IPS

172.16.200.10

PCI 3COM

Flow-1

Flow-2

Figure 3: Topology

non-positive correlation between di and ti, the network is
in an under-utilized state and the sender should increase
the congestion window rapidly in order to utilize the un-
used bandwidth. The process during this period is called
the HSTCP mode. The sender increases the congestion
window size in the same manner as in HSTCP.

The algorithm is summarized as follows. When a new
acknowledgment is received, gHSTCP increases its con-
gestion window in segments as:

w←w+
a(w)

w

where a(w) is given by:

a(w) =

 2w2·b(w)·p(w)
2−b(w)

in HSTCP mode

1 in Reno mode

We have shown that gHSTCP based on this mechanism
can provide better performance and fairness by simula-
tions [1].

3 The Refined gHSTCP Algorithm
3.1 Problem Description

In this subsection we present experimental results to
demonstrate the problems with the original gHSTCP al-
gorithm and then propose a refined algorithm.

We first conduct an experiment to check the behav-
ior of gHSTCP in our test-bed network. The topology
of the test-bed network, which is also used in follow-
ing experiments, is shown in Figure 3. In this exper-
iment, there is only one TCP flow from IPS to IPC to
transfer unlimited data. The gHSTCP mechanism intro-
duced in the previous section is used by the TCP con-
nection. The run-time of the experiment is 90 s. The
packet size is 1460 bytes. Dummynet [9] is used to em-
ulate the bottleneck link between the sender and receiver
hosts, which defines the link bandwidth, the delay and
the buffer size. The setting of Dummynet in this exper-
iment is such that the bandwidth is 200 Mbps and delay
is 22 ms. Thus, the bandwidth-delay product (BDP) of
the network is 770 packets. A TailDrop mechanism is de-
ployed at the bottleneck link buffer, and the buffer size is
equal to 137 packets.

The experimental results of the change of the con-
gestion window size as a function of time are shown in
Figure 4, where the mode-switching and BDP are also
plotted. The mode of gHSTCP does not change as ex-
pected. When the congestion window size is less than
the BDP of the network path between the sender and re-
ceiver hosts, HSTCP mode is used, otherwise Reno mode
is used. Its mode-switching oscillates severely in the ex-
perimental result. The shortcomings of this oscillation are

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

HSTCP

Reno

C
W

N
D

 (
pa

ck
et

)

M
od

e

time [sec] (BW=200M, Delay=22ms, Queue=200K)

BDP
CWND

Mode

Figure 4: Congestion Window and Mode (Original Algo-
rithm)

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 R
T

T
 p

er
 C

W
N

D
 (

m
s)

time [sec] (BW=200M, Delay=22ms, Queue=200K)

RTT

 46

 47

 48

 49

 50

 51

 24 25 26 27 28 29

Figure 5: RTT Change

as follows. First, gHSTCP cannot fill the link bandwidth
quickly when the congestion window size is less than the
BDP. Second, this oscillating action induces unfairness
against the competing TCP Reno flow when the conges-
tion window size is larger than the BDP. Third, the oscil-
lation will lead to bursty packet losses if gHSTCP is in
HSTCP mode just before the buffer overflows. Note that
bursty packet losses cause retransmission timeout in TCP.

The reason for the mode oscillation is that the metric
by which to determine the mode is based only on the in-
creasing trend of the RTT. In a real network, RTT does not
increase monotonously in a local period, even if the con-
gestion window becomes large. In Figure 5, the average
RTT values per congestion window are plotted so that the
RTT trend behavior can be clarified further. The enlarged
sub-figure in Figure 5 shows the period of 24 – 29 s. To-
gether with Figure 4, this figure shows that the RTT fluc-
tuates near the minimum RTT before the congestion win-
dow size reaches the BDP. When the congestion window
size is larger than the BDP, on the whole, the RTT in-
creases as the congestion window increases. However, the
RTT does not always remain in the increasing state. The
change of the RTT is affected by several factors, such as
the performance of end host, the process schedule of the
operating system and interaction with other flows.

