
High-Speed Transport-Layer Protocols
for Fast Long-Distance Networks

Zongsheng Zhang

January 2006

Department of Information Networking
Graduate School of Information Science and Technology

Osaka University



This page is blank.



Preface

Currently, Transmission Control Protocol (TCP) is the most widely used transport-layer

protocol in the Internet. TCP is the primary transport protocol in use in most IP networks,

and supports the major portion of traffic across the Internet. It is typically employed by

applications that require guaranteed delivery.

However, data intensive applications, e.g., Content Distribution Network (CDN) and

Storage Area Network (SAN), have appeared. These applications use high speed networks

to transfer terabyte/pertabyte-sized files over continents. Recent research has shown that

current TCP mechanisms can obstruct efficient use of such fast long-distance networks

(LFNs). Addressing the problem of TCP used in LFNs, several high-speed protocols are

proposed in recent years. These protocols can be classified into two categories. Both

of them modify the algorithm of TCP. The first requires modifications at both end-hosts

and the routers in between, e.g., eXplicit Control Protocol (XCP), and Variable-structure

congestion Control Protocol (VCP). For using them, the mechanism of routers must be re-

constructed, for some information gathered by routers need to be fed back to the end-hosts.

The second category only needs the modification of the congestion control mechanism of

end-host’s TCP, e.g., HighSpeed TCP (HSTCP), Scalable TCP, and FAST TCP. Thus, they

are relatively easy to be deployed in the current Internet.

To date, these high-speed protocols are still on the way of development and not widely

deployed. Moreover, none of them have given a completely solution, for example, HSTCP,

which is a representative of high-speed protocols, may provide higher throughput than

TCP Reno, but HSTCP flows starve TCP Reno flows when they share the same network

links. A more suitable transport protocol, which can provide higher throughput with better

fairness against the competing TCP flows, should be designed at present. Thus we solve the

. i .



problem of fairness by proposing an enhanced transport layer protocol – Gentle HighSpeed

TCP (gHSTCP). gHSTCP is based on HSTCP, so it can provide high performance and is

easy to be deployed. For fairness, gHSTCP uses two modes – HSTCP mode and Reno

mode – in the congestion avoidance phase, and switches between modes based on the trend

of changing RTT. Simulation results show gHSTCP can significantly improve performance

in mixed environments. When gHSTCP and TCP Reno flows share the same bottleneck

link, compared with the case when HSTCP is used, gHSTCP may provide better utilization

and fairness. When TCP SACK option is turned on, gHSTCP can also provide better

performance, though HSTCP may achieve almost the same bottleneck utilization as that

done with gHSTCP in some case. For instance, when DropTail is deployed, the bottleneck

link bandwidth is 2.5 Gbps, and the propagation delay is 50 ms, gHSTCP rises by 15% on

utilization, and by 0.1 on fairness (Jain’s fairness index) compared with HSTCP. gHSTCP

using SACK option rises by 0.16 on fairness compared with HSTCP using SACK option.

Then, the performance of gHSTCP is evaluated when gHSTCP flows co-exist with Web

traffic. With the help of gHSTCP, the packet drop rate is depressed, and Web responding

time is slightly improved.

However, the performance improvement is limited due to the nature of TailDrop router,

and the RED routers can not alleviate the problem completely. Therefore, we present a

modified version of adaptive RED (ARED), called gentle adaptive RED (gARED), directed

at the problem of simultaneous packet drops by multiple flows in high speed networks.

gARED can eliminate weaknesses found in ARED by monitoring the trend in variation of

the average queue length of router buffer. Our approach, combining gHSTCP and gARED,

is quite effective and fair to competing traffic. With the assistance of gARED mechanism,

both of utilization and fairness are boosted.

In the above works, the gHSTCP effectiveness has only been demonstrated by simula-

tions. For its applications, it is necessary to evaluate gHSTCP by experiments. Thus, we

construct an experimental environment to check the performance of gHSTCP. Based on the

experimental results, a refined gHSTCP algorithm is proposed for application to real net-

works. The refined gHSTCP algorithm is based on the original algorithm, compares two

RTT thresholds and determines which mode is used. Then, the performance of the refined

gHSTCP algorithm is assessed experimentally, and compared with TCP Reno/HSTCP and

. ii .



parallel TCP mechanisms. The experimental results reveal that gHSTCP can provide a bet-

ter trade-off in terms of utilization and fairness against co-existing traditional TCP Reno

connections, whereas HSTCP and parallel TCP suffer from the trade-off problem.

Addressing the performance issue of TCP Reno in LFNs, parallel TCP mechanism has

been proposed and employed by some applications. In this thesis, we attend to investigate

the problem of TCP Reno in LFNs and attempt to give some suggestions. Therefore, at

the end of this thesis, we use mathematical analysis to explore the performance of paral-

lel TCP. Parallel TCP uses many concurrent TCP connections for one task. So far, using

parallel TCP is something of black art. We try to answer this question: Is parallel really

effective for LFNs? The analytical results reveal that it is difficult to use parallel TCP in

practice for the sake of approving throughput. That is, parallel TCP is not really effective

in LFNs, because the optimal number of TCP connections cannot be easily obtained. Es-

pecially, parallel TCP exactly possesses the properties that induce synchronization. While

the router has small buffer size, the performance of parallel TCP in synchronization case

deteriorates significantly as the number of TCP connections is increased. In contrast, high-

speed protocols have the inherent characteristics which are suitable for LFNs. Based on

these results, we recommend using high-speed protocols instead of parallel TCP in LFNs

in practice.

. iii .



List of publications

Journal:

1. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Performance analysis and

improvement of HighSpeed TCP with TailDrop/RED routers,” IEICE Transactions

on Communications, Vol. E88-B, No. 6, pp. 2495-2507, June 2005.

2. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Experimental results of

implementing high-speed and parallel TCP variants for long-fat networks,” IEICE

Transactions on Communications, Vol. E89-B, No. 3, March 2006.

3. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Analysis evaluation of

parallel TCP: Is it really effective for long-fat networks?” submitted to IEICE Trans-

actions on Communications, October 2005.

International Conference:

1. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Performance analysis and

improvement of HighSpeed TCP with TailDrop/RED routers,” in Proc. the Twelfth

IEEE International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS 2004), pp. 505–512, October 2004.

2. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Experimental evaluation

of Gentle HighSpeed TCP for long-fat networks,” in Proc. the 6th Asia-Pacific Sym-

posium on Information and Telecommunication Technologies (APSITT 2005), pp.

47–52, November 2005.

. iv .



Domestic Workshop:

1. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Performance Analysis and

Improvement of HighSpeed TCP with TailDrop/ARED Routers,” IEICE Technical

Report IN2004-1, Vol. 104, No. 73, pp. 49–54, May 2004.

2. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Implementation Exper-

iments on HighSpeed and Parallel TCP,” IEICE Technical Report IN2005-17, Vol.

105, No. 113, pp. 17–22, June 2005

3. Zongsheng Zhang, Go Hasegawa, and Masayuki Murata, “Reasons not to Parallelize

TCP Connections for Fast Long-Distance Networks,” to appear in IEICE Technical

Report, January 2006.

. v .



Acknowledgements

Of course, like any author, I am indebted to those people that do their best to help me on

my thesis. Thanks to all of the wonderful people.

First and foremost, I would like to express my gratitude to Prof. Masayuki Murata for

his dedication as my advisor, as well as his support and guidance. He was always insightful

to my work. This thesis would not be possible without his advice and suggestions.

I am also thankful to my thesis committee members, Prof. Koso Murakami and Prof.

Hirotaka Nakano, for their careful reading and constructive comments in completing this

thesis.

Associate Prof. Go Hasegawa, as my direct tutor, took me under his wing. He has

always remained a constant source of advice, and was very patient to my research. I have

profited immensely from his wisdom and high standards.

The members of our team made it possible for me to complete my Ph.D. I am very

grateful for their help.

Many people have contributed their ideas and energies. I hesitate to list them because

I do not wish to leave anyone out. So let me first apologize to all the wonderful people I

have missed. Thank you – all of you!

Finally, my family, as my backup force, is always a tireless advocate. My wife has

actively accompanied me in Japan, and my cute son had to live in China with his grand-

mother. I wish to acknowledge them for their role in my life. If left to me alone, my thesis

would never have been done.

. vi .



Contents

Preface i

List of publications iv

Acknowledgements vi

1 Introduction 1

1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution and organization of this thesis . . . . . . . . . . . . . . . . 8

2 Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 HighSpeed TCP (HSTCP) . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Gentle HighSpeed TCP (gHSTCP) . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Shortcomings of HSTCP . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 gHSTCP description . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 gHSTCP evaluation with simulations . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Evaluation with DropTail router . . . . . . . . . . . . . . . . . . 23

2.3.2 Evaluation with RED router . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Evaluation with Web-traffic . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

. vii .



3 Improvement of adaptive RED mechanism for gHSTCP 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Adaptive RED mechanism . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Simulation with ARED router . . . . . . . . . . . . . . . . . . . 37

3.2 Improvement of ARED: Gentle adaptive RED (gARED) . . . . . . . . . 40

3.3 Evaluation of HSTCP/gHSTCP with gARED router . . . . . . . . . . . . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Experimental evaluation of gHSTCP 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Validation of gHSTCP algorithm . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Refined gHSTCP algorithm . . . . . . . . . . . . . . . . . . . . 50

4.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Analysis of parallel TCP 64
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Parallel TCP mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Analysis with DropTail router . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Network topology and metrics . . . . . . . . . . . . . . . . . . . 68

5.3.2 Synchronization case . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Non-synchronization case . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Numerical results and discussion . . . . . . . . . . . . . . . . . . 74

5.4 Analysis with RED router . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Analysis based on “queue law” . . . . . . . . . . . . . . . . . . . 81

5.4.2 Numerical results and discussion . . . . . . . . . . . . . . . . . . 83

5.5 Trouble of “dynamic network resources allocation” . . . . . . . . . . . . 84

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

. viii .



6 Conclusion 88

Bibliography 90

. ix .



List of Tables

2.1 Performance of HSTCP with DropTail router . . . . . . . . . . . . . . . 21

2.2 Performance of gHSTCP with DropTail router . . . . . . . . . . . . . . . 24

2.3 Performance of HSTCP/gHSTCP with RED router (maxp = 0.1) . . . . . 26

2.4 Performance of HSTCP/gHSTCP with RED router (maxp = 0.001) . . . . 30

3.1 Performance comparison of HSTCP/gHSTCP with ARED router . . . . . 38

3.2 Performance comparison of HSTCP/gHSTCP with gARED router . . . . 42

4.1 Fair throughput (Ci) (Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . 55

. x .



List of Figures

1.1 Illustration of a network . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Visualization of congestion window (TCP Reno) . . . . . . . . . . . . . 4

2.1 AIMD parameters of HSTCP . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Response function of TCP Reno and HSTCP . . . . . . . . . . . . . . . 15

2.3 Network topology for simulation . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Changes of congestion window (HSTCP/gHSTCP with RED router) . . . 27

2.5 Changes of congestion window (HSTCP+SACK/gHSTCP+SACK with RED

router) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Network topology for simulation with Web-traffic . . . . . . . . . . . . . 31

2.7 Packet loss rate (Bandwidth = 1,000 Mbps) . . . . . . . . . . . . . . . . 32

2.8 Packet loss rate (Bandwidth = 500 Mbps) . . . . . . . . . . . . . . . . . 33

2.9 Web responding time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Instantaneous queue length (HSTCP/HSTCP+SACK with ARED router) . 39

3.2 Sketch of average queue length (ARED mechanism) . . . . . . . . . . . 39

3.3 Sketch of average queue length (gARED mechanism) . . . . . . . . . . . 41

4.1 Changes of congestion window (TCP Reno and HSTCP) . . . . . . . . . 46

4.2 Changes of congestion window (HSTCP and gHSTCP) . . . . . . . . . . 47

4.3 Experimental network topology . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Congestion window and mode (Original algorithm) . . . . . . . . . . . . 49

4.5 Measured RTT for validating gHSTCP . . . . . . . . . . . . . . . . . . . 50

4.6 Congestion window and mode (Refined algorithm) . . . . . . . . . . . . 53

. xi .



4.7 Results in Scenario-1 (Bandwidth = 100 Mbps) . . . . . . . . . . . . . . 57

4.8 Results in Scenario-2 (Bandwidth = 200 Mbps) . . . . . . . . . . . . . . 59

4.9 Performance of parallel TCP (Bandwidth = 100 Mbps) . . . . . . . . . . 61

4.10 Performance of parallel TCP (Bandwidth = 200 Mbps) . . . . . . . . . . 62

5.1 Network topology for analysis . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Changes of congestion window in steady state . . . . . . . . . . . . . . . 71

5.3 Numerical results (Bandwidth = 100 Mbps) . . . . . . . . . . . . . . . . 75

5.4 Numerical results (Bandwidth = 1 Gbps) . . . . . . . . . . . . . . . . . . 76

5.5 Numerical results (Bandwidth = 10 Gbps) . . . . . . . . . . . . . . . . . 77

5.6 Contour of utilization = 95% (RTT = 100ms, BW = 100 M/1 G/10 Gbps) 79

5.7 Contour of utilization = 95% (RTT = 100/100/500 ms, BW = 1 Gbps) . . 80

5.8 Equilibrium point of TCP-RED system . . . . . . . . . . . . . . . . . . . 82

5.9 Packet loss rate (RED router) . . . . . . . . . . . . . . . . . . . . . . . . 84

. xii .



Chapter 1

Introduction

In this chapter, we first give the depiction of background. Then the related work is intro-

duced. At last, the contribution and organization of the thesis is presented.

1.1 Research background

Computers, networks and their applications are now a part of daily life. The user machines

and server machines are connected by a network, as illustrated in Figure 1.1. The network

applications are widespread from entertainment, file processing, to electronic commerce

and science computing. When data is exchanged between users, it is fragmented into units

called segments/datagrams. Then these segments/datagrams are transferred by different

transport-layer protocols.

Currently, Transmission Control Protocol (TCP) [1] is the most widely used transport-

layer protocol in the Internet. TCP is one of the keys to the success of the Internet and

the major transport protocol in use in most IP networks. Typically, TCP traffic is between

60% and 90% of the total load across the Internet [2]. It is used by applications that require

guaranteed delivery. Guaranteed delivery means that an acknowledge (ACK) is returned

by the receiver when a packet is correctly delivered from the sender to the receiver. Given

this major role for TCP, TCP was designed to provide a reliable end-to-end byte stream

over an unreliable IP network, while attempting to maintain high utilization of the network

link, avoid overloading the bottleneck and provide fair sharing among competing flows, for

– 1 –



1.1 Research background

Network

Figure 1.1: Illustration of a network

the network resource is not a private property.

For these functions, TCP has gone through various affairs and enhancements on its

journey. The famous one is the first “congestion collapse” happened in October, 1986.

During that period, the data throughput from LBL to UC Berkeley dropped from 32 Kbps

to 40 bps. In order to avoid “congestion collapse”, Van Jacobson proposed TCP flow

control in 1988 [3]. This leads to the birth of TCP Tahoe. In addition to the original

specification of TCP [1], that is a window-based flow control for the receiver to govern the

amount of data sent by the sender, TCP Tahoe includes dynamic adjustment of the flow-

control window in response to congestion. These mechanisms operate in the end-hosts to

cause TCP connection to “back off” during congestion. Considerable research has been

done since then.

In short, there are three major versions of TCP congestion control:

• TCP Tahoe:

It is implemented in 4.3 BSD Tahoe, Net/1 (around 1988). Slow Start, Congestion

Avoidance, and Fast Retransmit algorithms are included in TCP Tahoe. Congestion

– 2 –



Chapter 1. Introduction

window is reduced to one packet on a triple-ACK.

• TCP Reno:

It is implemented in 4.3 BSD Reno, Net/2 (around 1990). A further optimization,

Fast Recovery algorithm, is added to improve performance following Fast Retrans-

mit. Congestion window is halved on a triple-ACK [4].

• TCP Vegas:

It attempts to predict packet loss before it occurs by monitoring packet round trip

times, and uses additive increases and additive decreases to control congestion win-

dow [5].

There are other TCP variants, such as NewReno [6] which improves the Fast Retransmit

and Fast Recovery algorithms when multiple packets are dropped from a single window of

data, TCP Selective Acknowledgment options (SACK) [7] which can also help to overcome

the limitation when multiple packets are lost from one window of data. Both of them

enhance the performance of TCP Reno. But the mechanism of TCP receiver needs to be

modified for TCP SACK options.

So far, TCP Reno is the most popular one among the above-mentioned proposals, and

its algorithm is standardized by IETF [8]. There are four algorithms – Slow Start, Con-

gestion Avoidance, Fast Retransmit, and Fast Recovery. TCP Reno is a sliding window

congestion control protocol. Its congestion window (CWND) is depicted in Figure 1.2.

The follows are the glancing description of its algorithms. The details can be reviewed in

RFC 2581.

Beginning transmission into a network, TCP probes the network capacity by Slow Start.

The Slow Start algorithm is used by an end host to seek and enter equilibrium state of the

network. The algorithm is called Slow Start, but it is not slow at all [3]. Congestion win-

dow is increased exponentially by one packet for every non-duplicate ACK until a packet

loss is detected or the slow start threshold (ssthresh) is reached. If packet loss is detected

by three duplicate ACKs, then TCP sender sets its ssthresh to half of its current CWND,

then switches to Congestion Avoidance phase. Alternatively, a TCP sender also enter Con-

gestion Avoidance phase after its congestion window becomes larger than ssthresh.

– 3 –



1.1 Research background

W/2

ssthresh

W

CWND
(packets)

Time (RTT)

W/2 RTTs

Congestion
Avoidance

Slow-Start

8

2
4

16
17

18
19

20

10

11
12

13
14

15
16

17
18

19
20

Figure 1.2: Visualization of congestion window (TCP Reno)

In Congestion Avoidance phase, the Additive-Increase and Multiplicative-Decrease

(AIMD) algorithm is employed. Congestion window is increased by 1/CWND packet for

each ACK that it receives. This means the TCP sender can increase its congestion window

by one packet per round trip time (RTT). The window increase is interrupted when a loss

is detected by three duplicate ACKs or a timeout. If timeout occurs, the TCP sender infers

that a large number of packets were lost. There is severe congestion in the network. In this

case, the congestion window is set to one packet, and then Slow Start starts. If packet loss

is detected via three duplicate ACKs, the Fast Retransmit and Fast Recovery algorithms

are called.

Once ssthresh is set to half of its congestion window, and the lost packet is retrans-

mitted by Fast Retransmit, Fast Recovery governs the transmission of new data until a

non-duplicate ACK arrives.

In the past years, TCP Reno, as the de facto standard transport protocol of TCP, works

very well. However, continuous and explosive growth of the Internet has shown that TCP

mechanisms can obstruct efficient use of fast long-distance networks (LFNs), which are

high-bandwidth and large-delay networks. When TCP was designed in 1960–70s, T1 link

– 4 –



Chapter 1. Introduction

(1.544 Mbps) was a fast network. As time went on, link bandwidth of network has been

growing quickly. Now, it is common that link bandwidth is 100 Mbps, 1,000 Mbps, or

even higher. In such an environment, it was reported that TCP can not fully utilize the link

bandwidth, especially in the case when the delay (distance) between a sender and a receiver

hosts is large [9]. This is primarily because of the principle of AIMD [8] in the congestion

control mechanism of TCP. In congestion avoidance phase, TCP increases its congestion

window linearly by one packet per RTT, and sharply decreases its congestion window

by half once it detects packet loss. It then needs a long time to increase its congestion

window size for fully utilizing the network link bandwidth. For the example of a single

TCP connection, if the link bandwidth is 1.544 Mbps, RTT is 100 ms and packet size is

1,500 bytes, when a packet loss occurs, it takes 0.643 sec to recover its congestion window

until it can fully utilize the link bandwidth. However, when the link bandwidth increases to

1,000 Mbps, the recovery time becomes 416 sec, which is almost 650 times of the recovery

time in the T1 case. A similar example can be found in [9], where a TCP Reno connection

fills a 10 Gbps link and RTT is 100 ms, a congestion window of 83,333 packets is required,

and 4,000 sec are needed to recover throughput when packets are lost in the network.

