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PAPER

Performance Analysis and Improvement of HighSpeed TCP with
TailDrop/RED Routers

Zongsheng ZHANG†a), Go HASEGAWA†b), and Masayuki MURATA†c), Members

SUMMARY Continuous and explosive growth of the Internet has
shown that current TCP mechanisms can obstruct efficient use of high-
speed, long-delay networks. To address this problem we propose an en-
hanced transport-layer protocol called gHSTCP, based on HighSpeed TCP
proposed by Sally Floyd. It uses two modes in the congestion avoid-
ance phase based on the changing trend of RTT. Simulation results show
gHSTCP can significantly improve performance in mixed environments, in
terms of throughput and fairness against the traditional TCP Reno flows.
However, the performance improvement is limited due to the nature of
TailDrop router, and the RED/ARED routers can not alleviate the problem
completely. Therefore, we present a modified version of Adaptive RED,
called gARED, directed at the problem of simultaneous packet drops by
multiple flows in high speed networks. gARED can eliminate weaknesses
found in Adaptive RED by monitoring the trend in variation of the average
queue length of the router buffer. Our approach, combining gARED and
gHSTCP, is quite effective and fair to competing traffic than Adaptive RED
with HighSpeed TCP.
key words: TCP Reno, HighSpeed TCP, fairness, TailDrop, RED

1. Introduction

Hosts (server machines) providing services that encom-
pass data grids and storage area networks (SANs) have
gigabit-level network interfaces such as gigabit ethernet.
These hosts connect directly to high-speed networks for
terabyte/petabyte-sized data exchange to move program
data, perform backups, synchronize databases, and so on.
Although they require large amounts of network bandwidth
and disk storage, such services will grow in the future Inter-
net as their costs are rapidly decreasing. However, the most
popular version of TCP used on the current Internet, TCP
Reno [1], cannot achieve sufficient throughput for this kind
of high-speed data transmission because of the essential na-
ture of the TCP congestion control mechanism.

According to [2], in order for a TCP Reno connec-
tion, with a packet size of 1,500 bytes and RTT (Round Trip
Time) of 100 ms, to fill a 10 Gbps link, a congestion win-
dow of 83,333 packets is required. This means a packet loss
rate of less than 2 × 10−10, well below what is possible with
present optical fiber and router technology. Furthermore,
when packets are lost in the network, 40,000 RTTs (about
4,000 sec) are needed to recover throughput. As a result,
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standard TCP cannot possibly obtain such a large through-
put, primarily because TCP Reno drastically decreases its
congestion window size when packet loss is taking place,
increases it only very slightly when experiencing no packet
loss.

HighSpeed TCP (HSTCP) [2] was recently proposed as
one way to overcome the problems discussed above and pro-
vide considerably greater throughput than TCP Reno in such
environments. It modifies the increase/decrease algorithms
of the congestion window size in the congestion avoidance
phase of the TCP mechanism [3]. That is, HSTCP increases
its congestion window more quickly, and decreases it more
slowly, than does TCP Reno to keep the congestion window
size large enough to fill a high-speed link.

Although intuitively HSTCP appears to provide greater
throughput than TCP Reno, HSTCP performance charac-
teristics have not been fully investigated, such as the fair-
ness issue when HSTCP and TCP Reno connections share
the same link. Fairness issues are very important to TCP
and have been actively investigated in past literatures [4]–
[9]. Almost all of these studies have focused on the fairness
among connections for a certain TCP version used in differ-
ent environments and consider such factors as RTT, packet
dropping probability, the number of active connections and
the size of transmitted documents. Fairness among tradi-
tional and new TCP mechanisms, such as HSTCP, is a quite
important issue when we consider the migration paths of
new TCP variants. It is very likely that HSTCP connections
between server hosts, and the many traditional TCP Reno
connections for Web access and e-mail transmissions, will
share high-speed backbone links. It is therefore important to
investigate the fairness characteristics between HSTCP and
TCP Reno. It has also been mentioned in [2] that the relative
fairness between standard TCP and HSTCP worsens as link
bandwidth increases. When HSTCP and TCP Reno compete
for a bandwidth on a bottleneck link, we do not attempt to
provide the same throughput that they are capable of achiev-
ing. But in this case, high throughput by HSTCP should not
occur at great sacrifice by TCP Reno, i.e., HSTCP should
not pillage too many resources at the expense of TCP Reno.