3.2 Refined Algorithm
In order to reduce the above-mentioned unneces-

sary mode-switching behavior, a refined algorithm for
gHSTCP is required. The basic idea of the modification is
that the RTT is larger than the propagation delay when the
link bandwidth is fully utilized. That is, the RTT is larger

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

HSTCP

Reno

C
W

N
D

 (
pa

ck
et

)

M
od

e

time [sec] (BW=200M, Delay=22ms, Queue=200K)

BDP
CWND

Mode

Figure 6: Congestion Window and Mode (Refined Algo-
rithm)

than a pre-defined threshold, Reno mode should be used
even when the fluctuation of the RTT is large and there is
a short-term decreasing trend. In particular, Reno mode
is expected to be used at the point before the packet drop
occurs, so that large amounts of simultaneously dropped
packets can be avoided when the buffer overflow occurs.
On the other hand, HSTCP mode is used if the RTT oscil-
lates around the minimum RTT and the RTT is not larger
than a pre-defined threshold. Based on this concept, the
algorithm of gHSTCP is refined as follows:

Notation:
RTT_min: minimum of the average RTT in

a sample cycle between two loss events.
RTT_std: standard deviation of RTT in a

sample cycle. RTT_std is used as a
metric for evaluating the dynamic
property of RTT.

RTT_min+2*RTT_std, RTT_min+4*RTT_std: two
thresholds that indicate the boundaries
in which gHSTCP is in effect.

If RTT < RTT_min + 2*RTT_std
HSTCP mode is used.

If RTT >= RTT_min + 2*RTT_std and
RTT < RTT_min + 4*RTT_std
the mode is decided by the RTT trend.

If RTT >= RTT_min + 4*RTT_std
Reno mode is used.

Next, we check the refined gHSTCP algorithm experi-
mentally. The experimental condition and the environ-
ment are identical to those of the previous experiment.
The experimental result for the congestion window is il-
lustrated in Figure 6. The TCP connection is in HSTCP
mode when the congestion window size is less than the
BDP. If the congestion window size is larger than the
BDP, Reno mode is used. When the congestion window
is around the BDP, the mode is changed according to the
RTT trend. This mode-switching behavior is as expected
based on the refined algorithm. In the following experi-
ments, we use the refined algorithm for gHSTCP.

4 Performance Comparison
4.1 Test-bed Network Setup

In this section, we use the test-bed network to assess
the behavior of high-speed TCP and parallel TCP vari-
ants. All of the following experiments use Dummynet as

the infrastructure, which is included in FreeBSD 5.2.1. In
the following experiments, the dumbbell topology shown
in Figure 3 is used. In each experiment, there is one
TCP flow from IPS to IPC, using TCP Reno, HSTCP,
gHSTCP, and parallel TCP, respectively. There are two
additional TCP Reno connections between IRS and IRC.
For convenience, the TCP flow from IPS to IPC is referred
to as Flow-1, and the TCP flow from IRS to IRC is re-
ferred to as Flow-2. The access link bandwidth of Flow-1
is 1 Gbps, and the access link bandwidth of Flow-2 is
100 Mbps. The link between two Ethernet switches (la-
beled PCI and 3Com in Figure 3) is referred to as the bot-
tleneck link. The experiment run-time is 300 s.

In order that the socket buffer size does not restrict
the throughput of Flow-1, the socket buffer size is set
to a large value if TCP Reno/gHSTCP/HSTCP is used.
When parallel TCP is used, the system default value of
64 Kbytes is used because the main factor of parallel TCP
is the number of parallel TCP connections. In our ex-
periments, the RTT of each connection is approximately
45 ms. In this situation, the largest throughput that Flow-2
can achieve is approximately 12 Mbps, if its socket buffer
size is 64 Kbytes. In this condition, the two connections
in Flow-2 using socket buffer size of 64 Kbytes cannot
fully utilize its access link. However, the access link can
be fully utilized if the socket buffer size of Flow-2 is set
to 512 Kbytes. Therefore, we present the experimental re-
sults when the socket buffer size for Flow-2 connections
are set to 64 Kbytes and 512 Kbytes.