Addressing the problem of TCP used in LFNs, a number of enhancements to TCP have

been developed, including TCP window scale option [10], SACK option [7], tuning TCP

parameters [11], and using parallel TCP [12, 13]. However, these patches can not solve

the problem thoroughly. Some high-speed protocols, e.g., HighSpeed TCP (HSTCP) [9],

Scalable TCP [14], FAST TCP [15], and XCP [16], are proposed in recent years. Address-

ing the problem in AIMD algorithm, these high speed protocols modify the algorithm of

TCP.

1.2 Related work

As mentioned above, some efforts have been spent in order to improving the TCP perfor-

mance. Some early approaches are to patch the shortcomings of TCP Reno.

• Window scale option: TCP performance depends not upon the link bandwidth, but

rather upon the bandwidth delay product (BDP). The TCP header uses a 16 bit field

– 5 –



1.2 Related work

to report the receive window size to the sender. Therefore, the largest window that

can be used is 216 = 65 Kbytes. This means that TCP can fully utilize a network

link that its BDP is not larger than 65 Kbytes. This problem of “window size limit”

with the current TCP is mended in [10]. The window scale extension expands the

definition of the TCP window to 32 bits.

• TCP SACK option: Multiple packet losses from a window of data can have a catas-

trophic effect on TCP throughput. Address this problem, “TCP Selective Acknowl-

edgment option” (TCP SACK option) is proposed [7]. With TCP SACK option, the

data receiver can inform the sender about all segments that have arrived success-

fully, so the sender need retransmit only the segments that have actually been lost.

However, this mechanism needs modification on both of sender and receiver sides.

• NewReno: In the absence of SACK option, there is little information available to

the TCP sender in making retransmission decisions during Fast Recovery. In [6], the

NewReno modification to TCP’s Fast Recovery algorithm is proposed, and it needs

only modification on the sender.

• Large initial window: If the initial window is one segment, a receiver employing

delayed ACKs is forced to wait for a timeout before generating an ACK. With an

initial window of at least two segments [17], the receiver will generate an ACK

after the second data segment arrives. This eliminates the wait on the timeout. This

modification also benefits TCP connections transmitting only a small amount of data.

• Explicit congestion notification: Since TCP determines the appropriate congestion

window to use by gradually increasing the window size until it experiences a dropped

packet, this causes the queues at the bottleneck router to build up. If traditional queue

management, DropTail, is deployed at routers, the TCP sender get the congestion

signal only when buffer overflows and packet is dropped. Another advanced form

of router queue management is Active Queue Management (AQM), such as Random

Early Detection (RED) [18]. AQM is meant to be a general mechanism using one of

several alternatives for congestion indication. It can set a Congestion Experienced

(CE) code in the packet header instead of dropping the packet, when such a field is

– 6 –



Chapter 1. Introduction

provided in the IP header and understood by TCP [19]. This is known as Explicit

Congestion Notification (ECN) [20]. Upon receipt of a congestion marked packet,

the TCP receiver informs the sender about incipient congestion which will in turn

trigger the congestion avoidance algorithm at the sender. The congestion window is

decreased. Thus, unnecessary packet dropping can be avoided.

The aforementioned patches improve TCP performance for common uses. However, it

is out its power in LFNs, even with these enhancements. Parallel TCP is proposed as one

possible approach for increasing the performance of TCP in LFNs.

Parallel TCP uses many concurrent TCP connections for one task. However, using par-

allel TCP is something of black art. This is because the key factor that affects its throughput

is the number of concurrent TCP connections, and there is no method to find the optimal

value. In addition to the number of TCP connections, another important factor is whether

these concurrent TCP connections are synchronized or not, and it depends on the network

conditions. Our results show parallel TCP is not an effective approach for LFNs. The

details about parallel TCP will be discussed in Chapter 5 of the present thesis.

In recent years, the endeavors for improving TCP performance are to design high-speed

protocol, and several such protocols are proposed. These protocols can be classified into

two categories, both of them modify the algorithm of TCP. The first category requires

modifications at both end-hosts and the routers in between, e.g., XCP [16], and VCP [21].

For using them, the mechanism of routers must be reconstructed, for some information

gathered by routers needs to be fed back to the end-hosts. The second category only needs

the modification of the congestion control mechanism of end-host’s TCP, e.g., HSTCP [9],

Scalable TCP [14], and FAST TCP [15]. Thus, they are relatively easy to be deployed in

the current Internet. We briefly review two representatives, XCP and HSTCP.

XCP is a generalization of Explicit Congestion Notification (ECN) [20]. Instead of

the one-bit congestion indication used by ECN, XCP routers inform the sender about the

degree of congestion at the bottleneck. To control utilization, the new protocol adjusts its

aggressiveness according to the spare bandwidth in the network and the feedback delay.

This prevents oscillations, provides stability for high bandwidth or large delay, and ensures

efficient utilization of network resources. Without keeping per-flow information, routers

signal back to sources the needed changes in their congestion windows.

– 7 –



1.3 Contribution and organization of this thesis

XCP also introduces the concept of decoupling utilization control from fairness control.

A router has both an efficiency controller and fairness controller. The purpose of efficiency

controller is to maximize link utilization while minimizing packet drop rate and persistent

queues. The fairness controller uses the AIMD algorithm to converge to fairness. If the

aggregate feedback is positive, allocate it so that the increase in throughput of all flows is

the same. If the aggregate feedback is negative, allocate it so that the decrease in throughput

of a flow is proportional to its current throughput. However, the mechanism of router must

be modified. This may block its application.

HSTCP is the delegate of the second category. It aims at improving the loss recov-

ery time of standard TCP by changing standard TCP’s AIMD algorithm. This modified

algorithm would only take effect with larger congestion windows, i.e., if the congestion

window is smaller than a given threshold, it uses the standard AIMD algorithm, else it uses

high speed AIMD algorithm.

In order to utilizing high bandwidth links, a large congestion window is required. Once

a TCP flow is in congestion avoidance phase, it takes a large number of RTTs for this

flow to use extra bandwidth available on the link. This leads to low utilization of high-

bandwidth large-delay links. It also takes a large number of RTTs to recover its congestion

window from consecutive timeouts. These result in low performance. HSTCP improves the

performance of TCP in high bandwidth links where TCP operates with a large congestion

window. In HSTCP, the parameters of AIMD algorithm are functions of the congestion

window itself instead of being constant values as in standard TCP. This makes it possible

to use high bandwidth links. HSTCP requires changes only on the TCP sender, so it is easy

to be deployed. But, fairness is a problem when networks are shared by traditional flows.

A new protocol should not achieve high performance based on pillaging resource from the

competing one.

1.3 Contribution and organization of this thesis

The evolution of TCP is a careful balance between innovation and considered constraint.

The evolution of TCP must avoid making radical changes that may not easy to be deployed,

and also must avoid a congestion control “arms race” among competing protocols [22]. On

– 8 –



Chapter 1. Introduction

the other hand, the above-mentioned high-speed protocols are still on the way of develop-

ment and not widely deployed. Any of them is not the consummate method. We think that

it is better at present to design a suitable protocol for LFNs.

Therefore, addressing the TCP performance in LFNs and solve the problem of fairness

against the traditional TCP Reno, an enhanced transport-layer protocol – Gentle High-

Speed TCP (gHSTCP) – is proposed in the present thesis. gHSTCP which is based on

HSTCP uses two modes in the congestion avoidance phase according to the changing trend

of RTT. Simulation results show gHSTCP can significantly improve performance in mixed

environments, in terms of throughput and fairness against the traditional TCP Reno flows.

However, the performance improvement is limited due to the nature of TailDrop router,

and the RED routers can not alleviate the problem completely. Thus, we present a mod-

ified version of adaptive RED (ARED), called gentle adaptive RED (gARED), directed

at the problem of simultaneous packet drops by multiple flows in high speed networks.

gARED can eliminate weaknesses found in ARED by monitoring the trend in variation of

the average queue length of the router buffer. For application to real networks, gHSTCP

is then tested in experimental environment, and a refined gHSTCP algorithm is proposed.

Both results of simulation and experiment show that gHSTCP can utilize the high speed

network while preserving the better fairness. An alternative approach for improving TCP

performance in LFNs is parallel TCP mechanism. We also explore its performance by

mathematical analysis in this thesis. The analytical results show that it is difficult to use

parallel TCP in practice. The remaining chapters of the thesis is organized as follows.

Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

HSTCP was proposed as one way to overcome the problems of TCP Reno and provide

considerably greater throughput than TCP Reno in such environments. It modifies the

increase/decrease algorithms of the congestion window size in the congestion avoidance

phase of the TCP mechanism. That is, HSTCP increases its congestion window more

quickly, and decreases it more slowly, than does TCP Reno to keep the congestion window

size large enough to fill a high speed link.

Although HSTCP appears intuitively to provide greater throughput than TCP Reno,

HSTCP performance characteristics have not been fully investigated, such as the fairness

– 9 –



1.3 Contribution and organization of this thesis

issue when HSTCP and TCP Reno connections share the same link. Fairness issues are

very important to TCP and have been actively investigated in past literatures [23–28]. Al-

most all of these studies have focused on the fairness among connections for a certain TCP

version used in different environments and consider such factors as RTT, packet dropping

probability, the number of active connections and the size of transmitted documents. Fair-

ness among traditional and new TCP mechanisms, such as HSTCP, is a quite important

issue when we consider the migration paths of new TCP variants. It is very likely that

HSTCP connections between server hosts, and the many traditional TCP Reno connec-

tions for Web access and e-mail transmissions, will share high speed backbone links. It

is therefore important to investigate the fairness characteristics between HSTCP and TCP

Reno. It has also been mentioned in [9] that the relative fairness between standard TCP

and HSTCP worsens as link bandwidth increases. When HSTCP and TCP Reno compete

for a bandwidth on a bottleneck link, we do not attempt to provide the same throughput

that they are capable of achieving. But in this case, high throughput by HSTCP should not

occur at great sacrifice by TCP Reno, i.e., HSTCP should not pillage too many resources

at the expense of TCP Reno. To address this problem, we propose an enhanced transport-

layer protocol called gHSTCP, which is based on HSTCP. gHSTCP uses two modes in the

congestion avoidance phase according to the changing trend of RTT. Simulation results

show gHSTCP can significantly improve performance in mixed environments, in terms of

throughput and fairness against the traditional TCP Reno flows.

Chapter 3. Improvement of adaptive RED mechanism for gHSTCP

The performance improvement of TCP is limited due to the nature of TailDrop router,

which causes bursty packet losses and the large queueing delay. Congestion control to al-

leviate these problems can be accomplished by end-to-end congestion avoidance together

with an active queue management (AQM) mechanism. Traditional TailDrop queue man-

agement could not effectively prevent the occurrence of serious congestion. Furthermore,

global synchronization [29] could occur during the period of congestion, i.e., a large num-

ber of TCP connections could experience packet drops and reduce their transfer rates at

the same time, resulting in under-utilization of the network bandwidth and large oscilla-

tions in queueing delay. Particularly in high-speed long-delay networks, where routers

– 10 –



Chapter 1. Introduction

may have large buffers, TailDrop can cause long queueing delays. To address these prob-

lems, Random Early Detection (RED) [18] has been recommended for wide deployment in

the Internet as an active queue management mechanism [30]. However, control parameter

settings in RED have been proven highly sensitive to the network scenario, and miscon-

figuring RED can degrade performance significantly [31–35]. Adaptive RED (ARED)

was therefore proposed as a solution to these subsequent problems [36]. ARED can adap-

tively change the maximum drop probability in accordance with network congestion levels.

However, in high speed and less multiplexed networks, our results indicate some remaining

problems with ARED, such as synchronized packet drops and instability in queue length,

leading us to develop a more robust ARED mechanism. This improved adaptive RED,

which we call gARED, monitors average queue length and trends in the variation in or-

der to dynamically adapt the maximum packet drop probability. Our approach, combining

gARED and gHSTCP, is quite effective and fair to competing traffic than HSTCP with

ARED.

Chapter 4. Experimental evaluation of gHSTCP

Chapter 4 contains the experimental results of gHSTCP. gHSTCP has been proposed

in [37]. However, its effectiveness has only been demonstrated in simulation experiments.

In this chapter, the performance of gHSTCP is checked in experimental environment, and

a refined gHSTCP algorithm is proposed for application to real networks. The perfor-

mance of the refined gHSTCP algorithm is then assessed experimentally. The refined gH-

STCP algorithm is based on the original algorithm and compares two RTT thresholds,

then judges which mode will be used. The performance of gHSTCP is compared with

TCP Reno/HSTCP and parallel TCP mechanisms. The experimental results demonstrate

that gHSTCP can provide a better tradeoff in terms of utilization and fairness against co-

existing traditional TCP Reno connections, whereas HSTCP and parallel TCP suffer from

the trade-off problem.

Chapter 5. Analysis of parallel TCP

In this chapter, the performance of parallel TCP is analyzed based on a dumbbell topol-

ogy, i.e., there are N TCP connections competing for a bottleneck link. Packet drop rate

– 11 –



1.3 Contribution and organization of this thesis

and aggregate goodput are used as two metrics to characterize the performance of paral-

lel TCP. Two cases, namely synchronization and non-synchronization cases, are analyzed

in detail. The synchronization case is common in parallel TCP, but the goodput deterio-

rates seriously. The non-synchronization case may benefit parallel TCP, whereas the extra

mechanisms are required, and it is not easy to be implemented in the real world. Analytical

results show that the issue of choosing the number of TCP connections is hard to be solved.

Despite the mechanism that adjusts the number of TCP connections during data transfer is

proposed, some potential problems still remain. All of these results show the difficulty of

using parallel TCP in practice.

Chapter 6. Conclusion
In this chapter, we summarize the thesis and offer our conclusion.

– 12 –



Chapter 2

Gentle HighSpeed TCP (gHSTCP) for
fast long-distance networks

Hosts (server machines) providing services that encompass data grids and storage area

networks (SANs) have gigabit-level network interfaces such as gigabit ethernet. These

hosts connect directly to high-speed networks for terabyte/petabyte-sized data exchange to

move program data, perform backups, synchronize databases, and so on. Although they

require large amounts of network bandwidth and disk storage, such services will grow in

the future Internet as their costs are rapidly decreasing. However, the most popular version

of TCP used on the current Internet, TCP Reno [8], cannot achieve sufficient throughput

for this kind of high-speed data transmission because of the essential nature of the TCP

congestion control mechanism.

In this chapter, the brief overview of HSTCP is given, and the investigation upon the

throughput and fairness properties of HSTCP is proceeded when HSTCP shares link band-

width with TCP Reno on a bottleneck link. Addressing the issues of HSTCP, a new high-

speed transport-layer protocol – Gentle HighSpeed TCP (gHSTCP) – is proposed, and its

performance is evaluated by simulations.

– 13 –



2.1 Introduction

2.1 Introduction

2.1.1 HighSpeed TCP (HSTCP)

To overcome problems with TCP mentioned in Chapter 1, HSTCP was proposed [9]. The

HSTCP algorithm uses the principle of Additive Increase Multiplicative Decrease (AIMD)

as in standard TCP, but is more aggressive in its increases and more conservative in its de-

creases. HSTCP addresses this by altering the AIMD algorithm for the congestion window

adjustment, making it a function of the congestion window size rather than a constant as in

standard TCP.

In response to a single acknowledgment, HSTCP increases the number of segments in

its congestion window w as:

w←w+
a(w)

w
.

In response to a congestion event, HSTCP decreases the number of segments in its

congestion window as:

w←(1−b(w))×w,

Here, a(w) and b(w) are given by:

a(w) =
2w2·b(w)·p(w)

2−b(w)
(2.1)

b(w) = (bhigh−0.5)
log(w)− log(Wlow)

log(Whigh)− log(Wlow)
+0.5 (2.2)

p(w) =
0.078
w1.2 (2.3)

where bhigh, Whigh and Wlow are parameters of HSTCP.

According to Equations (2.1) and (2.2) and a typical parameter set used in [9] (bhigh,

Whigh and Wlow are 0.1, 83,000 and 38, respectively), Figure 2.1 shows how a(w) and b(w)

vary with the congestion window. We can see that the “increase” parameter a(w) becomes

larger, and the “decrease” parameter b(w) becomes smaller, as the congestion widow size

increases. In this manner, HSTCP can sustain a large congestion window and fully utilize

the high-speed long-delay network.

– 14 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

 0

 20

 40

 60

 80

 100

 0  20000  40000  60000  80000  100000
 0

 0.1

 0.2

 0.3

 0.4

 0.5
a(

w
)

b(
w

)

Congestion window (pkts)

a(w)
b(w)

Figure 2.1: AIMD parameters of HSTCP

 1

 10

 100

 1000

 10000

 100000

 1e-10  1e-09  1e-08  1e-07  1e-06  1e-05 0.0001 0.001  0.01  0.1

S
en

di
ng

 r
at

e 
S

 (
pk

ts
/R

T
T

)

Loss rate p

(10-3,38)

HSTCP S=0.12/p0.835

TCP Reno S=1.22/p0.5

HSTCP
TCP Reno

Figure 2.2: Response function of TCP Reno and HSTCP

– 15 –



2.1 Introduction

In steady-state, the performance of TCP can be characterized by response function.

Response function of TCP is the average throughput of a TCP connection in terms of the

packet loss probability, the packet size, and the round-trip time. It maps the steady-state

packet drop rate to the TCP average sending rate in packets per RTT. The HSTCP response

function (2.3) is illustrated in Figure 2.2. We can observe from this figure that HSTCP

relaxes the constraint between drop probability and the congestion window. For example,

when p = 10−7 is in steady-state, HSTCP can send at the rate of 100,000 packets/RTT

while the sending rate of TCP Reno is around only 4,000 packets/RTT. Consequently,

HSTCP can achieve a large congestion window even with a high loss rate.

2.1.2 Related work

There are other solutions for overcoming the limitations of standard TCP in high-speed

networks. For example, Scalable TCP [14] is a simple change to the traditional TCP con-

gestion control algorithm. On detection of congestion, it reduces the congestion window

in segments by 0.125× cwnd. For each acknowledgment received when congestion has

not been detected, it increases the congestion window in segments to cwnd + 0.01. This

increase is exponential instead of linear. Scalable TCP probing times are proportional only

to the RTT to make the scheme scalable to high-speed networks. However, Scalable TCP

exhibits unfairness to TCP Reno greater than that of HSTCP [9].

FAST TCP [15] is another example which based on TCP-Vegas [5] to provide a stable

protocol for high-speed networks. In addition to packet loss, it uses queuing delay as the

main measure of congestion. Although experimental results show Vegas can achieve better

throughput and fewer losses than standard TCP Reno, there are few theoretical explanations

for it. Any problems with TCP-Vegas exist possibly within FAST TCP, since its congestion

control mechanism is based on that of TCP Vegas [38].

The above-mentioned proposals need modifications only on end-hosts. XCP [16], how-

ever, is a router-assisted protocol. XCP-enabled routers inform senders concerning the

degree of congestion at a bottleneck. XCP introduces a new concept in which utilization

control is decoupled from fairness control. It produces excellent fairness and responsive-

ness as well as a high degree of utilization. However, it requires the deployment of XCP

– 16 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

routers, therefore it cannot be deployed incrementally.