There are two scenarios designed for experiments ac-
cording to differences in the Dummynet settings:

• Scenario-1: Delay = 23 ms, Bandwidth = 100 Mbps,
and Buffer-size = 200 Kbytes.
• Scenario-2: Delay = 23 ms, Bandwidth = 200 Mbps,

and Buffer-size = 500 Kbytes.

Each scenario contains two cases, i.e. the socket buffer
size of Flow-2 is set to 64 Kbytes and 512 Kbytes. In
Scenario-1, the access link bandwidth of Flow-2 is equal
to the bottleneck link bandwidth. In Scenario-2, the ac-
cess link bandwidth of Flow-2 is less than the bottleneck
link bandwidth. Thus, the position of the bottleneck link
of Flow-2 varies for different experiments.

4.2 Metrics
Throughput, link utilization and fairness are used as

performance evaluation metrics. The throughput is the
average rate of data successfully received by a TCP re-
ceiver. The link utilization is defined as the ratio of the
aggregate throughput over the bottleneck link bandwidth.
The fairness (Jain’s fairness index) is defined as follows:

FairnessIndex =
(∑n

i=1 xi)2

n∑
n
i=1 x2

i

Here, n is the total number of connection and xi is the
normalized throughput for flow i, defined as xi = Mi/Ci,
where Mi is the measured throughput and Ci is the fair
throughput determined by max-min optimality. Table 1
shows the fair throughput determined by max-min opti-
mality in our experiments. By this metric, we evaluate
the fairness between gHSTCP/HSTCP/parallel TCP vari-
ants and TCP Reno.

Table 1: Fair throughput (Ci) (Mbps)
Socket buffer size of Flow-2 64 KB 512 KB

Scenario-1 Flow-1 76 33
BW=100 Mbps Flow-2 12, 12 33, 33

Scenario-2 Flow-1 176 100
BW=200 Mbps Flow-2 12, 12 50, 50

4.3 Experiments of Scenario-1
In this scenario, the following four experiments are

performed, where the buffer size of Flow-2 is set to
64 Kbytes or 512 Kbytes:

• Exp-1: Flow-1 uses TCP Reno.
• Exp-2: Flow-1 uses HSTCP.
• Exp-3: Flow-1 uses the parallel TCP mechanism.
• Exp-4: Flow-1 uses gHSTCP.

Note that when the parallel TCP mechanism is used, we
use eight TCP connections in order to fully utilize the bot-
tleneck link due to the default buffer size of 64 Kbytes.
The results of link utilization, fairness index and through-
put are illustrated in Figure 7. Note that the throughput
of Flow-2 represents the total throughput of the two TCP
connections in Flow-2.

Figure 7(a) shows that the link utilization of gHSTCP
is slightly less than the largest link utilization (for parallel
TCP). However, the link utilization of gHSTCP is better
than that for the case in which TCP Reno or HSTCP is
used for Flow-1. The utilization when HSTCP is used by
Flow-1 is approximately the same as that when TCP Reno
is used by Flow-1, because packet losses occur frequently
when HSTCP is used. Figure 7(b) shows that the fairness
is better in all cases when the buffer size of Flow-2 is set
to 64 Kbytes. This is because the main limitation on the
throughput of Flow-2 is its socket buffer size. In contrast,
when the buffer size of Flow-2 is set to 512 Kbytes, the
fairness is determined by the algorithms of TCP and the
competing flows. When parallel TCP is used with this
condition, the fairness is very poor, although the best uti-
lization can be achieved. The fairness of parallel TCP is
determined by the number of parallel TCP connections.
This factor also affects its throughput. Figure 7(c) intu-
itively shows the performance and interaction of compet-
ing flows through the throughput of Flow-1 and Flow-2
in each case. The throughput of Flow-2 is clearly influ-
enced by the competing TCP flows when its socket buffer
size is set to 512 Kbytes. This means that the fairness
must be taken into consideration when a new mechanism
is deployed in networks.

To summarize, gHSTCP offers the best tradeoff in
terms of utilization and fairness due to its graceful behav-
ior. Before the link bandwidth of the bottleneck is fully
utilized, gHSTCP increases its congestion window size
as rapidly as HSTCP. Therefore, it can achieve higher uti-
lization. When the link bandwidth of the bottleneck is
fully utilized, gHSTCP increases its congestion window
size in the manner of TCP Reno. Therefore, gHSTCP
can maintain better fairness while sharing the bottleneck
bandwidth with the competing TCP Reno.

4.4 Experiments of Scenario-2
In Scenario-2, four experiments are conducted, in

which similar to Scenario-1, the buffer size of Flow-2 is

 50

 60

 70

 80

 90

 100

Exp-4Exp-3Exp-2Exp-1Exp-4Exp-3Exp-2Exp-1

U
til

iz
at

io
n

(%
)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(a) Utilization

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Exp-4Exp-3Exp-2Exp-1Exp-4Exp-3Exp-2Exp-1
F

ai
rn

es
s

In
de

x

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(b) Fairness

 0

 20

 40

 60

 80

 100

Exp-4Exp-3Exp-2Exp-1Exp-4Exp-3Exp-2Exp-1

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

Flow-1
Flow-2

(c) Throughput

Figure 7: Scenario-1 (Bandwidth=100 Mbps)

set to either 64 Kbytes or 512 Kbytes, respectively. The
difference between Scenario-1 and Scenario-2 is that the
bandwidth of the bottleneck link is set to 200 Mbps and
the buffer size of the router is 500 Kbytes.

• Exp-5: TCP Reno is used by Flow-1.
• Exp-6: HSTCP is used by Flow-1.
• Exp-7: Parallel TCP mechanism is used by Flow-1.
• Exp-8: gHSTCP is used by Flow-1.

As discussed in Scenario-1, when the parallel TCP mech-
anism is used, we use 16 TCP connections in order to
fully utilize the bottleneck link due to the default buffer
size of 64 Kbytes. The results of utilization, fairness in-
dex and throughput are shown in Figure 8.

On the whole, the utilization and fairness trends are
the same as those demonstrated in Scenario-1. Parallel
TCP achieves the best utilization, but the worst fairness.
gHSTCP offers higher utilization and better fairness than
the other protocols. That is, gHSTCP is the best trade-
off in terms of link utilization and fairness. On the other
hand, differences between the two scenarios remain be-
cause the link bandwidth of the bottleneck is changed

 50

 60

 70

 80

 90

 100

Exp-8Exp-7Exp-6Exp-5Exp-8Exp-7Exp-6Exp-5

U
til

iz
at

io
n

(%
)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(a) Utilization

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Exp-8Exp-7Exp-6Exp-5Exp-8Exp-7Exp-6Exp-5

F
ai

rn
es

s
In

de
x

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(b) Fairness

 0

 50

 100

 150

 200

Exp-8Exp-7Exp-6Exp-5Exp-8Exp-7Exp-6Exp-5

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

Flow-1
Flow-2

(c) Throughput

Figure 8: Scenario-2 (Bandwidth=200 Mbps)