Protocols aiming at high speed environment are still on the way of development and not

widely deployed. We think that it is better at present to design a suitable protocol for high

speed network. Thus we focus on the performance and solve the problem of fairness by

modifying aggressive protocol in the whole network as the case of gHSTCP in this chapter.

gHSTCP can utilize the high-speed network while preserving the better fairness against the

traditional TCP Reno. In addition, it is simply and easy to deploy.

Both FAST TCP and gHSTCP use RTT as a method to regulate the congestion win-

dows. But gHSTCP is easy to implement. It only changes the increasing speed of conges-

tion window based on the increasing RTT trend. Even with inaccurate estimation, gHSTCP

maintains the same increasing speed of congestion window as TCP Reno does. For using

XCP, the mechanism of routers must be reconstructed for the end hosts to get information

from the routers.

2.2 Gentle HighSpeed TCP (gHSTCP)

In this section we present simulation results to show problems with HSTCP and propose a

simple yet effective modification, which we call gHSTCP. We take advantage of HSTCP

in terms of its AIMD algorithm for aggressive increase and conservative decrease of the

congestion window. To gain better fairness with TCP Reno, we modify the strategy for

increasing the congestion window. We then illustrate how gHSTCP outperforms HSTCP

through simulations.

2.2.1 Shortcomings of HSTCP

We first present the results of simulation experiments to clarify HSTCP problems with

throughput and fairness. ns-2 network simulator [39] is used for the simulations. The net-

work topology is shown in Figure 2.3, where S1 and S2 represent sender groups consisting

of sender hosts, and D1 and D2 represent sink groups consisting of destination hosts. R1

and R2 are routers with buffer size of 10,000 packets. The packet size is 1,500 bytes. The

– 17 –



2.2 Gentle HighSpeed TCP (gHSTCP)

S1

S2

D1

D2

A
ccess link

(100 M
bps)

A
ccess link

(1 G
bps)

R1

(10,000 pkts)

Bottleneck link
(2.5 Gbps)

Senders Sinks

R2

(10,000 pkts)

A
cc

es
s 

lin
k

(1
00

 M
bp

s)

Ac
ce

ss
 li

nk
(1

 G
bp

s)

Figure 2.3: Network topology for simulation

bandwidth of the bottleneck link is set to 2.5 Gbps, and the propagation delay of the bot-

tleneck link is set to 25, 50 and 100 ms, respectively. UDP traffic is used as background

traffic. There are 10 TCP connections between senders and sinks. S1 contains five con-

nections with an access link bandwidth of 100 Mbps. S2 contains five connections with an

access link bandwidth of 1 Gbps. For TCP Reno and HSTCP connections, we show the

simulation results with and without the Selective ACKnowledgement (SACK) option [7].

We denote HSTCP+SACK (Reno+SACK) and HSTCP (Reno) in the results, respectively.

TailDrop is used as the queue management mechanism in this section. We use a greedy

FTP source for data transmission.

We consider homogeneous environment in the following simulations although it is nec-

essary to investigate heterogeneous environment, i.e., different delay of each connection.

Homogeneous environment represents the worst case, which is worthy of special consider-

ation to evaluate the performance of a new protocol.

Two metrics for the performance evaluation are used: aggregate throughput and fair-

ness (Jain’s fairness index). From a viewpoint of protecting a Reno connection as much as

– 18 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

possible, max-min fairness criteria is used in the chapter. Other methods such as propor-

tional fairness need to cooperate with other mechanisms. We thought it is very difficult to

attain proportional fairness only by improvement of TCP in end hosts. Jain’s fairness index

is defined as:

FairnessIndex =
(∑n

i=1 xi)2

n∑
n
i=1 x2

i
.

Here, n is the total connection number and xi is the normalized throughput for flow i defined

as xi = Mi/Ci, where Mi is the measured throughput and Ci is the fair throughput found by

max-min optimality. The fairness index always lies between 0 and 1. A value of 1 indicates

that all connections are receiving the fairest allocation of bandwidth.

We first show the results of four simulations.

• Case 1: TCP Reno is used for S1 and S2.

• Case 2: TCP Reno is used for S1 and HSTCP is used for S2.

• Case 3: TCP Reno is used for S1 and HSTCP+SACK is used for S2.

• Case 4: TCP Reno+SACK is used for S1 and HSTCP+SACK is used for S2.

Table 2.1 shows the simulation results of four cases, and it presents the average throughput

in the latter half of the simulation time and the fairness index defined by above equation.

In Case 1, TCP Reno flows having high-bandwidth access links compete with TCP Reno

flows having lower-bandwidth access links. We can see that S1 group fully utilizes its

access link bandwidth, and S2 group, although it achieves higher throughput, does not

utilize the entire available bandwidth. This confirms that TCP Reno cannot fully utilize the

high link bandwidth.

In Case 2, HSTCP is used in S2 group instead of TCP Reno. S2 group obtains slight

benefit from HSTCP, but performance of S1 group is severely damaged and degradation in

total throughput occurs. This is because the congestion window is inflated in S2 group, re-

sulting in more frequent buffer overflows and increasing packet loss in all of the flows. As

we know, TCP Reno lacks a mechanism for recovering from a multiple packet loss event

without incurring a timeout. Lost packets cause retransmission timeout (this is a funda-

mental mechanism of TCP Reno [40]), and timeout places the connection in the slow-start

– 19 –



2.2 Gentle HighSpeed TCP (gHSTCP)

phase, resulting in serious throughput degradation. Note that HSTCP uses the same algo-

rithm as TCP Reno for packet retransmission. This is the reason why HSTCP connections

in Case 2 cannot obtain high throughput compared with the TCP Reno connections in

Case 1.

In Case 3, the TCP SACK option is applied with HSTCP for S2 group. The TCP

SACK mechanism [7], combined with a selective retransmission policy, can help overcome

limitations in recovering from many packet losses. Table 2.1 shows that S2 group achieves

very high throughput while that of TCP Reno is severely degraded. Although there are

still multiple packet drops, S2 group, using the SACK option, infers the dropped packets

and retransmits only the missed ones. Since this function is not available to S1 group, it

receives less link bandwidth compared to Case 2.

In Case 4, we can observe the aggregate throughput of S1 group is slightly improved

comparing with Case 3. It is because there is not timeout occurred to S1 group due to the

SACK option used. However, the throughput of S1 group is still low. It means that other

mechanisms are necessary to improve the fairness between S1 and S2 group.

It is clear in Case 1 that as propagation delay increases S2 group does not affect S1

group. This is because both groups employ the same mechanism and S2 group cannot fully

utilize the leftover bandwidth of S1 group. But in Cases 2–4, the larger the propagation,

the smaller the throughput that can be achieved by S1 group due to the use of different

algorithms by the two groups.

2.2.2 gHSTCP description

In view of the simpleness and standardization of HSTCP, we think it is a better way to

design a new protocol based on HSTCP. HSTCP increases the congestion window size

based solely on the current congestion window size. This may lead to bursty packet losses,

because the window size continues to be rapidly increased even when packets begin queued

at the router buffer. In addition, differences in speed gains among the different TCP variants

result in unfairness. To alleviate the problem of HSTCP, we consider changing the behavior

of HSTCP for speed increases to account for full or partial utilization of bottleneck links.

We regulate the congestion avoidance phase in two modes, HSTCP mode and Reno mode,

– 20 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

Table 2.1: Performance of HSTCP with DropTail router

Case S1 S2 Delay Average throughput of S1/S2 Confident Utilization Fairness

group group (ms) S1(Mbps) S2(Mbps) intervala (%)

1 Reno Reno 25 113.824 87.361 0.994

50 109.676 75.634 0.976

100 199.217 83.989 0.989

2 Reno HSTCP 25 12.549 70.925 0.887

50 14.005 64.362 0.821

100 49.861 60.923 0.747

3 Reno HSTCP 25 0.947 97.489 0.582

+SACK 50 2.040 97.397 0.581

100 1.084 95.603 0.556

4 Reno HSTCP 25 3.345 97.618 0.652

+SACK +SACK 50 1.532 97.431 0.629

100 0.981 95.668 0.591
a It is for the total average throughput, the confidence level is 95%.

and switch between modes based on the trend of changing RTT.

Denote the departure time and RTT value of a transmitted packet i as di and ti, respec-

tively, the correlation between di and ti is tested statistically. From pairs (di,ti) to calculate

the correlation coefficient r [41]:

r =
∑

N
i=1 (di− d̄)(ti− t̄)√

∑
N
i=1 (di− d̄)2(ti− t̄)2

,

where N is the size of congestion window in packet, d̄, t̄ are the mean values of di and

ti. If di and ti tend to increase together, r is positive. If, on the other hand, one tends to

increase as the other tends to decrease, r is negative. The value of correlation coefficient

lies between -1 and +1.

Because the pairs (di,ti) are N independent observations, r can be used to estimate the

population correlation ρ. To make inference about ρ using r, usually N is a large number,

– 21 –



2.2 Gentle HighSpeed TCP (gHSTCP)

we require the sampling distribution of r by calculating the statistic Z:

Z =
1
2

ln
(

1+ r
1− r

)√
N−3.

If Z is larger than a certain value, there is very strong evidence of statistical significance,

i.e., (di, ti) is positive correlation, otherwise it is non-positive correlation. Z of 3.09 is

used in the following simulation results. The parameter Z corresponds to the level of

significance. The larger value of Z shows there is very strong evidence of correlation. In

order to make a right estimation on the increasing RTT trend, we recommend to select a

larger value for Z.

If a positive correlation is recognized, that is, an increasing trend in the observed RTT

values is present, then bottleneck congestion is occurring for a sender. If more and more

packets are buffered in the router queue, then the bottleneck is fully used. The sender

should therefore slow down its increasing speed of the sending rate to keep the fairness

against TCP Reno connections. The process during this period is referred to as Reno mode,

in which the sender increases its congestion window linearly as with standard TCP. This

will maintain fairness among TCP Reno and gHSTCP connections. On the other hand, if

there is a non-positive correlation between di and ti, it means the network is in an under-

utilized state and the sender should increase the congestion window rapidly to utilize the

unused bandwidth. The process during this period is called HSTCP mode. The sender

increases the window size in the same way as HSTCP. The algorithm is summarized as

follows.

When a new acknowledgment is received, gHSTCP increases its congestion window in

segments as:

w←w+
a(w)

w
,

where a(w) is given by:

a(w) =


2w2·b(w)·p(w)

2−b(w)
HSTCP mode

1 Reno mode.
– 22 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

Once a retransmission timeout occurs, or duplicated acknowledgments are received, the

sender decreases the congestion window in the same way as HSTCP does. When a timeout

occurs, the congestion window size is reset to one packet and the phase is changed to slow-

start. When a packet loss event is detected and retransmitted by fast retransmit algorithm

then sets its congestion window size to (1− b(w))×w, b(w) is given by Equation (2.2)

for two modes. If the sender host is in HSTCP mode, it remains in HSTCP mode. If a

retransmission happens during Reno mode, the sender switches to HSTCP mode.

2.3 gHSTCP evaluation with simulations

2.3.1 Evaluation with DropTail router

In this subsection we compare the performance of HSTCP and gHSTCP based on simula-

tions. Using TailDrop as the queue management mechanism, the following simulations are

performed:

• Case 5: TCP Reno is used for S1 and gHSTCP is used for S2.

• Case 6: TCP Reno is used for S1 and gHSTCP+SACK is used for S2.

• Case 7: TCP Reno+SACK is used for S1 and gHSTCP+SACK is used for S2.

The results are shown in Table 2.2. In Case 5, the throughput is significantly improved for

both TCP Reno and gHSTCP comparing with Case 2. The fairness is also improved. In

Case 6, the throughput of S2 group is further increased due to the SACK option used for

gHSTCP. However, it results in the fairness decreasing. But it is better than that in Case 3.

In Case 7, when the SACK option is used with both groups, although total throughput

is almost the same as the case when HSTCP is used, the fairness becomes better among

the different flow types with the help of gHSTCP. The throughput of S1 group is greatly

improved comparing with that in Case 4.

Tables 2.1 and 2.2 show that the bottleneck is under-utilized when SACK option isn’t

present and TailDrop is deployed. They also illustrate degraded fairness among HSTCP

(or gHSTCP) and TCP Reno flows as the bottleneck link delay become larger. In this

– 23 –



2.3 gHSTCP evaluation with simulations

Table 2.2: Performance of gHSTCP with DropTail router

Case S1 S2 Delay Average throughput of S1/S2 Confident Utilization Fairness

group group (ms) S1(Mbps) S2(Mbps) interval (%)

5 Reno gHSTCP 25 24.621 87.908 0.997

50 12.540 78.933 0.925

100 16.031 72.177 0.849

6 Reno gHSTCP 25 1.556 97.405 0.893

+SACK 50 1.808 97.230 0.741

100 1.750 96.034 0.612

7 Reno gHSTCP 25 1.176 97.540 0.986

+SACK +SACK 50 1.936 97.362 0.897

100 1.209 96.202 0.724

situation, HSTCP (or gHSTCP) connections are able to obtain larger throughput while

the TCP Reno connections suffer degraded throughput. This is caused by the different

algorithms used for increasing/decreasing the congestion window size. TCP Reno resizes

its congestion window in the same way regardless of the current window size. HSTCP (or

gHSTCP) increases its congestion window more rapidly and decreases it more slowly when

the window size is larger. Consequently, when the propagation delay of the bottleneck

becomes large, that is, when the bandwidth delay product of the bottleneck link becomes

large, HSTCP (or gHSTCP) connections increase the size of their congestion windows

quickly.

2.3.2 Evaluation with RED router

To improve network performance in terms of link utilization and system fairness, it has

been proposed that Active Queue Management (AQM) such as RED be deployed in the

Internet [30]. In contrast to TailDrop, which drops incoming packets only when the buffer

is fully utilized, the RED algorithm drops arriving packets probabilistically, with the prob-

ability calculated based on changes in queue length of the router buffer [18]. Here, we

replace TailDrop with RED and investigate the performance of HSTCP and gHSTCP.

– 24 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

Topology and other conditions are the same as for the previous simulation experiments.

According to [42], the latest router (especially backbone router) tends to have a buffer of

250 msec, and based on the simulation that we have conducted, the parameter used for

RED is set as follows to maintain a good performance. The queue length minimum thresh-

old, minth, is set to 2,500 packets. The other RED parameters are set to their default values

in ns-2 (maxth = 3∗minth, wq = 0.002 and maxp = 0.1). Some applications cannot admit

long queuing delay caused by such a large threshold. It can be solved by adjusting the

parameters of RED. This is one of our future subjects that the better performance can be

maintained while the queuing delay is shortened. The following simulation experiments

are performed:

• Case 8: TCP Reno is used for S1 and HSTCP is used for S2 with RED deployed.

• Case 9: TCP Reno is used for S1 and HSTCP+SACK is used for S2 with RED

deployed.

• Case 10: TCP Reno+SACK is used for S1 and HSTCP+SACK is used for S2 with

RED deployed.

• Case 11: TCP Reno is used for S1 and gHSTCP is used for S2 with RED deployed.

• Case 12: TCP Reno is used for S1 and gHSTCP+SACK is used for S2 with RED

deployed.

• Case 13: TCP Reno+SACK is used for S1 and gHSTCP+SACK is used for S2 with

RED deployed.

Comparing the results of Table 2.3 for Cases 8–13 with Tables 2.1 and 2.2, we see

that fairness is improved, but link under-utilization is present and total throughput is less

than that using TailDrop in some cases, especially in the case when the SACK option is not

available. We expect the fairness is to be improved while maintaining the high utilization

by introducing RED based on its policy of randomly dropping packets. However, the

under-utilization problem can’t be alleviated.

In this high-speed environment, high-speed flow has a very large congestion window.

Once a packet loss event occurs, multiple packets are dropped although the packet drop

– 25 –



2.3 gHSTCP evaluation with simulations

Table 2.3: Performance of HSTCP/gHSTCP with RED router (maxp = 0.1)

Case S1 S2 Delay Average throughput of S1/S2 Confident Utilization Fairness

group group (ms) S1(Mbps) S2(Mbps) interval (%)

8 Reno HSTCP 25 59.000 66.891 0.998

50 35.620 57.937 0.920

100 80.048 61.054 0.881

9 Reno HSTCP 25 4.097 93.889 0.782

+SACK 50 2.191 90.303 0.666

100 4.882 88.831 0.600

10 Reno HSTCP 25 1.564 93.920 0.841

+SACK +SACK 50 1.610 90.356 0.710

100 3.842 88.943 0.635

11 Reno gHSTCP 25 12.774 81.549 0.998

50 25.582 69.398 0.993

100 47.055 64.702 0.885

12 Reno gHSTCP 25 2.906 95.065 0.979

+SACK 50 7.477 91.388 0.838

100 4.729 89.124 0.625

13 Reno gHSTCP 25 1.385 95.062 0.993

+SACK +SACK 50 4.357 91.595 0.906

100 3.568 89.240 0.691

probability is quite small. This results in timeout if the SACK option is not used for high-

speed flow. Figure 2.4 shows the change in the congestion window when HSTCP (or

gHSTCP) is used with RED and the bottleneck link propagation delay is 50 ms. Although

RED is deployed at the routers, global synchronization also occurs because of the multiple

packet losses. This phenomena is present to a smaller extent when gHSTCP is used but

can still happen. If the SACK option is used for the HSTCP (or gHSTCP) flows, though

the congestion windows will not be reset to 1 packet as shown in Figure 2.5, it still occurs

that all flows simultaneously decrease their congestion window due to the improper setting

of RED. This may result in an under-utilization of the bottleneck link.

– 26 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 300  320  340  360  380  400

C
on

ge
st

io
n 

w
in

do
w

 (
pk

ts
)

Time (s) (HSTCP, delay = 50 ms)

flow-0
flow-1
flow-2
flow-3
flow-4

(a) HSTCP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 300  320  340  360  380  400

C
on

ge
st

io
n 

w
in

do
w

 (
pk

ts
)

Time (s) (gHSTCP, delay = 50 ms)

flow-0
flow-1
flow-2
flow-3
flow-4

(b) gHSTCP

Figure 2.4: Changes of congestion window (HSTCP/gHSTCP with RED router)

– 27 –



2.3 gHSTCP evaluation with simulations

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 300  320  340  360  380  400

C
on

ge
st

io
n 

w
in

do
w

 (
pk

ts
)

Time (s) (HSTCP+SACK, delay = 50 ms)

flow-0
flow-1
flow-2
flow-3
flow-4

(a) HSTCP+SACK

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 300  320  340  360  380  400

C
on

ge
st

io
n 

w
in

do
w

 (
pk

ts
)

Time (s) (gHSTCP+SACK, delay = 50 ms)

flow-0
flow-1
flow-2
flow-3
flow-4

(b) gHSTCP+SACK

Figure 2.5: Changes of congestion window (HSTCP+SACK/gHSTCP+SACK with RED
router)

– 28 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

In addition, it is reported [42] that synchronization tends to exist with certain condition,

such as the number of coexisting connections is 100 or less regardless of the variation in

RTT. In the environment where HSTCP (or gHSTCP) is used, since it is assumed that

the multiplexed degree is not so high, it is necessary to develop a mechanism to reduce

synchronization occurring.

It is well-known that system performance is quite sensitive to the RED parameters [31–

35]. The following simulation experiments illustrate this problem, with correctly tuned

RED parameter maxp set to 0.001:

• Case 14: TCP Reno is used for S1 and HSTCP is used for S2 with RED (maxp =

0.001).