from 100 Mbps to 200 Mbps. First, when TCP Reno is
used, the utilization decreases as the link bandwidth in-
creases. This illustrates the well-known problem of TCP
Reno in LFNs. TCP Reno cannot fully utilize the net-
work, due to the characteristics of conservative increase
and dramatic decrease. Second, the access link of Flow-2
is equal to the bottleneck link bandwidth in Scenario-1
(Figure 7). In this case, the access link bandwidth is
not the bottleneck for Flow-2. Thus, any increase in
cross traffic will affect the throughput of Flow-2 when
the buffer size of Flow-2 is set to 512 Kbytes. However,
Figure 7(c) shows that gHSTCP steals resources from
Flow-2, as compared with HSTCP and parallel TCP. In
Scenario-2, the bottleneck link bandwidth is larger than
the access link bandwidth of Flow-2. Therefore, redun-
dant link bandwidth exists that can be used by other flows.
As illustrated in Figure 8(c), gHSTCP can use the redun-
dant link bandwidth very well when the buffer size of
Flow-2 is set to 512 Kbytes. In this situation, HSTCP
pillages vast resources from TCP Reno because of the ag-
gressive increase of its congestion window size.

The results of both Scenario-1 and Scenario-2 show
that parallel TCP outperforms gHSTCP in terms of link
utilization. However, this advantage is at the expense of
fairness with respect to Flow-2. There exists an impor-
tant parameter when parallel TCP is used, i.e. the num-
ber of parallel TCP connections, and it is quite difficult
to choose a suitable value. That is, the bottleneck link
bandwidth cannot be utilized well if the number of paral-
lel TCP connections is small. In contrast, if the number
of parallel TCP connections is too large, severe unfairness
results with respect to the competing flows. Due to lim-
ited space, the results of varying number of parallel TCP
connections are not presented here.

5 Conclusion
In this paper, we performed an experimental study to

assess the performance of high-speed TCP and parallel
TCP variants in terms of utilization, throughput and fair-
ness. Based on these experiments, a refined gHSTCP al-
gorithm was proposed for its application in a real network.
The results indicate that gHSTCP can offer a better trade-
off between utilization and fairness on LFNs.

In the present paper, the performance of gHSTCP is
evaluated only when the TailDrop mechanism is deployed
at routers. Active Queue Management (AQM), such
as Random Early Detection (RED) [10], is an impor-
tant queue management mechanism. Furthermore, it is
necessary to evaluate gHSTCP with AQM. In addition,
gHSTCP must also be evaluated in both a higher speed
network (e.g. the link bandwidth of the bottleneck is
1 Gbps) and the Internet.

References
[1] Z. Zhang, G. Hasegawa, and M. Murata, “Perfor-

mance analysis and improvement of HighSpeed TCP with
TailDrop/RED routers,” in Proc. 12th IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, October 2004.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP congestion
control,” IETF RFC 2581, April 1999.

[3] S. Floyd, “HighSpeed TCP for large congestion windows,”
IETF RFC 3649, December 2003.

[4] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
selective acknowledgement options,” IETF RFC 2018, Oc-
tober 1996.

[5] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP
buffer tuning,” in Proc. ACM SIGCOMM, August 1998.

[6] W. Allcock, “GridFTP: Protocol extensions to FTP for
the grid,” April 2003, available as: http://www.globus.org/
research/papers/GFD-R.0201.pdf.

[7] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP for high-
speed long-distance networks,” Internet Draft: draft-jwl-
tcp-fast-01.txt, June 2003.

[8] D. Katabi, M. Handley, and C. E. Rohrs:, “Congestion
control for high bandwidth-delay product networks,” in
Proc. SIGCOMM 2002, August 2002.

[9] L. Rizzo, “IP dummynet,” available as: http://info.iet.
unipi.it/~luigi/ip_dummynet/.

[10] S. Floyd and V. Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions
on Networking, vol. 1, no. 4, pp. 397–413, August 1993.

http://www.globus.org/research/papers/GFD-R.0201.pdf
http://www.globus.org/research/papers/GFD-R.0201.pdf
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/

	Introduction
	HSTCP and gHSTCP
	HSTCP
	gHSTCP

	The Refined gHSTCP Algorithm
	Problem Description
	Refined Algorithm

	Performance Comparison
	Test-bed Network Setup
	Metrics
	Experiments of Scenario-1
	Experiments of Scenario-2

	Conclusion