• Case 15: TCP Reno is used for S1 and HSTCP+SACK is used for S2 with RED

(maxp = 0.001).

• Case 16: TCP Reno+SACK is used for S1 and HSTCP+SACK is used for S2 with

RED (maxp = 0.001).

• Case 17: TCP Reno is used for S1 and gHSTCP is used for S2 with RED (maxp =

0.001).

• Case 18: TCP Reno is used for S1 and gHSTCP+SACK is used for S2 with RED

(maxp = 0.001).

• Case 19: TCP Reno+SACK is used for S1 and gHSTCP+SACK is used for S2 with

RED (maxp = 0.001).

The results in Table 2.4 show that the system can achieve both higher throughput and better

fairness in this situation. It means that in this situation, maxp is an important parameter to

improve the performance of the RED algorithm. However, there is no complete parameter

set of the RED mechanism to successfully cope with the various network conditions, since

the RED parameters are very sensitive to the network factors [31–35]. In the next chapter,

an additional mechanism will be introduced to address this problem.

– 29 –



2.3 gHSTCP evaluation with simulations

Table 2.4: Performance of HSTCP/gHSTCP with RED router (maxp = 0.001)

Case S1 S2 Delay Average throughput of S1/S2 Confident Utilization Fairness

group group (ms) S1(Mbps) S2(Mbps) interval (%)

14 Reno HSTCP 25 2.643 97.193 0.985

50 14.792 94.621 0.950

100 29.052 87.515 0.947

15 Reno HSTCP 25 1.634 97.483 0.981

+SACK 50 2.891 96.377 0.934

100 6.305 93.250 0.829

16 Reno HSTCP 25 0.745 97.481 0.979

+SACK +SACK 50 1.486 96.463 0.946

100 6.065 93.356 0.848

17 Reno gHSTCP 25 0.849 97.435 1.000

50 2.516 96.615 1.000

100 24.977 92.151 0.987

18 Reno gHSTCP 25 0.767 97.455 1.000

+SACK 50 1.738 97.145 0.996

100 3.384 94.022 0.951

19 Reno gHSTCP 25 1.983 97.403 1.000

+SACK +SACK 50 1.726 97.062 1.000

100 7.117 93.896 0.953

2.3.3 Evaluation with Web-traffic

In previous sections, we evaluated the performance of HSTCP (or gHSTCP) in the envi-

ronments where it competes the system resources with long-lived flows. A recent study

[43] shows that short-lived flows such as Web traffic is one of main class applications in

the Internet. In this section, we assess the performance of HSTCP (or gHSTCP) when they

co-exist with Web traffic.

Topology used in simulation is shown in Figure 2.6. The delay of the bottleneck link

is 25 ms. TailDrop is deployed at routers R1 and R2. Si, Di are HighSpeed flow senders

and receivers, respectively. The access link bandwidth of each sender/receiver is 1 Gbps.

Access-link of WWW server cluster and WWW client cluster are also 1 Gbps. In WWW

– 30 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

WWW servers WWW clients

S1

Sn

D1

Dn

R1 R2

25 ms

1 G
bps

1 
G

bp
s 1 G

bps

1 
G

bp
s

Figure 2.6: Network topology for simulation with Web-traffic

server cluster, there are 200 servers. Each www server access link is 1 Gbps, its link delay

is uniform [10, 20] ms. In WWW client cluster, there are 1,000 clients with access link

bandwidth of uniformly distributed in [100, 155] Mbps, and the delay is distributed in

[20, 50] ms.

We use PagePool/WebTraf, a Web traffic model of ns-2, to generate synthetic Web traf-

fic between the Web servers and clients. Probability distributions for user/session attributes

are as follows [44]:

• Inter-page time: Pareto, mean = 10 s, sharp = 2

• Objects per page: Pareto, mean = 3, sharp = 1.5

• Inter-Object time: Pareto, mean = 0.5 s, sharp = 1.5

• Object size: Pareto, mean = 12 KB, sharp = 1.2

The packet loss rate at the router R1 is used as a performance metric. In the simulations,

the most Web traffic is alive in 50–800 s of the simulation time. The results are obtained in

this period.

– 31 –



2.3 gHSTCP evaluation with simulations

 0

 0.05

 0.1

 0.15

 0.2

20105

P
ac

ke
t l

os
s 

ra
te

 (
%

)

Num of high-speed flows

HSTCP (buffer size = 500 pkts)
gHSTCP (buffer size = 500 pkts)
HSTCP (buffer size = 5,000 pkts)

gHSTCP (buffer size = 5,000 pkts)

Figure 2.7: Packet loss rate (Bandwidth = 1,000 Mbps)

There are 4 sets of simulation conducted:

• Case 20: The bottleneck link bandwidth is 1,000 Mbps, the router buffer size is

5,000 packets.

• Case 21: The bottleneck link bandwidth is 1,000 Mbps, the router buffer size is

500 packets.

• Case 22: The bottleneck link bandwidth is 500 Mbps, the router buffer size is

5,000 packets.

• Case 23: The bottleneck link bandwidth is 500 Mbps, the router buffer size is

500 packets.

In each case, one of two different protocols – HSTCP and gHSTCP, is used for the high-

speed flows and the number of high-speed flows is set to 5, 10 and 20, respectively. The

results when the bottleneck link bandwidth is 1,000 Mbps are illustrated in Figure 2.7.

Figure 2.8 shows the results when the bottleneck link bandwidth is 500 Mbps.

– 32 –



Chapter 2. Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks

 0

 0.1

 0.2

 0.3

 0.4

20105

P
ac

ke
t l

os
s 

ra
te

 (
%

)

Num of high-speed flows

HSTCP (buffer size = 500 pkts)
gHSTCP (buffer size = 500 pkts)
HSTCP (buffer size = 5,000 pkts)

gHSTCP (buffer size = 5,000 pkts)

Figure 2.8: Packet loss rate (Bandwidth = 500 Mbps)

From the results we observe that as the router buffer size is decreased, the packet loss

rate increases. It is because that there is no room enough to buffer the bursty coming

packets, especially when HSTCP is used. If the bottleneck link bandwidth becomes small,

the system has no sufficient ability to forward the coming packets, this leads to a higher

packet loss rate.

However, we observe that the system has a lower packet loss rate in any case when

gHSTCP is used for high-speed flows. These results reveal the merits of gHSTCP again.

gHSTCP adjusts the increase speed of the congestion window according to the network

conditions, and therefore can avoid the buffer overflow occurring frequently.

Web responding time is also checked. Figure 2.9 shows a CDF (Cumulative Distri-

bution Function) graph of web responding time when the number of high speed flow is

10, the bottleneck is 1,000 Mbps and the router buffer size is 5,000 packets. It is slightly

improved under the circumstance when gHSTCP is used. The loss rate is relatively small

in these experiments. As discussed in [27], the responding time of web flows is not very

sensitive to lower loss rate. Thus, the difference of web responding time isn’t so conscious

in these experiments. However, associating the previous experiments in which gHSTCP

– 33 –



2.4 Summary

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100

C
D

F

Page download time (s) (buffersize = 5,000 pkts, N = 10)

HSTCP
gHSTCP

Figure 2.9: Web responding time

can provide better utilization and fairness when competing against TCP flows with the ex-

periments here it does not increase the responding time of short TCP flows yet, it can be

concluded that gHSTCP is valid.

2.4 Summary

We have proposed a new approach for improving HSTCP performance in terms of fair-

ness and throughput. Our proposal, gHSTCP, achieves this goal by introducing two modes

in the congestion avoidance phase: Reno mode and HSTCP mode. When there is an in-

creasing trend in RTT, gHSTCP uses Reno mode; otherwise, it uses HSTCP mode. The

performance of gHSTCP is apprised by simulation experiments. However, the performance

improvement is limited due to the nature of TailDrop router, and the RED routers can not

alleviate the problem completely. Therefore, we present a modified version of adaptive

RED – gentle adaptive RED (gARED) – in the next chapter. It directed at the problem of

simultaneous packet drops by multiple flows in high speed networks.

– 34 –



Chapter 3

Improvement of adaptive RED
mechanism for gHSTCP

The results in Chapter 2 are primarily the effects of the TailDrop and RED mechanisms at

the bottleneck routers. We observed that maxp is an important parameter that significantly

affects system performance when RED is deployed. We need a mechanism that can adjust

the parameters automatically, especially maxp, in response to the network environment.

Adaptive RED (ARED) [36], an improved version of RED, is such a mechanism, and its

application is expected to improve system performance. Because ARED enhances the per-

formance of RED, and that RED has been recommended by IETF and implemented by

some device manufacturers, we think the modification based ARED is easily carried out

when the migration/update is considered. We first conduct simulation experiments with

ARED and reveal its shortcomings from the results. We then propose a modification to al-

leviate these deficiencies, but that still preserves the effectiveness of the ARED mechanism,

especially aiming at the absence of the SACK option.

– 35 –



3.1 Introduction

3.1 Introduction

3.1.1 Adaptive RED mechanism

RED monitors impending congestion by maintaining an exponential weighted moving av-

erage of the queue length (q̄). However, RED parameter settings have proven to be highly

sensitive to network conditions, and performance can suffer significantly for a misconfig-

ured RED [31, 32]. The motivation for ARED is to diminish or eliminate the shortcomings

of RED, i.e., remove the effect of the RED parameters on average queue length and per-

formance. Following is a brief overview of the differences between RED and ARED, the

details of which can be reviewed in [36].

In RED, maxp does not change at runtime. In ARED, maxp is dynamically adapted

to keep the average queue size within the target queue boundaries according to network

conditions. When the average queue size is larger than the target queue size, maxp is in-

creased. When the average queue size is less than the target queue size, maxp is decreased.

One recommended range for maxp is (0.01, 0.5).

The suggestion of setting maxth is different. RED recommends setting maxth to at least

twice minth. In ARED, the rule of thumb is to set maxth to three times that of minth. The

target queue is determined by maxth and minth as [minth + 0.4 ∗ (maxth−minth),minth +

0.6∗(maxth−minth)]. The target queue, the objective for ARED adapting the maxp setting,

determines the queuing delay expected at the router. The setting for minth is determined by

the network manager.

The parameter of wq is used as a low-pass filter on the instantaneous queue size in order

to estimate the long-term queue average. RED sets it to a fixed value. The fixed value is

not suitable as the bandwidth link increases. ARED sets it to 1− exp(−1/C), where C is

the link capacity in packets/second. The intent here is to maintain the time constant on the

order of RTT. Calculating the average queue size is the basis of the RED algorithm.

Of the above three changes, the first is a key factor because it is an adaptation to network

conditions. The other settings are determined at system startup.

– 36 –



Chapter 3. Improvement of adaptive RED mechanism for gHSTCP

3.1.2 Simulation with ARED router

To evaluate the effectiveness of ARED in a high-speed long-delay network some simula-

tions are conducted under the same conditions as in the previous chapter but with ARED

deployed at the routers. Setting minth to 2,500 packets, and setting the other ARED param-

eters as described in the previous subsection:

• Case 1: TCP Reno is used for S1 and HSTCP is used for S2 with ARED deployed.

• Case 2: TCP Reno is used for S1 and HSTCP+SACK is used for S2 with ARED

deployed.

• Case 3: TCP Reno+SACK is used for S1 and HSTCP+SACK is used for S2 with

ARED deployed.

• Case 4: TCP Reno is used for S1 and gHSTCP is used for S2 with ARED deployed.

• Case 5: TCP Reno is used for S1 and gHSTCP+SACK is used for S2 with ARED

deployed.

• Case 6: TCP Reno+SACK is used for S1 and gHSTCP+SACK is used for S2 with

ARED deployed.

The results are shown in Table 3.1. System performance is improved in terms of throughput

and fairness compared with that of RED (Table 2.3). However, the bottleneck link remains

under-utilized. Figure 3.1 shows the change in queue length for a propagation delay of 50

ms, and it is apparent that the router buffers are frequently in the idle state. This is why

the bottleneck link bandwidth is not fully utilized due to an improper setting for the ARED

packet drop probability. We now describe the shortcomings of ARED in detail.

The graph in Figure 3.2 shows a sketch map of the average queue size as it varies over

time when using ARED. The purpose of the changing maxp is to maintain an average queue

size within the target queue range. In the figure, the x-axis is time, the y-axis is the average

queue length. When the average queue size increases to greater than the target queue size,

ARED will increase maxp which in turn causes many of the flows to reduce their sending

rates. This results in a decrease of the average queue size. When the average queue size

– 37 –



3.1 Introduction

Table 3.1: Performance comparison of HSTCP/gHSTCP with ARED router

Case S1 S2 Delay Average throughput of S1/S2 Confident Utilization Fairness

group group (ms) S1(Mbps) S2(Mbps) interval (%)

1 Reno HSTCP 25 10.075 91.465 0.995

50 24.128 81.059 0.992

100 20.574 70.070 0.976

2 Reno HSTCP 25 4.323 95.813 0.970

+SACK 50 7.216 92.558 0.887

100 7.465 89.026 0.778

3 Reno HSTCP 25 4.080 95.690 0.980

+SACK +SACK 50 7.515 92.707 0.887

100 16.732 88.473 0.801

4 Reno gHSTCP 25 4.665 96.766 1.000

50 6.549 91.555 1.000

100 27.368 80.035 0.984

5 Reno gHSTCP 25 0.828 96.965 1.000

+SACK 50 8.815 95.294 0.988

100 5.446 91.502 0.897

6 Reno gHSTCP 25 2.842 97.041 1.000

+SACK +SACK 50 3.232 94.892 0.994

100 15.010 91.522 0.902

decreases to less than the target queue, maxp is decreased. With a smaller maxp, fewer

connections suffer packet losses and the average queue size therefore increases. In this

manner, ARED achieves its expected performance.

A problem with ARED is that it does not consider the trend in average queue variation.

Given t = t1, maxp = p1, the average queue size (q̄) is q1. As q̄ increases, maxp reaches a

local maximum value p2 at t = t2, q̄ = qm. This p2 is large enough to ensure an average

queue reduction. At t = t3, q̄ decreases and maxp is still increasing. At t = t4, maxp reaches

its maximum pm, pm > p2. The larger maxp will converge the average queue size to the

target queue size at a faster pace, but at the expense of a less stable state.

– 38 –



Chapter 3. Improvement of adaptive RED mechanism for gHSTCP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 300  320  340  360  380  400

Q
ue

ue
 le

ng
th

 (
pk

ts
)

time (s) (delay = 50 ms)

HSTCP
HSTCP+SACK

Figure 3.1: Instantaneous queue length (HSTCP/HSTCP+SACK with ARED router)

minth

maxth

t

Target Queue Range

(t3, q3, p3)

(t1, q1, p1)

(t2, qm, p2)

(t4, q4, pm)

q
_

Figure 3.2: Sketch of average queue length (ARED mechanism)

– 39 –



3.2 Improvement of ARED: Gentle adaptive RED (gARED)

We can view this process as a feedback control system [34] with the TCP senders as the

controlled element, the drop module as the controlling element and the drop probability as

the feedback signal. The feedback signal, delayed by about one RTT, causes senders to de-

crease their send rates to less than the ideal rate. Especially, the larger the drop probability,

the more the TCP senders rates will be less than ideal. Moreover, as the propagation delay

and queue size increase, this phenomenon will become more serious.

Another problem with ARED, the same as with RED, is that the lower bound of pa-

rameter maxp is determined to some extent by the network manager to ensure ARED per-

formance.

3.2 Improvement of ARED: Gentle adaptive RED (gARED)

To solve these problems inherent to ARED, we propose a modified version referred to

gentle adaptive RED (gARED) as shown in Figure 3.3. When the average queue becomes

larger than the target queue and there is an increasing trend, maxp is increased. When the

average queue becomes smaller than the target queue, then only if the average queue length

is larger than minth and there is a decreasing trend, maxp is decreased. When the average

queue size is within target queue or less than minth, there is no change on maxp.

Comparing gARED with ARED, if the average queue size is larger than the target

queue size while t is in the interval (t2, t4), ARED increases maxp but gARED does not.

The small maxp gives the network more stability. On the other hand, if the average queue

size is less than the target queue, maxp is larger for gARED than one for ARED, So that

the average queue can return to the target queue slowly.

Another difference between gARED and ARED is that there is no limit on the lower

bound of maxp in gARED. It is determined automatically based on minth.
The algorithm of gARED is given as:

avg: average queue length
old avg: previous average queue length
top: upper bound of max p
alpha: increment, min(0.01,max p/4)
beta: decrease factor, 0.9

– 40 –



Chapter 3. Improvement of adaptive RED mechanism for gHSTCP

Target Queue Range

minth

maxth

t

(t3, q3, p3)

(t1, q1, p1)

(t2, qm, pm)

(t4, q4, p4)

q
_

Figure 3.3: Sketch of average queue length (gARED mechanism)

Every interval seconds:
if (avg > target and max p < top and avg > old avg)

increase max p:
max p ← max p + alpha

if (min th < avg and avg < target and avg < old avg)
decrease max p:
max p ← max p * beta

3.3 Evaluation of HSTCP/gHSTCP with gARED router

Table 3.2 shows throughput and fairness of simulation experiments when there are 5 HSTCP

(or gHSTCP) flows competing with 5 TCP Reno flows, and gARED is used at the routers:

• Case 7: TCP Reno is used for S1 and HSTCP is used for S2 with gARED deployed.

• Case 8: TCP Reno is used for S1 and HSTCP+SACK is used for S2 with gARED

deployed.

– 41 –



3.3 Evaluation of HSTCP/gHSTCP with gARED router

Table 3.2: Performance comparison of HSTCP/gHSTCP with gARED router

Case S1 S2 Delay Average throughput of S1/S2 Confident Utilization Fairness

group group (ms) S1(Mbps) S2(Mbps) interval (%)

7 Reno HSTCP 25 10.496 96.761 0.976

50 22.905 90.103 0.895

100 185.851 79.353 0.827

8 Reno HSTCP 25 1.591 97.543 0.980

+SACK 50 1.542 97.406 0.844

100 2.875 95.702 0.555

9 Reno HSTCP 25 1.741 97.508 0.975

+SACK +SACK 50 1.860 97.425 0.789

100 3.914 96.357 0.652

10 Reno gHSTCP 25 10.335 97.277 1.000

50 30.243 95.227 0.995

100 113.194 94.362 0.942

11 Reno gHSTCP 25 2.014 97.511 1.000

+SACK 50 6.657 97.328 0.990

100 12.327 96.307 0.824

12 Reno gHSTCP 25 2.023 97.310 1.000

+SACK +SACK 50 2.773 97.443 1.000

100 9.237 96.528 0.962

• Case 9: TCP Reno+SACK is used for S1 and HSTCP+SACK is used for S2 with

gARED deployed.

• Case 10: TCP Reno is used for S1 and gHSTCP is used for S2 with gARED deployed.

• Case 11: TCP Reno is used for S1 and gHSTCP+SACK is used for S2 with gARED

deployed.

• Case 12: TCP Reno+SACK is used for S1 and gHSTCP+SACK is used for S2 with

gARED deployed.

Table 3.2 shows the utilization is improved under gARED deployed. However, the fair-

ness with HSTCP is not good. Especially, as delay is increased. It is because smaller packet

– 42 –



Chapter 3. Improvement of adaptive RED mechanism for gHSTCP

drop rate is set by gARED for keeping the target queue length. HSTCP increases its con-

gestion window rapidly without having consideration for other competing TCP Reno flows.

In contrast, gHSTCP based on RTT detection not only can achieve approving throughput,

but also the better fairness can be obtained.

3.4 Summary

In this chapter, addressing problems with ARED in high-speed long-delay networks, we

proposed a modified version of ARED, called gARED, that adjusts maxp according to

the average queue length and the trend in variation. This technique avoids the problem

of determining an appropriate lower bound for maxp. The simulation results reveal that

our proposed algorithms outperform the original algorithms. gARED can eliminate weak-

nesses found in ARED by monitoring the trend in variation of the average queue length of

the router buffer. Our approach, combining gARED and gHSTCP, is quite effective and

fair to competing traffic than ARED with HSTCP.

– 43 –



Chapter 4

Experimental evaluation of gHSTCP

Based on our previous study [37], we have demonstrated that the fairness is a weakness of

HSTCP. That is, HSTCP achieves high throughput, whereas the throughput of the compet-

ing TCP Reno is decreased when HSTCP and TCP Reno share the link bandwidth. In order

to address this problem, we proposed the gHSTCP mechanism in [37]. gHSTCP, which

is based on HSTCP, uses two modes in the congestion avoidance phase according to the

increasing RTT trends. The simulation results presented in a previous study [37] indicate

that, compared to HSTCP, gHSTCP provides better throughput on LFNs and maintains

higher fairness against the traffic that passes through the same network paths.

However, we have investigated the characteristics of gHSTCP only by simulation ex-

periments. Simulation plays a vital role in attempting to characterize a protocol, whereas

the simulation condition is relatively ideal compared to the real network. Because the het-

erogeneity of the real network ranges from individual links and network equipments to the

protocols that inter-operate over the links and the “mix” of different applications in the

Internet, the protocol behavior in the simulation may be quite different from that in a real

network. Therefore, emulating a protocol in a test-bed network is important with respect

to its application to real networks, because the emulation network is more similar to a real

network. In addition, the repetition of experiments under controlled conditions can be eas-

ier than in a real network. Thus, we herein present the evaluation results of gHSTCP in the

test-bed network.

The present chapter makes the following three contributions:

– 44 –



Chapter 4. Experimental evaluation of gHSTCP

• A refined gHSTCP algorithm that improves the behavior of gHSTCP in real networks

is proposed.

• The performances of TCP Reno, HSTCP and gHSTCP are evaluated experimentally

in an emulating test-bed network.

• The parallel TCP mechanism is evaluated as a possible candidate for the high-speed

transport mechanism in LFNs.

The remainder of this chapter is organized as follows. First, we provide a short de-

scription of HSTCP and gHSTCP. Then, a refined gHSTCP algorithm is proposed. The

experimental results for TCP Reno/HSTCP/gHSTCP and parallel TCP implementation in

the test-bed network are presented. At last, we summarize the conclusions of the present

chapter.

4.1 Introduction

In this section, we briefly illustrate the algorithms of HSTCP and gHSTCP. For more de-

tailed descriptions, please refer to [9, 37].

In order to overcome the problems associated with using TCP Reno in LFNs, High-

Speed TCP (HSTCP) was proposed in [9]. Figure 4.1 shows a rough sketch of the changes

in the congestion window sizes of TCP Reno and HSTCP. The HSTCP algorithm uses the

AIMD principle of TCP Reno but is more aggressive with respect to increases and more

conservative with respect to decreases in the congestion avoidance phase.

HSTCP addresses this behavior by altering the parameters of the AIMD algorithm for

the congestion window adjustment, making these parameters functions of the congestion

window size, rather than constants, as in the case of TCP Reno. Based on this characteris-

tic, TCP connections using the HSTCP mechanism can maintain large congestion windows

in LFNs, so that the network link bandwidth can be better utilized.

HSTCP increases the congestion window size based solely on the current congestion

window size. This may lead to bursty packet losses, because the congestion window size

continues to be rapidly increased even when packets are queued at the router buffer, that is,

– 45 –



4.1 Introduction

TCP Reno

BDP

Window Size

Time

HSTCP

Figure 4.1: Changes of congestion window (TCP Reno and HSTCP)

when the network becomes congested. In addition, differences in speed gains among TCP

Reno and HSTCP result in unfairness when these protocols co-exist in the network. In or-

der to alleviate this problem, we considered changing the behavior of HSTCP in [37]. Two

modes, the HSTCP mode and the Reno mode, are used in the congestion avoidance phase.

Mode switching is based on the trend of changes in RTT values. Figure 4.2 shows the con-

cept of the gHSTCP mechanism. The HSTCP mode is used before the link bandwidth is

fully utilized, and the Reno mode is used if the link bandwidth is fully utilized. Therefore,

TCP flows using gHSTCP can catch the link bandwidth as quickly as the original HSTCP,

while providing better fairness with respect to competing TCP Reno flows.

We have shown that gHSTCP based on this mechanism can provide better performance

and fairness by simulations [37].

Because the algorithm of gHSTCP is based on the RTT trend in one sample cycle, the

granularity of time should be high enough to depict RTT’s change in one sample cycle. The

algorithm of gHSTCP shows its effectiveness under this condition and no matter whether

Delayed-ACK option is used or not. As a matter of fact, the bottleneck link bandwidth

is a crucial factor. For example, if the bottleneck link bandwidth is 10 Gbps, it needs 1.2

– 46 –



Chapter 4. Experimental evaluation of gHSTCP

HSTCP

BDP
gHSTCP

HSTCP mode

Reno mode

Time

Window Size

Figure 4.2: Changes of congestion window (HSTCP and gHSTCP)

microsecond to transmit one packet (given packet size is 1,500 bytes). In this case, gH-

STCP can work if the granularity of time is microsecond. If the bottleneck link bandwidth

is higher than 10 Gbps, higher time granularity is needed, or alternatively, larger sample

cycle is used. In following experiments, gHSTCP is implemented in application level1 and

the granularity of time is microsecond, for gettimeofday and RDTSC functions are used.

When an ACK is received by sender, the RTT value is calculated based on ACK’s arrival

time and timestamp in this ACK. Note that TCP timestamp option is used in the implemen-

tation of gHSTCP.

4.2 Validation of gHSTCP algorithm

In this subsection we present experimental results to demonstrate the problems with the

original gHSTCP algorithm and then propose a refined algorithm.

1If gHSTCP is implemented in kernel, it is possible to use time slot with precision of kernel’s timer
(usually 1 msec). If timestamp option is turned on, the method of gHSTCP can be applied.

– 47 –



4.2 Validation of gHSTCP algorithm

4.2.1 Problem description

We first conduct an experiment to check the behavior of gHSTCP in our test-bed net-

work. The topology of the test-bed network, which is also used in following experiments,

is shown in Figure 4.3. Dummynet [45] is used to emulate the bottleneck link between

the sender and receiver hosts, which defines the link bandwidth, the delay and the buffer

size. The specs of PC used by Dummynet are: OS is FreeBSD v5.2.1, CPU is Intel Xeon

3.2 GHz, Memory is 1 GB, Network adapter is Intel PRO/1000 MT Server Card. The specs

of PCs used by end-hosts are: OS is Vine Linux v3.1, CPU is Intel Pentium 4 1.7 GHz,

Memory is 256 MB. IPS and IPC use Intel PRO/1000 MT Server Card, IRS and IRC use

Intel Fast Ethernet card. In this experiment, there is only one TCP flow from IPS to IPC

to transfer unlimited data. The gHSTCP mechanism introduced in the previous section is

used by the TCP connection. The run-time of the experiment is 90 s. In this experiment and

following experiments, MSS is set to 1,460 bytes, and window scale option and timestamp

option are used. SACK option is not used. The setting of Dummynet in this experiment

is such that the bandwidth is 200 Mbps and delay is 22 ms. Thus, the bandwidth-delay

product (BDP) of the network is 770 packets. A TailDrop mechanism is deployed at the

bottleneck link buffer, and the buffer size is equal to 137 packets.

The experimental results of the change of the congestion window size as a function

of time are shown in Figure 4.4, where the mode-switching and BDP are also plotted.

The mode of gHSTCP does not change as expected. When the congestion window size

is less than the BDP of the network path between the sender and receiver hosts, HSTCP

mode is used, otherwise Reno mode is used. Its mode-switching oscillates severely in the

experimental result. The shortcomings of this oscillation are as follows. First, gHSTCP

cannot fill the link bandwidth quickly when the congestion window size is less than the

BDP. Second, this oscillating action induces unfairness against the competing TCP Reno

flow when the congestion window size is larger than the BDP. Third, the oscillation will

lead to bursty packet losses if gHSTCP is in HSTCP mode just before the buffer overflows.

Note that bursty packet losses cause retransmission timeout in TCP.

The reason for the mode oscillation is that the metric by which to determine the mode

is based only on the increasing trend of the RTT. In a real network, RTT does not increase

– 48 –



Chapter 4. Experimental evaluation of gHSTCP

Flow-1

Flow-2

D2

D1
100 M

bps

1 
G

bp
s

10
0 

M
bp

s

S2

S1

1 G
bps

PCI 3COM

Figure 4.3: Experimental network topology

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90

HSTCP

Reno

C
W

N
D

 (
pa

ck
et

)

M
od

e

Time [sec] (BW = 200 M, Delay = 22 ms, Queue = 200 K)

BDP
CWND

Mode

Figure 4.4: Congestion window and mode (Original algorithm)

– 49 –



4.2 Validation of gHSTCP algorithm

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90

A
ve

ra
ge

 R
T

T
 p

er
 C

W
N

D
 (

m
s)

Time [sec] (BW = 200 M, Delay = 22 ms, Queue = 200 K)

RTT

 46

 47

 48

 49

 50

 51

 24  25  26  27  28  29

Figure 4.5: Measured RTT for validating gHSTCP

monotonously in a local period, even if the congestion window becomes large. In Fig-

ure 4.5, the average RTT values per congestion window are plotted so that the RTT trend

behavior can be clarified further. The enlarged sub-figure in Figure 4.5 shows the period

of 24–29 s. Together with Figure 4.4, this figure shows that the RTT fluctuates near the

minimum RTT before the congestion window size reaches the BDP. When the congestion

window size is larger than the BDP, on the whole, the RTT increases as the congestion

window increases. However, the RTT does not always remain in the increasing state. The

change of the RTT is affected by several factors, such as the performance of end host, the

process schedule of the operating system and interaction with other flows.

4.2.2 Refined gHSTCP algorithm

In order to reduce the above-mentioned unnecessary mode-switching behavior, a refined

algorithm for gHSTCP is required. The basic idea of the modification is that the RTT is

larger than the propagation delay when the link bandwidth is fully utilized. That is, the RTT

is larger than a pre-defined threshold, Reno mode should be used even when the fluctuation

– 50 –



Chapter 4. Experimental evaluation of gHSTCP

of the RTT is large and there is a short-term decreasing trend. In particular, Reno mode

is expected to be used at the point before the packet drop occurs, so that large amounts of

simultaneously dropped packets can be avoided when the buffer overflow occurs. On the

other hand, HSTCP mode is used if the RTT oscillates around the minimum RTT and the

RTT is not larger than a pre-defined threshold.

In an ideal case, if RTT is larger than RTT min, this means the bottleneck link band-

width is fully utilized. However, the sample of RTT oscillates even when the bottleneck

link is not fully utilized. As we know, the standard deviation is a measure of the degree of

dispersion of the data from the mean value. It is the “expected” variation around an aver-

age. So, we consider that RTT is larger than RTT min+RTT std, it can be considered the

bottleneck link is fully utilized. However, because of instability of RTT value, we consider

that there exits a range of RTT, it is bounded by two thresholds, in which the bottleneck

is in a critical state, i.e., the bottleneck may be fully utilized or not if RTT value is in this

range. The lower threshold of this range is not less than RTT min+RTT std. For the ability

of gHSTCP to catch the bottleneck link bandwidth and based on experimental results on

testbed, 2*RTT std is chosen and RTT min+2*RTT std is used as lower threshold. On the

other hand, if RTT is far from RTT min, the bottleneck is fully utilized. Based on exper-

imental results on testbed, 4*RTT std is chosen, then RTT min+4*RTT std is used as the

upper threshold. About the exact values of the thresholds, there is no especially theoretical

reason. They are heuristic values based on experimental results. However, the implicit

reason is: 4 is chosen as the method of setting the time-out value of TCP. 2 is set based

on the upper threshold of 4. Of course, the appropriate parameters might vary in different

network environments. The auto-tuning parameters is one of our future task.

Based on this concept, the algorithm of gHSTCP is refined as follows:

RTT min: minimum of the average RTT in
one sample cycle between two loss events.

RTT std: standard deviation of RTT in a
sample cycle. RTT std is used as a
metric for evaluating the dynamic
property of RTT.

RTT min+2*RTT std, RTT min+4*RTT std: two
thresholds that indicate the boundaries

– 51 –



4.2 Validation of gHSTCP algorithm

in which gHSTCP is in effect.

If RTT < RTT min + 2*RTT std
HSTCP mode is used.

If RTT >= RTT min + 2*RTT std and
RTT < RTT min + 4*RTT std
(this period is considered as an
incredible interval)
the mode is decided by the RTT trend.

If RTT >= RTT min + 4*RTT std
Reno mode is used.

The following equation is used for calculation of RTT std:

RT T std =

√
n∑rtt2

i − (∑rtti)2

n(n−1)
,

rtti is the RTT value, n is the sample size. RTT std is calculated when an ACK is received

by sender. There is less demand on memory, for only three additional variables are needed.

The sample size is determined by the congestion windows size in packets at the beginning

of a sample cycle. Because gHSTCP takes effect when the congestion window size is larger

than 38 packets, this condition is the same as that used by HSTCP, so that the sample size

of RTT is always larger than 2 and standard deviation can be calculated. Here, square root

function can be used, for gHSTCP is implemented in application level in this chapter2.

Next, we check the refined gHSTCP algorithm experimentally. The experimental con-

dition and the environment are identical to those of the previous experiment. The experi-

mental result for the congestion window is illustrated in Figure 4.6. The TCP connection is

in HSTCP mode when the congestion window size is less than the BDP. If the congestion

window size is larger than the BDP, Reno mode is used. When the congestion window is

around the BDP, the mode is changed according to the RTT trend. This mode-switching

behavior is as expected based on the refined algorithm. In the following experiments, we

use the refined algorithm for gHSTCP. gHSTCP hereafter refers to the refined gHSTCP

except specified otherwise.

2By adding an integer square root function, standard deviation can be calculated even in kernel.

– 52 –



Chapter 4. Experimental evaluation of gHSTCP

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90

HSTCP

Reno

C
W

N
D

 (
pa

ck
et

)

M
od

e

Time [sec] (BW = 200 M, Delay = 22 ms, Queue = 200 K)

BDP
CWND

Mode

Figure 4.6: Congestion window and mode (Refined algorithm)

4.3 Performance evaluation

4.3.1 Experimental setup

In this section, we use the test-bed network to assess the behavior of high-speed TCP and

parallel TCP variants. All of the following experiments use Dummynet as the infrastruc-

ture, which is included in FreeBSD 5.2.1. In the following experiments, the dumbbell

topology shown in Figure 4.3 is used. In each experiment, there is one TCP flow from IPS

to IPC, using TCP Reno, HSTCP, gHSTCP, and parallel TCP, respectively. There are two

additional TCP Reno connections between IRS and IRC. For convenience, the TCP flow

from IPS to IPC is referred to as Flow-1, and the TCP flow from IRS to IRC is referred to

as Flow-2. The access link bandwidth of Flow-1 is 1 Gbps, and the access link bandwidth

of Flow-2 is 100 Mbps. The link between two Ethernet switches (labeled PCI and 3Com

in Figure 4.3) is referred to as the bottleneck link. The experiment run-time is 300 s.

In order that the socket buffer size does not restrict the throughput of Flow-1, the socket

buffer size is set to a large value if TCP Reno/gHSTCP/HSTCP is used. When parallel

– 53 –



4.3 Performance evaluation

TCP is used, the system default value of 64 Kbytes is used because the main factor of

parallel TCP is the number of parallel TCP connections. In our experiments, the RTT

of each connection is approximately 45 ms. In this situation, the largest throughput that

Flow-2 can achieve is approximately 12 Mbps, if its socket buffer size is 64 Kbytes. In this

condition, the two connections in Flow-2 using socket buffer size of 64 Kbytes cannot fully

utilize its access link. However, the access link can be fully utilized if the socket buffer

size of Flow-2 is set to 512 Kbytes. Therefore, we present the experimental results when

the socket buffer size for Flow-2 connections are set to 64 Kbytes and 512 Kbytes.

There are two scenarios designed for experiments according to differences in the Dum-

mynet settings:

• Scenario-1: Delay = 23 ms, Bandwidth = 100 Mbps, and Buffer-size = 200 Kbytes.

• Scenario-2: Delay = 23 ms, Bandwidth = 200 Mbps, and Buffer-size = 500 Kbytes.

Each scenario contains two cases, i.e., the socket buffer size of Flow-2 is set to 64 Kbytes

and 512 Kbytes. In Scenario-1, the access link bandwidth of Flow-2 is equal to the bot-

tleneck link bandwidth. In Scenario-2, the access link bandwidth of Flow-2 is less than

the bottleneck link bandwidth. Thus, the position of the bottleneck link of Flow-2 varies

for different experiments. Because of the performance limitation of PCs we use, we can’t

construct a network with larger BDP by now. In this chapter, although BDP of testbed

network is not very large, we have confirmed the fundamental behavior of gHSTCP. We

believe, combined with the results that have been checked by simulation in our previous

work, gHSTCP can be applied in situations with more large BDP.

4.3.2 Performance metrics

Throughput, link utilization and fairness are used as performance evaluation metrics. The

throughput is the average rate of data successfully received by a TCP receiver. The link

utilization is defined as the ratio of the aggregate throughput over the bottleneck link band-

width. The fairness (Jain’s fairness index) is defined as follows:

FairnessIndex =
(∑n

i=1 xi)2

n∑
n
i=1 x2

i
.

– 54 –



Chapter 4. Experimental evaluation of gHSTCP

Table 4.1: Fair throughput (Ci) (Mbps)

Socket buffer size of Flow-2 64 KB 512 KB

Scenario-1 (BW = 100 Mbps)
Flow-1 76 33

Flow-2 12, 12 33, 33

Scenario-2 (BW = 200 Mbps)
Flow-1 176 100

Flow-2 12, 12 50, 50

Here, n is the total number of connection and xi is the normalized throughput for flow i,

defined as xi = Mi/Ci, where Mi is the measured throughput and Ci is the fair throughput

determined by max-min optimality. Table 4.1 shows the fair throughput determined by

max-min optimality in our experiments. By this metric, we evaluate the fairness between

gHSTCP/HSTCP/parallel TCP variants and TCP Reno. Note that the access links of Flow-

1 and Flow-2 are different in the current evaluation model, this is formed based on this

imagination: Flow-1 represents the users with high demand of link bandwidth, Flow-2

represents the common users they do not need high access link. They share the same

bottleneck link. From the view of fairness of Flow-2, this condition is worse than that

when they have the same access link bandwidth, e.g., 1 Gbps. Thus, the current model can

show the advantages of gHSTCP.

4.3.3 Experimental results

In Scenario-1, the following four experiments are performed, where the buffer size of

Flow-2 is set to 64 Kbytes or 512 Kbytes:

• Exp-0: Flow-1 uses TCP Reno.

• Exp-1: Flow-1 uses HSTCP.

• Exp-2: Flow-1 uses the parallel TCP mechanism.

• Exp-3: Flow-1 uses the original gHSTCP.

– 55 –



4.3 Performance evaluation

• Exp-4: Flow-1 uses the refined gHSTCP.

Note that when the parallel TCP mechanism is used, we use eight TCP connections in

order to fully utilize the bottleneck link due to the default buffer size of 64 Kbytes. The

results of link utilization, fairness index and throughput are illustrated in Figure 4.7. Note

that the throughput of Flow-2 represents the total throughput of the two TCP connections

in Flow-2.

Figure 4.7(a) shows that the link utilization of gHSTCP is slightly less than the largest

link utilization (for parallel TCP). However, the link utilization of gHSTCP is better than

that for the case in which TCP Reno or HSTCP is used for Flow-1. The utilization when

HSTCP is used by Flow-1 is approximately the same as that when TCP Reno is used by

Flow-1, because packet losses occur frequently when HSTCP is used. Figure 4.7(b) shows

that the fairness is better in all cases when the buffer size of Flow-2 is set to 64 Kbytes.

This is because the main limitation on the throughput of Flow-2 is its socket buffer size.

In contrast, when the buffer size of Flow-2 is set to 512 Kbytes, the fairness is determined

by the algorithms of TCP and the competing flows. When parallel TCP is used with this

condition, the fairness is very poor, although the best utilization can be achieved. The fair-

ness of parallel TCP is determined by the number of parallel TCP connections. This factor

also affects its throughput. We will illustrate this problem in the following. Figure 4.7(c)

intuitively shows the performance and interaction of competing flows through the through-

put of Flow-1 and Flow-2 in each case. The throughput of Flow-2 is clearly influenced

by the competing TCP flows when its socket buffer size is set to 512 Kbytes. This means

that the fairness must be taken into consideration when a new mechanism is deployed in

networks. In addition, it can be observed that the refined gHSTCP outperforms the original

gHSTCP in terms of utilization and fairness (see the results of Exp-3 and Exp-4 shown in

Figures 4.7(a) and 4.7(b)).

To summarize, gHSTCP offers the best tradeoff in terms of utilization and fairness due

to its graceful behavior. Before the link bandwidth of the bottleneck is fully utilized, gH-

STCP increases its congestion window size as rapidly as HSTCP. Therefore, it can achieve

higher utilization. When the link bandwidth of the bottleneck is fully utilized, gHSTCP

increases its congestion window size in the manner of TCP Reno. Therefore, gHSTCP can

– 56 –



Chapter 4. Experimental evaluation of gHSTCP

 50

 60

 70

 80

 90

 100

Exp-4Exp-3Exp-2Exp-1Exp-0Exp-4Exp-3Exp-2Exp-1Exp-0

U
til

iz
at

io
n 

(%
)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(a) Utilization

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Exp-4Exp-3Exp-2Exp-1Exp-0Exp-4Exp-3Exp-2Exp-1Exp-0

F
ai

rn
es

s 
In

de
x

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(b) Fairness

 0

 20

 40

 60

 80

 100

 120

Exp-4Exp-3Exp-2Exp-1Exp-0Exp-4Exp-3Exp-2Exp-1Exp-0

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

Flow-1
Flow-2

(c) Throughput

Figure 4.7: Results in Scenario-1 (Bandwidth = 100 Mbps)

– 57 –



4.3 Performance evaluation

maintain better fairness while sharing the bottleneck bandwidth with the competing TCP

Reno.

In Scenario-2, four experiments are conducted, in which similar to Scenario-1, the

buffer size of Flow-2 is set to either 64 Kbytes or 512 Kbytes, respectively. The difference

between Scenario-1 and Scenario-2 is that the bandwidth of the bottleneck link is set to

200 Mbps and the buffer size of the router is 500 Kbytes.

• Exp-5: TCP Reno is used by Flow-1.

• Exp-6: HSTCP is used by Flow-1.

• Exp-7: Parallel TCP mechanism is used by Flow-1.

• Exp-8: The original gHSTCP is used by Flow-1.

• Exp-9: The refined gHSTCP is used by Flow-1.

As discussed in Scenario-1, when the parallel TCP mechanism is used, we use 16 TCP

connections in order to fully utilize the bottleneck link due to the default buffer size of

64 Kbytes. The results of utilization, fairness index and throughput are shown in Figure 4.8.

On the whole, the utilization and fairness trends are the same as those demonstrated

in Scenario-1. Parallel TCP achieves the best utilization, but the worst fairness. gHSTCP

offers higher utilization and better fairness than the other protocols. That is, gHSTCP is

the best tradeoff in terms of link utilization and fairness. On the other hand, differences

between the two scenarios remain because the link bandwidth of the bottleneck is changed

from 100 Mbps to 200 Mbps. First, when TCP Reno is used, the utilization decreases

as the link bandwidth increases. This illustrates the well-known problem of TCP Reno in

LFNs. TCP Reno cannot fully utilize the network, due to the characteristics of conservative

increase and dramatic decrease. Second, the access link of Flow-2 is equal to the bottleneck

link bandwidth in Scenario-1 (Figure 4.7). In this case, the access link bandwidth is not

the bottleneck for Flow-2. Thus, any increase in cross traffic will affect the throughput

of Flow-2 when the buffer size of Flow-2 is set to 512 Kbytes. However, Figure 4.7(c)

shows that gHSTCP steals resources from Flow-2, as compared with HSTCP and parallel

TCP. In Scenario-2, the bottleneck link bandwidth is larger than the access link bandwidth

– 58 –



Chapter 4. Experimental evaluation of gHSTCP

 50

 60

 70

 80

 90

 100

Exp-9Exp-8Exp-7Exp-6Exp-5Exp-9Exp-8Exp-7Exp-6Exp-5

U
til

iz
at

io
n 

(%
)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(a) Utilization

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Exp-9Exp-8Exp-7Exp-6Exp-5Exp-9Exp-8Exp-7Exp-6Exp-5

F
ai

rn
es

s 
In

de
x

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(b) Fairness

 0

 50

 100

 150

 200

Exp-9Exp-8Exp-7Exp-6Exp-5Exp-9Exp-8Exp-7Exp-6Exp-5

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

Flow-1
Flow-2

(c) Throughput

Figure 4.8: Results in Scenario-2 (Bandwidth = 200 Mbps)

– 59 –



4.3 Performance evaluation

of Flow-2. Therefore, redundant link bandwidth exists that can be used by other flows.

As illustrated in Figure 4.8(c), gHSTCP can use the redundant link bandwidth very well

when the buffer size of Flow-2 is set to 512 Kbytes. In this situation, HSTCP pillages vast

resources from TCP Reno because of the aggressive increase of its congestion window size.

By the comparison of results of Exp-8 and Exp-9, it is observed that the refined gHSTCP

achieves higher throughput than that the original gHSTCP does (see Figure 4.8(a)), while

the better fairness is obtained by the refined gHSTCP (see Figure 4.8(b)).

The results of both Scenario-1 and Scenario-2 show that parallel TCP outperforms

gHSTCP in terms of link utilization. However, this advantage is at the expense of fairness

with respect to Flow-2. There exists an important parameter when parallel TCP is used, i.e.,

the number of parallel TCP connections, and it is quite difficult to choose a suitable value.

That is, the bottleneck link bandwidth cannot be utilized well if the number of parallel

TCP connections is small. In contrast, if the number of parallel TCP connections is too

large, severe unfairness results with respect to the competing flows. Figures 4.9 and 4.10

show the experimental results when the number of parallel TCP connections varies and the

bottleneck bandwidth is set to 100 and 200 Mbps, respectively. These results show that it is

hard to find an appropriate number of parallel TCP connections for different environments.

For example, four is the best number of parallel TCP connections in terms of utilization

and fairness when the bottleneck is set to 100 Mbps and the buffer size of Flow-2 is set to

512 Kbytes. However, this number is not good if the bottleneck link bandwidth is changed

to 200 Mbps or the buffer size of Flow-2 is set to 64 Kbytes.

These experimental results show that the throughput of parallel TCP is increased as the

number of parallel TCP connections is increased. In the literature, in the following cases,

the performance has been shown to decline as the number of parallel TCP connections

increases:

• When the load for using parallel TCP overcomes the load that the end-hosts can

support [46].

• When the sending host is much faster than the receiving host [47].

• When the load on the data path is different [48].

– 60 –



Chapter 4. Experimental evaluation of gHSTCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

168421

F
ai

rn
es

s 
In

de
x

Number of parallel TCP connections

Buffer of Flow-2: 64Kbytes
Buffer of Flow-2: 512Kbytes

(a) Fairness

 0

 20

 40

 60

 80

 100

168421168421

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)
Number of parallel TCP connections

Flow-1
Flow-2

(b) Throughput

Figure 4.9: Performance of parallel TCP (Bandwidth = 100 Mbps)

– 61 –



4.3 Performance evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

32168421

F
ai

rn
es

s 
In

de
x

Number of parallel TCP connections

Buffer of Flow-2: 64Kbytes
Buffer of Flow-2: 512Kbytes

(a) Fairness

 0

 50

 100

 150

 200

3216842132168421

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)
Number of parallel TCP connections

Flow-1
Flow-2

(b) Throughput

Figure 4.10: Performance of parallel TCP (Bandwidth = 200 Mbps)

– 62 –



Chapter 4. Experimental evaluation of gHSTCP

In other words, parallel TCP should be used in a dedicated network, and the use of parallel

TCP in public networks is not trivial.

4.4 Summary

In this chapter, we performed an experimental study to assess the performance of high-

speed TCP in terms of utilization, throughput and fairness. Based on these experiments, a

refined gHSTCP algorithm was proposed for its application in a real network. The results

indicate that gHSTCP can offer a better tradeoff between utilization and fairness on LFNs.

– 63 –



Chapter 5

Analysis of parallel TCP

5.1 Introduction

High-speed protocols have the capability of utilizing LFNs and their performance have

been evaluated by simulations and experiments [49–51]. However, prior to these high-

speed protocols, parallel TCP is proposed as one method to deal with the problem of TCP

in LFNs, and employed by some applications, e.g., BBCP [12] and GridFTP [13]. In

parallel TCP, multiple TCP connections are utilized between two endhosts for one data

transmission task instead of using one TCP connection. The implementation of parallel

TCP is relative simple compared with the TCP modification mentioned above, because it

can be realized in the application layer.

Although increasing throughput is the primary purpose of parallel TCP, fairness of

parallel TCP should be taken into account when it traverses the public network, i.e., when

parallel TCP improves the data transmission throughput, it should preserve resources for

competing TCP flows, and some works have been done [52, 53]. The results in our previous

work [52] show that parallel TCP can increase the throughput at the expense of fairness

against competing flows. H. Hacker et al [53] discuss this issue and propose a solution

which uses a long “virtual round trip time” in combination with parallel TCP to prioritize

fairness at the expense of effectiveness when the network is fully utilized.

However, this chapter emphasizes throughput while it does not give prominence to

fairness. That is, we focus on the issue whether parallel TCP can really achieve high

– 64 –



Chapter 5. Analysis of parallel TCP

throughput even when fairness is not taken into account, especially for the purpose of

the comparison with high-speed protocols, such as HSTCP. The results in past researches

[46, 54–56] show that parallel TCP can improve aggregate TCP throughput, but they either

check the performance of parallel TCP by experiments, or address a lossy and un-congested

path. For example, Psockets [46] introduces an application-level library that creates many

TCP connections to increase data transfer throughput. In [55], the authors suggest some

practical guidelines for the use of parallel sockets on a lossy wide-area network. However,

there is no analytical results to answer the issue whether parallel TCP can be easily utilized

to obtain high throughput. In addition, “global synchronization” issue, which impacts the

aggregate throughput of parallel TCP quite considerably [26, 29], is not investigated as

well. Synchronization means that TCP connections sharing the same network path reduce

their congestion windows at the same time when packet losses occur. Because parallel

TCP uses many TCP connections which pass through the same network link and have

the same RTT, these TCP connections are easily synchronized. The problem of “global

synchronization” must be investigated in evaluating parallel TCP.

In this chapter, the performance of parallel TCP is evaluated by mathematical analysis.

In the analysis when DropTail is deployed, not only is the number of TCP connections

taken into account, but “global synchronization” is also investigated. When the impact

of “global synchronization” is considered, two extreme cases, synchronization case and

non-synchronization case, are evaluated. In the synchronization case, all TCP connections

are synchronized, and the throughput of this case is regarded as the lower limit. In the

non-synchronization case, TCP connections are not synchronized at all, and this case gives

the upper limit. The results show the hardness of using parallel TCP in practice. Even

in the non-synchronization case which benefits the throughput of parallel TCP, the results

show that choosing the number of TCP connections also depends on network conditions.

The performance of parallel TCP is also evaluated when a Random Early Detection (RED)

gateway [18] is deployed, and the results reveal that the difficulty of parameter setting in

RED [31, 32, 35, 57] remains unchanged in parallel TCP case.

The remainder of this chapter is organized as follows. At first, we briefly review the

background of parallel TCP. Then, the performance of parallel TCP is analyzed when Drop-

Tail is deployed. The performance of parallel TCP in the case of RED deployed is evaluated

– 65 –



5.2 Parallel TCP mechanism

in Section 5.4. The supplemental discussion is given in Section 5.5. Finally, the conclusion

is given.

5.2 Parallel TCP mechanism

High-speed protocols modify the TCP’s congestion control mechanism for use with large

congestion windows in LFNs. They get rid of the constraints of the AIMD algorithm

in current standard TCP (TCP Reno), that is, they adjust the increasing/decreasing step

towards congestion window according to network conditions.

However, parallel TCP addresses the problem of TCP using a different approach from

high-speed protocols. It uses many concurrent TCP connections for one transmission task.

Its mechanism can be viewed from different points. When parallel TCP mechanism is used

for bulk data transfer, the data file is divided into a number of small chunks, and each

chunk is transmitted by one TCP connection. Since each of TCP connections uses the

AIMD algorithm, the aggregate of congestion window is increased by N (N: the number

of TCP connections) packets per RTT when there is no packet loss. So it can be considered

that parallel TCP uses a larger additive increasing parameter for congestion window than

that used by one normal TCP connection. The aggregate behavior of parallel TCP can also

be regarded as one TCP connection with a large “virtual maximum segment size” [56],

i.e., parallel TCP increases its congestion window size by one segment of N ∗MSS Bytes

(MSS: maximum segment size) when an ACK is received. From the view of network,

the link bandwidth is shared by concurrent TCP connections of parallel TCP. Intuitively,

each TCP connection passes a “stripped” network link [46]. “stripped” network link can

be considered as a “tight” network link, but it has a smaller BDP value. In other words,

compared with the case of only one TCP connection, the bandwidth-delay product (BDP)

becomes small for each TCP connection. Thus, each TCP connection needs less time to

recover its congestion window for utilizing “stripped” link after packet loss occurs. So that

parallel TCP can boost the throughput of TCP in LFNs.

Generally, the throughput of parallel TCP is increased as the number of parallel TCP

connections is increased [54]. However, the overhead of end-hosts, e.g., partitioning data

file into chunks on sender, reassembling chunks of data file on receiver and handling a lot of

– 66 –



Chapter 5. Analysis of parallel TCP

TCP connections, is also increased. Consequently, using twice the number of parallel TCP

connections does not necessarily mean doubling the performance. The throughput declines

if the number of parallel TCP connections is larger than a certain value [58]. However, the

overhead on end-hosts of using parallel TCP is out of the scope of this chapter. So it is

assumed that end-hosts have “unlimited” power in this chapter, i.e., the bottleneck is not

the end-hosts but link bandwidth.

In this chapter, we intend to appraise the impact on parallel TCP, which comes from

network, besides the number of TCP connections. As it is known, packet loss is one impact

factor coming from network, and it is a main cause that affects the performance of TCP.

There are two kinds of packet losses in the data transmission over the Internet – systemic

packet loss and congestion packet loss. Systemic loss, such as bit error, is not related to

network congestion. If there is only systemic packet loss in the network and the network

link bandwidth is not sufficiently utilized, parallel TCP increases the aggregate throughput

over using a single TCP stream and does not steal the bandwidth from competing flows

[56]. Nowadays, the systemic packet loss is a relatively rare event because most of long-

haul network links are equipped with fiber cables, e.g., the receiver of 10 Gbps shall operate

with a bit error rate (BER) of better than 10−12 [59]. Therefore, it is assumed that the packet

loss is just because of network congestion. To a turn, the network congestion is because

there are excessive TCP connections.

In short, the performance of parallel TCP is evaluated in this chapter based on consider-

ing the number of TCP connections, the mechanism deployed at routers, and whether TCP

connections are synchronized or not. Among these components, whether synchronization

occurs or not is related to the other components. “global synchronization” affects the TCP

performance severely. In the case of DropTail deployed, synchronization is common when

the number of concurrent TCP flows is under 100. It is very rare if the concurrent TCP

flows is above 500 [42]. But, even when the number of TCP connections is large, syn-

chronization may appear if the sum of BDP and buffer size of router in packets is larger

than 3×N (N is the number of TCP connections) [26]. To get rid of synchronization, it is

needed to add random processing time [26, 29] or change queue management mechanism,

e.g., using Random Early Detection (RED) gateway [18].

In the synchronization case, all connections suffer from packet losses when packet

– 67 –



5.3 Analysis with DropTail router

drops occur, therefore the sum of congestion window is decreased by 1/2. The under-

utilization is one obvious problem in this case when the buffer size of router is less than

BDP [42]. In the non-synchronization case, each of TCP connections suffers from packet

drop at different time. Thus, congestion window sizes of TCP connections are different

from each other. The underlying expectation is a single packet drop event most probably

causes one connection with the largest congestion window to halve, since this TCP con-

nection has more packets in flight in the network, and is therefore the most likely one to

be impacted by a packet drop event. Then this connection uses congestion avoidance al-

gorithm to recover its congestion window after its congestion windows is halved. Thus,

if the aggregate congestion window size of parallel TCP is Wsum when the router buffer

overflows, the congestion window reduction is no longer Wsum/2 at any time once packet

drop occurs, but much smaller. Thus, the throughput in synchronization case is looked at

as the lower limit that parallel TCP can obtain, and the throughput in non-synchronization

case is considered as the upper limit.

5.3 Analysis with DropTail router

It is impossible to get a uniform expression that can be used to evaluate the performance

of parallel TCP in any cases. As mentioned above, its performance is influenced by two

main factors, the number of parallel TCP connections and synchronization or not. When

the number of parallel TCP connections has been determined, its performance varies ac-

cording the degree of synchronization, that is, whether all of parallel TCP connections are

synchronized or part of them are synchronized. Two extreme cases, synchronization and

non-synchronization cases, are analyzed in this section, and the results are regarded as the

lower and upper limits of its throughput.

5.3.1 Network topology and metrics

A dumbbell topology, shown in Figure 5.1, is used in the analyzes. R1 and R2 are two

routers with buffer size of B packets, DropTail management is deployed (RED is deployed

– 68 –



Chapter 5. Analysis of parallel TCP

R1 R2

S1

Sn

D1

Dn

C bps/τ sec

Figure 5.1: Network topology for analysis

for analysis in next section). The link bandwidth between the routers is C bps, the propaga-

tion delay is τ sec. The value of BDP is D (D = RT Tmin×C). There are N TCP connections

with the same access link bandwidth and propagation delay competing for a fixed bottle-

neck link. They use the same AIMD algorithm as TCP Reno. The access link bandwidth

of each connection is larger than C bps. The propagation delay of access link is very small,

and therefore the minimum RTT (RT Tmin) approximates 2τ sec.

We focus on the aggregate behavior of parallel TCP. Packet drop rate p and good put

are used as metrics. Here, goodput is the amount of data received by the receiver in unit

time. Here, goodput is the amount of data received by the receiver in unit time, and is not

the same as useful throughput, for duplicated packets may be received. It is calculated as:

good put = throughput× (1− p) (5.1)

– 69 –



5.3 Analysis with DropTail router

5.3.2 Synchronization case

Under synchronization, we assume each of the parallel TCP connections fairly shares the

bottleneck link, the buffer of the routers, and their behaviors are identical. So the aggregate

behavior of parallel TCP with N connections can be considered as follows. In response to

a single acknowledgment, parallel TCP increases the number of segments in its congestion

window as:

cwnd←cwnd +
a(cwnd)

cwnd
,

cwnd denotes the aggregate congestion window of N TCP connections. In response to a

congestion event, it decreases the number of segments in its congestion window as:

cwnd←(1−b(cwnd))×cwnd.

Here, a(cwnd) = N, and b(cwnd) = 1/2. Figure 5.2 shows the sketch of congestion win-

dow. The total packets transmitted in 1-cycle (Npkts) is the sum of congestion window

increasing from (B+D)/2 to B+D:

Npkts =
3(B+D)(B+D+2N)

8N
(5.2)

When packet loss occurs, each connection suffers from packet drop, i.e, there are N packets

dropped in 1-cycle. So the packet loss rate is:

p = N/Npkts =
8N2

3(B+D)(B+D+2N)
(5.3)

The time of 1-cycle is t1+ t2, as shown in Figure 5.2. t1 and t2 are:

t1 = (
D−B+2N

2N
)RT T,

t2 = (
2DB+NB+B2

2DN
)RT T.

Thus, the throughput can be calculated as:

– 70 –



Chapter 5. Analysis of parallel TCP

Time (RTT)

CWND

(Packets)

t1 t2

B+D

D

(B+D)/2

1-cycle

Figure 5.2: Changes of congestion window in steady state

throughput =
Npkts

t1+ t2

=
1

RT T
D
4

3(B+D)(B+D+2N)
B2 +(N +D)B+2ND+D2 (5.4)

So far, we have not considered the effect of time-out, which can occur reasonably. In the

above derivation, the packet loss only leads to the current window size being halved. Upon

a timeout, the congestion window is set to 1 packet, then the lost packet is retransmitted.

Now, we use pto to denote the probability that a packet loss results in time-out. E(t) is the

mean time, and E(n) is the mean amount of packet sent in the period of time-out. We can

write the throughput as:

throughput =
Npkts +N · pto ·E(n)
t1+ t2+ pto ·E(t)

(5.5)

The quantities of q, E(n), and E(t) are determined by the follows equations [60]:

– 71 –



5.3 Analysis with DropTail router

pto = min
(

1,
(1− (1− p)3)(1+(1− p)3(1− (1− p)w−3))

1− (1− p)w

)
,

E(n) =
1

1− p
,

E(t) = T0
1+ p+2p2 +4p3 +8p4 +16p5 +32p6

1− p
,

w is the congestion window size of each TCP connection when packet loss occurs, here

w = (B + D)/N. T0 is the time of time-out. Assume that the congestion avoidance phase

plays major role in a TCP connection used for a bulk transfer, we can use Equation (5.3) to

calculate p.

By now, the impact of congestion window limitation is not considered. Generally,

there is limit on TCP socket buffer size, e.g., the default value of some OS is 64 KBytes.

TCP sender uses this buffer to keep a copy of all unacknowledged packets. Likewise,

TCP receiver uses the advertised window to limit the amount of data it can receive. We

assume that the limitation on the congestion window size, the maximum of congestion

window size, is Wmax. If the number of parallel TCP connections is less than a certain value,

there is no congestion on bottleneck link. Therefore, the packet loss rate and throughput

are determined by the different equations according to the aggregate value of congestion

window:

p =


0 if N×Wmax ≤ B+D

8N2

3(B+D)(B+D+2N)
if N×Wmax > B+D

(5.6)

throughput =


N×Wmax

RT T
if N×Wmax < D

BW if D≤ N×Wmax ≤ B+D
Npkts +N · pto ·E(n)
t1+ t2+ pto ·E(t)

if N×Wmax > B+D

(5.7)

– 72 –



Chapter 5. Analysis of parallel TCP

5.3.3 Non-synchronization case

When there are many TCP connections sharing a bottleneck link, each TCP connection

obeys the AIMD algorithm. Its throughput can be calculated according to square root p

formula [60] if the packet drop rate is known. From the view of all TCP connections, the

distribution of aggregate window size is a normal distribution [42] based on the central limit

theorem if TCP connections are not synchronized. The packet drop rate can be obtained

from this distribution.

For each TCP connection, the model proposed in [60] is best-known and widely used.

It captures the essence of TCP’s congestion avoidance behavior by taking time-out into

account. According to this model, TCP throughput can be estimated as:

b(p)≈ 1

RT T
√

2bp
3 +T0min

(
1,3

√
3bp

8

)
p(1+32p2)

(5.8)

where RT T is the average round trip time, T0 is the timeout, b is the number of packets that

are acknowledged by a received ACK, p is the packet loss rate.

In steady-state, the aggregate of congestion window size converges to a normal distri-

bution based on the central limit theorem [42]:

W (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (5.9)

Here, W is the aggregate of congestion window size. µ is the mean of the aggregate con-

gestion window size, σ is its standard deviation.

µ = N×b(p)×RT T (5.10)

σ =
√

N
1

3
√

3
b(p)×RT T (5.11)

From this distribution, we can get the packet drop rate p and RT T :

p = 1− 1
2
(1+ er f

B+D−µ
σ
√

2
) (5.12)

– 73 –



5.3 Analysis with DropTail router

RT T = RT Tmin +
µ−D
BW

(5.13)

Based on Equations (5.8) – (5.13), the performance of parallel TCP can be evaluated by a

fix point method.

5.3.4 Numerical results and discussion
In this subsection, the performance of parallel TCP is shown visually by numerical results.
We consider N connections that compete for a bottleneck link. The topology is illustrated
in Figure 5.1. The parameters are set as follows:

Example-1:
Bandwidth = 100 Mbps/1 Gbps/10 Gbps, RTT = 100 ms
Packet size = 1,500 Bytes, T0 = 5*RTT,
Buffer size = (0.1--0.5)BDP, Wmax = 64 KBytes.

Note that the maximum value of router buffer size is set to BDP/2, because building a

router with a buffer size of BDP is very difficult as the link bandwidth is increased further

[42]. The numerical results of packet drop rate and goodput when the bottleneck link band-

width equals 100 Mbps, 1 Gbps, and 10 Gbps are shown in Figures 5.3–5.5, respectively.

As the throughput equation (Equation (5.7)) suggests there exist three regions based on

the aggregate congestion window size Wsum. The first region is that Wsum is less than the

value of BDP. Because of limitation on congestion window, the bottleneck link cannot be

fully utilized if the number of TCP connections is less than a certain value. In this region,

throughput and goodput are identical, because there is no congestion on the bottleneck link.

They increase linearly as the number of TCP connections increases. But, the utilization is

very low if there are a small number of TCP connections. The buffer size of the routers

has no effect in this region, and there is no difference between synchronization and non-

synchronization. In the second region, Wsum lies between BDP and BDP+buffersize. This

region is the best one, for parallel TCP achieves its maximum throughput, and goodput

equals throughput, too. However, it is hard to find the condition that fulfills Wsum within

this region, for this condition varies sensitively with many parameters, such as Wmax, the

value of BDP and buffer size of the router. This matter is illustrated by Figures 5.3–5.5.

– 74 –



Chapter 5. Analysis of parallel TCP

 100

 200

 300

 400

 0
 20

 40
 60

 80
 100 0

 0.005

 0.01

 0.015

 0.02

 0.025

Buffe
r s

ize
 (P

acke
ts)

Number of parallel TCP connections

P
ac

ke
t D

ro
p 

R
at

e

non-synchronization
synchronization

(a) Packet loss rate

 100

 200

 300

 400

 0
 20

 40
 60

 80
 100 0

 20

 40

 60

 80

 100

Buffe
r s

ize
 (P

acke
ts)

Number of parallel TCP connections

G
oo

dp
ut

 (
M

bp
s)

synchronization
non-synchronization

(b) Goodput

Figure 5.3: Numerical results (Bandwidth = 100 Mbps)

– 75 –



5.3 Analysis with DropTail router

 1000

 2000

 3000

 4000

 0
 200

 400
 600

 800
 1000 0

 0.005

 0.01

 0.015

 0.02

 0.025

Buffe
r s

ize
 (P

acke
ts)

Number of parallel TCP connections

P
ac

ke
t D

ro
p 

R
at

e

non-synchronization
synchronization

(a) Packet loss rate

 1000

 2000

 3000

 4000

 0
 200

 400
 600

 800
 1000 0

 200

 400

 600

 800

 1000

Buffe
r s

ize
 (P

acke
ts)

Number of parallel TCP connections

G
oo

dp
ut

 (
M

bp
s)

synchronization
non-synchronization

(b) Goodput

Figure 5.4: Numerical results (Bandwidth = 1 Gbps)

– 76 –



Chapter 5. Analysis of parallel TCP

 10000

 20000

 30000

 40000

 0
 2000

 4000
 6000

 8000
 10000 0

 0.005

 0.01

 0.015

 0.02

 0.025

Buffe
r s

ize
 (P

acke
ts)

Number of parallel TCP connections

P
ac

ke
t D

ro
p 

R
at

e

non-synchronization
synchronization

(a) Packet loss rate

 10000

 20000

 30000

 40000

 0
 2000

 4000
 6000

 8000
 10000 0

 2000

 4000

 6000

 8000

 10000

Buffe
r s

ize
 (P

acke
ts)

Number of parallel TCP connections

G
oo

dp
ut

 (
M

bp
s)

synchronization
non-synchronization

(b) Goodput

Figure 5.5: Numerical results (Bandwidth = 10 Gbps)

– 77 –



5.3 Analysis with DropTail router

Usually, the value of BDP and buffer size of the routers are unknown to the end-hosts. On

the other hand, if the network link is shared by many users, the valid values of these param-

eters for a pair of end-hosts varies along with time. These causes make it more impossible

in practice to find the optimal number of TCP connections. Of course, there are some users

they maybe not expect the optimal performance when they employ parallel TCP. Their

purpose is not completely consistent with the object of parallel TCP. For these users, we

think their purpose of using parallel TCP should be achieving the expected throughput.

They also have to face the problem of choosing the number of TCP connections as well

because of dynamics of network. When Wsum is larger than BDP+buffersize, network con-

gestion appears, and the throughput of parallel locates in the third region. This is because

the number of TCP connections is too large. In this region, the packet drop rate becomes

larger (Figures 5.3(a), 5.4(a), and 5.5(a)) and the goodput becomes smaller (Figures 5.3(b),

5.4(b), and 5.5(b)) as the number of TCP connections increases further. The difference be-

tween synchronization and non-synchronization is visible, and it becomes more noticeable

for the larger number of TCP connections. In the synchronization case, the throughput

is degraded badly. Even in case of non-synchronization, if the number of TCP connec-

tions is too many, the throughput is degraded. On the other hand, if the number of TCP

connections is not large enough, the problem of low throughput is the same as that in the

synchronization case.

Synchronization is common when DropTail is deployed, and it easily occurs if TCP

connections have the same RTT [26, 29]. Parallel TCP exactly possesses the properties

that induce synchronization. In the synchronization case while the router has small buffer

size, the performance of parallel TCP deteriorates significantly as the number of TCP con-

nections is increased. And it is difficult to build a router with buffer size of BDP as the

link bandwidth is increased further because of limitation of the commercial memory de-

vices used by routers [42]. Because of these reasons, much attention should be paid on

synchronization.

For distinctly showing the difficulty choosing the number of TCP connections in syn-

chronization case, the contours of the expected throughput are plotted in Figures 5.6 and

5.7. We assume that the expected throughput of parallel TCP is 95% of bottleneck link

bandwidth. Note that Y-axis is the relative value of the router’s buffer size, which denotes

– 78 –



Chapter 5. Analysis of parallel TCP

R
el

at
iv

e 
si

ze
 o

f b
uf

fe
r

Number of parallel TCP connections

100M
1G

10G

   
   
   

 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000

Figure 5.6: Contour of utilization = 95% (RTT = 100ms, BW = 100 M/1 G/10 Gbps)

the percentage of buffer size to BDP/2. Here, BDP/2 is used as a normalization constant

because the maximum buffer size is set to BDP/2 in Example-1. Figure 5.6 shows the

change of the number of TCP connections for the expected utilization with different bot-

tleneck link bandwidth. The parameter setting is the same as that in Example-1. Figure 5.7

shows the change of the number of TCP connections with different RTTs. The parameters

for this graph are: The bottleneck link bandwidth is fixed to 1 Gbps, and RTT is set to

100 ms, 200 ms, or 500 ms, respectively. Other parameters are set as that in Example-1.

In the graphs, the areas bounded with the same type lines are expected in each case. It

can be observed that the positions of the areas are different in each case. That is, in order

to achieve the expected throughput, the number of TCP connections must be changed with

the different network conditions. In particular, the range of the number of TCP connections

for the expected throughput is narrow if the buffer size of the routers is small. This makes it

more difficult to find the optimal number of TCP connections. This range has significance

in practice, for building a router with large buffer size is difficult as mentions above. By

now, no method can be used by parallel TCP to find this area.

– 79 –



5.4 Analysis with RED router

100ms
200ms
500ms

R
el

at
iv

e 
si

ze
 o

f b
uf

fe
r

Number of parallel TCP connections

     
     
     

 0

 20

 40

 60

 80

 100

 100  1000

Figure 5.7: Contour of utilization = 95% (RTT = 100/100/500 ms, BW = 1 Gbps)

Although the throughput in non-synchronization case is better than that in the synchro-

nization case, the extra mechanism is necessary. In order to break synchronization, adding

random processing time is needed, or Active Queue Management (AQM) is deployed at

routers [26, 29]. If the approach of adding random processing time is employed, the extra

mechanism on end-hosts is necessary, and moreover, this approach increases RTT. It is

contrary to the purpose of parallel TCP of alleviating the problem of TCP used in LFNs.

We consider that adding random processing time is not a good method. Therefore, another

method of using RED to break synchronization is discussed in the next section.

5.4 Analysis with RED router

In the previous section, we discussed the performance of parallel TCP when DropTail is

deployed as queue management at the routers. When network congestion occurs, non-

synchronization is expected by parallel TCP users. AQM is an alternative to break syn-

chronization. One representative of AQM is Random Early Detection (RED) [18]. RED

– 80 –



Chapter 5. Analysis of parallel TCP

detects congestion before the queue overflows and drops arriving packets probabilistically

while DropTail drops packets only when the buffer is full. So that TCP connections do not

suffer packet drops at the same time and synchronization is avoided.

5.4.1 Analysis based on “queue law”

In a TCP only network with one congested bottleneck link, there exists a relationship be-

tween the average queue size, packet drop probability, capacity of bottleneck link, and the

parameters of TCP traffic such as number of TCP flows and the average round time. This

relationship is referred to as “queue law” [34]. The network can be viewed as a feedback

control system. TCP senders are controlled system. Queue management deployed at router

is controlling system. The average queue size (q) is a function of packet drop probability

(p) denoted by q = G(p). On the other hand, the queue management of router has a feed-

back control function denoted by p = H(q).

Suppose the round trip time of bottleneck link is RT T , and the link bandwidth is BW .

If the number of TCP flows is N, the average congestion window size of TCP connections

is w, the packet drop probability is p, then the average queue size is given by [61]:

q = G(p) = N×w× (1− p)−RT T ×BW (5.14)

The throughput of each TCP connection can be estimated by Equation (5.8). Then, the

congestion window size w is calculated by:

w = b(p)×RT T (5.15)

Timeout T0 is typically 5×RT T , then G(p) can be expressed as:

G(p) ≈ N× (1− p)√
2bp

3 +5×min
(

1,3
√

3bp
8

)
p(1+32p2)

−RT T ×BW (5.16)

– 81 –



5.4 Analysis with RED router

q

p

Equilibrium point

pmax 1

q=G(p)

p=H(q)

qmin

qmax

Figure 5.8: Equilibrium point of TCP-RED system

When RED is deployed, the feedback control function H(q) is:

H(q) =


0 0≤ q < qmin

q−qmin

qmax−qmin
pmax qmin ≤ q < qmax

1 qmax ≤ q≤ B

(5.17)

Here, B is the buffer size of the router, qmin, qmax are queue length thresholds. pmax is the

upper bound of the packet drop probability p.

Figure 5.8 depicts G(p) and H(q) in the case when RED is used. Within the area of

qmin < q < qmax and 0 < p < pmax (equilibrium area), there exists an equilibrium point and

the network can work in steady-state at this point. The equilibrium point varies with the

network load. Once out of this area, the network becomes instable, e.g., if queue length

is larger than qmax, all packets are dropped. This leads to performance decline. It can be

observed the equilibrium area is directly related to the setting of RED parameters, i.e., the

setting of RED affects the performance of parallel TCP.

– 82 –



Chapter 5. Analysis of parallel TCP

5.4.2 Numerical results and discussion

Based on Equations (5.16) and (5.17), we can use a fix point method to find the equilib-
rium point. The following is a numerical example. Since how to configure RED is not
the objective of this chapter, we closely follow the guideline in [57] to configure RED
parameters.

Example-2:
Parameters of Network:
Bandwidth = 100 Mbps/1 Gbps, RTT = 100/200/500 ms,
Packet size = 1,500 Bytes, Wmax = 64 KBytes.

Parameters of RED:
q min = 5 packets, q max = 15 packets,
p max = 0.1, buffer size = BDP.

Because the limitation on congestion window size is considered, there exists a mini-

mum number of TCP connections (Nmin). Nmin is determined by limitation of congestion

window size, the value of BDP, and the minimum queue threshold. If the number of TCP

connections is less than Nmin, RED does not work, and the characteristic of throughput is

the same as that when DropTail is deployed, that is, the throughput is increased linearly as

the number of parallel TCP connections increases until the aggregate congestion window

is larger than BDP. Then, the throughput equals to the bottleneck link capacity if aggregate

of congestion window is less than BPD+qmin. As the number of TCP connections increases

further, RED starts to work. Since there are always packets settled in buffer of the router

within the equilibrium area, the goodput equals bottleneck link capacity.

Figure 5.9 shows the change of packet drop rate with different bottleneck link band-

width and RTT when RED works. X-axis is the number of TCP connections, and Y-axis

is the packet drop rate. The results of 6 cases, which are the different combinations of the

bottleneck link bandwidth and RTT, are shown in this graph. On the whole, the packet drop

rate becomes large as the number of TCP connections is increased. Although the goodput

equals link capacity within the equilibrium area, the effective throughput, which is the ef-

fective amount of data received by the receiver and does not include the duplicated packets,

may be decreased as the packet drop probability increases. Therefore, the number of TCP

connections that leads to the lowest packet drop rate in each case (Nopt) is expected. Nopt

– 83 –



5.5 Trouble of “dynamic network resources allocation”

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 10  100  1000  10000  100000

P
ac

ke
t d

ro
p 

pr
ob

ab
ili

ty

Number of parallel TCP connections

BW=100M, RTT=100ms
BW=100M, RTT=200ms
BW=100M, RTT=500ms

BW=1G, RTT=100ms
BW=1G, RTT=200ms
BW=1G, RTT=500ms

Figure 5.9: Packet loss rate (RED router)

is the optimal number of TCP connections, for not only is the network within equilibrium

area, but also the packet drop rate is the smallest. From Figure 5.9, it can be observed

that Nopt varies with the network conditions. That is, RED can not solve the problem of

choosing the optimal number of TCP connections.

Addressing the difficulty in setting the parameters of RED, some improvements are

proposed, such as adaptive RED (ARED) [36]. The motivation of ARED is to maintain

an expected queuing delay by tuning the maximum packet drop probability. The optimal

number of TCP connections is not correlative with the expected queuing delay. ARED can

not solve the problem in using parallel TCP.

5.5 Trouble of “dynamic network resources allocation”

To some extent, the analyzes of this chapter show how to choose the optimal number of

TCP connections for different network conditions based on the premises that the parame-

ters of network are known by end-hosts. However, the results also show that the optimal

– 84 –



Chapter 5. Analysis of parallel TCP

number is sensitive to network parameters. Once these premises do not come into exis-

tence, it is difficult to get an optimal value. About the case when RED is deployed, it is

assumed that RED is deployed at the router of bottleneck link. In practice, there are many

hops between two endhosts. It is usually unknown where is the bottleneck link. This means

that all routers along the path must use RED mechanism. It is not an actual requirement.

In addition, the number of TCP connections is unchangeable during data transmission

in the above analyzes. When the number of TCP connections (N) is determined, parallel

TCP can be looked at as a high-speed protocol with an increase parameter of N packets per

RTT. This is not appropriate if the variability of network conditions is taken into account,

Because the increase parameter of high-speed protocol varies with network conditions. For

example, the increasing parameter of HSTCP becomes larger, and decreasing parameter

becomes smaller as congestion window increases. It may bring benefit to parallel TCP if

the number of TCP connections is alterable during data transfer. Such mechanism has been

proposed, e.g., “dynamic network resources allocation” of GridFTP v2 [62], in which an

active peer can open/close one or more additional TCP connections dynamically during

data transfer. However, We consider that this mechanism may lead to some problems.

• How to determine the granularity of changing the number of TCP connections. If the

granularity is large, there is no effectiveness on tracing the change of link bandwidth.

Otherwise, it may lead to overheads on handling TCP connections. However, the

overhead concerning granularity is essentially unrelated with high speed protocols,

for high-speed protocols use advanced algorithm to update congestion window.

• It is difficult to manage opening/closing TCP connections and control data channels

dynamically. In order to increase the number of TCP connections and attain steady-

state, a few tens RTT are necessary in each time when a new connection is created

due to the effects of 3-way handshake and slow-start phase. In contrast, there is just

one time for high-speed protocol during one transfer.

• This mechanism determines the number of TCP connections based on measurement

of network conditions. Since parallel TCP uses many TCP connections, and the in-

teraction among these TCP connections may affect the accuracy of measurement.

– 85 –



5.6 Summary

Therefore, the performance of parallel TCP may be influenced. Despite the mech-

anism of some high speed protocols is also based on measurement, the interaction

issue can be avoided in case of using high-speed protocol because there is only one

high speed TCP connection at any time.

• Because the number of TCP connections is changed dynamically, how to setup the

chunk size is not easy. In addition, the chunk management is difficult in occasion

of decreasing the number of TCP connections, for a TCP connection may be shut

off when it is transmitting a chunk. While high-speed protocol uses only one TCP

connection to transmit a data file, so the problem of “chunk” does not exist if high-

speed protocol is utilized.

In a word, high-speed protocols can offer more flexibility to a dynamic network. Even

when there exists such a network scenario in which the performance of parallel TCP is not

very sensitive to the number of TCP connections. We believe that high-speed protocols

can work finely as well, and are more efficient than parallel TCP in such an environment.

Although high speed TCPs are not widely available in production OSs, e.g., Solaris and

Windows, this is likely to change shortly.

5.6 Summary

In this chapter, we used mathematical analysis to explore the performance of parallel TCP,

which is used as one of the solutions to eliminate the shortcomings of TCP in LFNs. Two

queue management mechanisms, DropTail and RED, are examined. When DropTail is

deployed, both of the number of TCP connections and “global synchronization” are inves-

tigated, and two extreme cases – synchronization and non-synchronization – are analyzed.

Synchronization easily occurs because of the property of parallel TCP, and the throughput

deteriorates observably. Non-synchronization may benefit the throughput of parallel TCP,

but the extra mechanisms are necessary. The throughput in these two cases are analyzed,

and considered as the lower and upper limits. Parallel TCP combined with RED, which

is one method to break synchronization, is also evaluated, and the difficulty of parameter

setting in RED remains unchanged. Although there are mechanisms that may tune the

– 86 –



Chapter 5. Analysis of parallel TCP

number of TCP connections during data transfer, some potential problems remain. The

analysis results show that it is difficult to use parallel TCP in practice for the sake of ap-

proving throughput. That is, parallel TCP is not really effective in LFNs. In contrast, high

speed protocols have the inherent characteristics which are suitable for LFNs. Therefore,

we recommend to use high-speed protocols instead of parallel TCP in LFNs.

– 87 –



Chapter 6

Conclusion

The story of TCP began in 1960–70s. Since then, improving performance of TCP is an eter-

nal subject, especially as emergence of data-intensive applications and fast long-distance

networks (LFNs), i.e., networks operating at 2.5 Gbit/s, or 10 Gbit/s and spanning several

countries for terabytes or petabytes data transfer.

Although the network infrastructure is now in place, or will soon be, the transport-layer

protocols available to date perform rather poorly over such environments. Current version

of TCP (TCP Reno), using the AIMD algorithms, recover very slowly from packet loss

when the RTT and the link capacity are large. The open question concerning the use of

TCP is how to improve its throughput, while maintaining better fairness among competing

flows.

In this thesis, we have presented our design and implementation – Gentle HighSpeed

TCP (gHSTCP) for LFNs. As its name implies, gHSTCP can provide high performance,

and its behavior looks like a “gentleman” for fairness. This is guaranteed by its valid mech-

anisms: There are two modes in congestion avoidance phase – HSTCP mode and Reno

mode. HSTCP mode is employed when the link bandwidth is under-utilized. gHSTCP

increases its congestion window aggressively as HSTCP does. Reno mode is deployed if

the link bandwidth is fully utilized, and its congestion window is enlarged by one packet

per RTT as TCP Reno does.

On the other hand, high performance can not be obtained only by improving mecha-

nisms of end-hosts. Some mechanisms are needed in routers to complement the endpoint

– 88 –



Chapter 6. Conclusion

congestion avoidance mechanisms. So we have proposed a modified version of adaptive

RED – gentle adaptive RED (gARED). It cooperates with gHSTCP in achieving better

performance in terms of throughput and fairness.

Finally, we have also investigated the performance of parallel TCP mechanism in use

in LFNs. The analytical results reveal that, in practice, parallel TCP does not effectively

improve throughput. Apparently high-speed protocols have an inborn capability for LFNs.

Therefore, we believe that using high-speed protocols is a better choice.

The improvement upon TCP performance is a timeless topic since TCP was designed.

The evolution of TCP is a careful balance between innovation and considered constraint.

While innovation boosts the performance of TCP, the evolution of TCP must avoid making

radical changes that may not easy to be deployed, and also must avoid a congestion control

arms race among competing protocols. In this thesis, we have proposed Gentle HighSpeed

TCP based on these consideration. It is an enhanced transport-layer protocol with the

characteristics of simpleness, friendliness and effectiveness. As long as TCP survives, the

story of TCP will not end.

– 89 –



Bibliography

[1] J. Postel, “Transmission control protocol,” RFC 793, IETF, September 1981.

[2] M. Fomenkov, K. Keys, D. Moore, and k claffy, “Longitudinal study of Internet traf-

fic from 1998-2003,” in Proc. Winter International Symposium on Information and

Communication Technologies (WISICT), January 2004.

[3] V. Jacobson, “Congestion avoidance and control,” in Proc. SIGCOMM 1988, pp. 314–

329, August 1988.

[4] ——, “Dynamic congestion avoidance/control (long message),” Available as: http:

//www-nrg.ee.lbl.gov/nrg-email.html, February 1988.

[5] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New techniques for

congestion detection and avoidance,” in Proc. SIGCOMM 1994, pp. 24–35, August

1994.

[6] M. Floyd, T. Henderson, and A. Gurtov, “The NewReno modification to TCP’s fast

recovery algorithm,” RFC 3782, IETF, April 2004.

[7] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgement

options,” RFC 2018, IETF, October 1996.

[8] M. Allman, V. Paxson, and W. Stevens, “Performance evaluation of explicit conges-

tion notification (ECN) in IP networks,” RFC 2581, IETF, April 2000.

[9] S. Floyd, “HighSpeed TCP for large congestion windows,” RFC 3649, IETF, Decem-

ber 2003.

– 90 –

http://www-nrg.ee.lbl.gov/nrg-email.html
http://www-nrg.ee.lbl.gov/nrg-email.html


BIBLIOGRAPHY

[10] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high performance,”

RFC 1323, IETF, May 1992.

[11] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,” in Proc. SIG-

COMM 1998, pp. 315–323, August 1998.

[12] A. Hanushevsky, A. Trunov, and L. Cottrell, “Peer-to-Peer computing for secure high

performance data copying,” in Proc. CHEP’01, September 2001.

[13] W. Allcock, “GridFTP: Protocol extensions to FTP for the Grid,” Available as: http:

//www.ggf.org/documents/GFD.20.pdf , April 2003.

[14] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area networks,”

Available as: http://www-lce.eng.cam.ac.uk/∼ctk21/scalable/ , February 2003.

[15] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP for high-speed long-distance net-

works,” Internet Draft: draft-jwl-tcp-fast-01.txt, June 2003.

[16] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-delay

product networks,” in Proc. SIGCOMM 2002, August 2002.

[17] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial window,” RFC 3390,

IETF, October 2002.

[18] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-

ance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, August

1993.

[19] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of Explicit Congestion No-

tification (ECN) to IP,” RFC 3168, IETF, September 2001.

[20] S. Floyd, “TCP and explicit congestion notification,” ACM Computer Communication

Review, vol. 24, no. 5, pp. 10–23, October 1994.

[21] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One bit more is enough,”

in Proc. SIGCOMM 2005, Auguest 2005.

– 91 –

http://www.ggf.org/documents/GFD.20.pdf
http://www.ggf.org/documents/GFD.20.pdf
http://www-lce.eng.cam.ac.uk/~ctk21/scalable/


BIBLIOGRAPHY

[22] S. Floyd, “Congestion control principles,” RFC 2914, IETF, September 2000.

[23] C. Barakat, E. Altman, and W. Dabbous, “On TCP performance in a heterogenous

network: A survey,” IEEE Communications Magazine, vol. 38, no. 1, pp. 40–46,

January 2000.

[24] G. Hasegawa and M. Murata, “Survey on fairness issues in TCP congestion control

mechanisms,” IEICE Transactions on Communications, vol. E84-B, no. 6, pp. 1461–

1472, June 2001.

[25] R. Morris, “TCP behavior with many flows,” in Proc. IEEE International Conference

on Network Protocols (ICNP), pp. 205–211, October 1997.

[26] L. Qiu, Y. Zhang, and S. Keshav, “Understanding the performance of many TCP

flows,” Computer Networks, vol. 37, no. 3–4, pp. 277–306, November 2001.

[27] L. Guo and I. Matta, “The war between mice and elephants,” in Proc. the 9th IEEE

International Conference on Network Protocols, November 2001.

[28] K. Avrachenkov, U. Ayesta, P. Brown, and E. Nyberg, “Differentiation between short

and long TCP flows: Predictability of the response time,” in Proc. INFOCOM 2004,

March 2004.

[29] S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched gateways,” Jour-

nal of Internetworking: Practice and Experience, vol. 3, no. 3, pp. 115–156, Septem-

ber 1992.

[30] B. Braden and et al., “Recommendations on queue management and congestion

avoidance in the Internet,” RFC 2309, IETF, April 1998.

[31] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A self-configuring RED gateway,”

in Proc. INFOCOM 1999, pp. 1320–1328, March 1999.

[32] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy RED,” in Proc. 7th.

International Workshop on Quality of Service (IWQoS’99), pp. 260–262, June 1999.

– 92 –



BIBLIOGRAPHY

[33] V. Misra, W. B. Gong, and D. F. Towsley, “A fluid-based analysis of a network of

aqm routers supporting TCP flows with an application to RED,” in Proc. SIGCOMM

2000, pp. 151–160, September 2000.

[34] V. Firoiu and M. Borden, “A study of active queue management for congestion con-

trol,” in Proc. INFOCOM 2000, pp. 1435–1444, March 2000.

[35] M. Christiansen, K. Jaffay, D. Ott, and F. D. Smith, “Tuning RED for Web traffic,” in

Proc. SIGCOMM 2000, pp. 139–150, August 2000.

[36] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An algorithm for increas-

ing the robustness of RED,” Available as: http://www.icir.org/floyd/red.html, August

2001.

[37] Z. Zhang, G. Hasegawa, and M. Murata, “Performance analysis and improvement of

HighSpeed TCP with TailDrop/RED routers,” IEICE Transactions on Communica-

tions, pp. 2495–2507, June 2005.

[38] M. Goutelle and et al., “A survey of transport protocols other than standard TCP,”

Available as: http://www.gridforum.org/Meetings/ggf10/GGF10G.pdf , February

2004.

[39] S. McCanne and S. Floyd, “ns Network Simulator,” Available as: http://www.isi.edu/

nsnam/ns/ , 2004.

[40] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK

TCP,” Computer Communication Review, vol. 26, no. 3, pp. 5–21, July 1996.

[41] Mathematics group, “Faculty of arts, computing, engineering and sciences scientific

statistics,” Available as: http://maths.sci.shu.ac.uk/distance/stats/ index.html, 1998.

[42] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in Proc. SIG-

COMM 2004, pp. 277–288, August 2004.

[43] S. Labs, “Packet trace analysis,” Available as: http:// ipmon.sprint-labs.com/

packstat/packet.php, 2004.

– 93 –

http://www.icir.org/floyd/red.html
http://www.gridforum.org/Meetings/ggf10/GGF10G.pdf
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://maths.sci.shu.ac.uk/distance/stats/index.html
http://ipmon.sprint-labs.com/packstat/packet.php
http://ipmon.sprint-labs.com/packstat/packet.php


BIBLIOGRAPHY

[44] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger, “Dynamics of IP traffic: A

study of the role of variability and the impact of control,” in Proc. SIGCOMM 1999,

pp. 301–313, September 1999.

[45] L. Rizzo, “Dummynet: A simple approach to the evaluation of network protocols,”

ACM Computer Communication Review, vol. 27, no. 1, pp. 31–41, January 1997.

[46] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The case for application-

level network striping for data intensive applications using high speed wide area net-

works,” in Proc. the IEEE/ACM SC2000, pp. 38–43, November 2000.

[47] J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bresnahan, and S. Tuecke,

“Applied techniques for high bandwidth data transfers across wide area networks,” in

Proc. International Conference on Computing in High Energy and Nuclear Physics,

September 2001.

[48] A. Chierici, T. Ferrari, A. Forte, L. Giado, S. Lusso, and G. Tortone, “Experi-

mental results on GridFTP,” Available as: http:// server11.infn.it/netgrid/ task/ task2/

globusftp/ ftp-summary.html, February 2001.

[49] E. de Souza and D. Agarwal, “A HighSpeed TCP study: Characteristics and deploy-

ment issues,” LBNL, Tech. Rep. LBNL–53215, 2003.

[50] K. Kumazoe, K. Kouyama, Y. Hori, M. Tsuru, and Y. Oie, “Transport protocol for fast

long-distance networks: Evaluation of their penetration and robustness on JGNII,” in

Proc. SIGCOMM 2005, Feburary 2005.

[51] R. Gupta, S. Ansari, R. L. Cottrell, and R. Hughes-Jones, “Characterization and eval-

uation of TCP and UDP-based transport on real networks,” in Proc. SIGCOMM 2005,

Feburary 2005.

[52] Z. Zhang, G. Hasegawa, and M. Murata, “Experimental evaluations of Gentle High-

Speed TCP for Long-Fat Networks,” in Proc. 6th Asia-Pacific Symposium on Infor-

mation and Telecommunication Technologies.

– 94 –

http://server11.infn.it/netgrid/task/task2/globusftp/ftp-summary.html
http://server11.infn.it/netgrid/task/task2/globusftp/ftp-summary.html


BIBLIOGRAPHY

[53] T. Hacker, B. Noble, and B. Athey, “Improving throughput and maintaining fairness

using parallel TCP,” in Proc. IEEE INFOCOM 2004, March 2004.

[54] R. Kalmady and B. Tierney, “A comparison of GSIFTP and RFIO on a WAN,”

Available as: http://edg-wp2.web.cern.ch/edg-wp2/docs/GridFTP-rfio-report.pdf ,

March 2001.

[55] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end performance effects of

parallel TCP sockets on a lossy wide-area network,” in Proc. the 16th International

Parallel and Distributed Processing Symposium, April 2002.

[56] T. J. Hacker, B. Noble, and B. D. Athey, “The effects of systemic packet loss on aggre-

gate TCP flows,” in Proc. SC2002: High Performance Networking and Computing,

November 2002.

[57] S. Floyd, “RED: Discussions of setting parameters,” Available as: http://www.aciri.

org/floyd/REDparameters.txt, November 1997.

[58] “Java GridFTP client - programmer guide,” Available as: http://www-unix.globus.

org/cog/ jftp/guide.html.

[59] “IEEE Std 802.3akTM – 2004,” Available as: http:// standards.ieee.org/getieee802/

download/802.3ak-2004.pdf , March 2004.

[60] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A sim-

ple model and its empirical validation,” in Proc. SIGCOMM’98 conference on Appli-

cations, technologies, architectures, and protocols for computer communication, pp.

303–314, September 1998.

[61] J. Chung and M. Claypool, “Analysis of Active Queue Management,” in Proc. 2nd

IEEE International Symposium on Network Computing and Applications (NCA),

April 2003.

[62] I. Mandrichenko, W. Allcock, and T. Perelmutov, “GridFTP v2 protocol description,”

Available as: http://www.ggf.org/documents/GFD.47.pdf , May 2005.

– 95 –

http://edg-wp2.web.cern.ch/edg-wp2/docs/GridFTP-rfio-report.pdf
http://www.aciri.org/floyd/REDparameters.txt
http://www.aciri.org/floyd/REDparameters.txt
http://www-unix.globus.org/cog/jftp/guide.html
http://www-unix.globus.org/cog/jftp/guide.html
http://standards.ieee.org/getieee802/download/802.3ak-2004.pdf
http://standards.ieee.org/getieee802/download/802.3ak-2004.pdf
http://www.ggf.org/documents/GFD.47.pdf

	Preface
	List of publications
	Acknowledgements
	Introduction
	Research background
	Related work
	Contribution and organization of this thesis

	Gentle HighSpeed TCP (gHSTCP) for fast long-distance networks
	Introduction
	HighSpeed TCP (HSTCP)
	Related work

	Gentle HighSpeed TCP (gHSTCP)
	Shortcomings of HSTCP
	gHSTCP description

	gHSTCP evaluation with simulations
	Evaluation with DropTail router
	Evaluation with RED router
	Evaluation with Web-traffic

	Summary

	Improvement of adaptive RED mechanism for gHSTCP
	Introduction
	Adaptive RED mechanism
	Simulation with ARED router

	Improvement of ARED: Gentle adaptive RED (gARED)
	Evaluation of HSTCP/gHSTCP with gARED router
	Summary

	Experimental evaluation of gHSTCP
	Introduction
	Validation of gHSTCP algorithm
	Problem description
	Refined gHSTCP algorithm

	Performance evaluation
	Experimental setup
	Performance metrics
	Experimental results

	Summary

	Analysis of parallel TCP
	Introduction
	Parallel TCP mechanism
	Analysis with DropTail router
	Network topology and metrics
	Synchronization case
	Non-synchronization case
	Numerical results and discussion

	Analysis with RED router
	Analysis based on ``queue law''
	Numerical results and discussion

	Trouble of ``dynamic network resources allocation''
	Summary

	Conclusion
	Bibliography