To our knowledge, there has been limited research on
this issue [10]–[12]. In [10], [11], only simulations or results
from experimental implementations are assessed. In [12],
the author addresses “a serious RTT unfairness problem.”
In this paper we evaluate throughput and fairness properties
when HSTCP and TCP Reno connections share a network
bandwidth. From the results we observe that HSTCP can
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achieve high throughput, but it is accompanied by a large
degradation in TCP Reno throughput. To resolve this prob-
lem, we propose a modification to HSTCP called “gentle
HighSpeed TCP” (gHSTCP) that implements two modes,
HSTCP mode and Reno mode, in the congestion avoidance
phase to improve fairness yet allow both gHSTCP and tra-
ditional TCP to achieve satisfactory performance. The sim-
ulation results show that gHSTCP can achieve both higher
throughput and better fairness than HSTCP.

However, the performance improvement is limited due
to the nature of TailDrop router, which causes bursty packet
losses and the large queueing delay. Congestion control to
alleviate these problems can be accomplished by end-to-end
congestion avoidance together with an active queue man-
agement (AQM) mechanism. Traditional TailDrop queue
management could not effectively prevent the occurrence
of serious congestion. Furthermore, global synchroniza-
tion [13] could occur during the period of congestion, i.e., a
large number of TCP connections could experience packet
drops and reduce their transfer rates at the same time, re-
sulting in under-utilization of the network bandwidth and
large oscillations in queueing delay. Particularly in high-
speed long-delay networks, where routers may have large
buffers, TailDrop can cause long queueing delays. To ad-
dress these problems, Random Early Detection (RED) [14]
has been recommended for wide deployment in the Internet
as an active queue management mechanism [15]. However,
control parameter settings in RED have been proven highly
sensitive to the network scenario, and misconfiguring RED
can degrade performance significantly [16]–[20]. Adaptive
RED (ARED) was therefore proposed as a solution to these
subsequent problems [21]. ARED can adaptively change
the maximum drop probability in accordance with network
congestion levels. However, in high-speed and less multi-
plexed networks, our results indicate some remaining prob-
lems with ARED, such as synchronized packet drops and in-
stability in queue length, leading us to develop a more robust
ARED mechanism. This improved Adaptive RED, which
we call gARED, monitors average queue length and trends
in the variation in order to dynamically adapt the maximum
packet drop probability.

The remainder of this paper is organized as follows. In
Sect. 2, we give a brief overview of HSTCP and review some
related works on TCP variants for high speed networks. In
Sect. 3, we investigate, through simulations, the throughput
and fairness properties of HSTCP when sharing bandwidth
with TCP Reno on a bottleneck link. We then propose a
modification to HSTCP. In Sect. 4, we analyze and evaluate
ARED, show its weaknesses, propose an improved version
of ARED and then conduct simulation experiments to evalu-
ate the proposed mechanisms. Section 5 assesses the packet
loss rate when high-speed flows compete the resource with
web traffic. Finally, Sect. 6 presents our conclusions of this
paper.

2. Background

2.1 HSTCP (HighSpeed TCP)

To overcome problems with TCP mentioned in Sect. 1,
HSTCP was proposed [2]. The HSTCP algorithm uses
the principle of Additive Increase Multiplicative Decrease
(AIMD) as in standard TCP, but is more aggressive in its
increases and more conservative in its decreases. HSTCP
addresses this by altering the AIMD algorithm for the con-
gestion window adjustment, making it a function of the con-
gestion window size rather than a constant as in standard
TCP.

In response to a single acknowledgment, HSTCP in-
creases the number of segments in its congestion window w
as:

w←w + a(w)
w

In response to a congestion event, HSTCP decreases
the number of segments in its congestion window as:

w←(1 − b(w))×w
Here, a(w) and b(w) are given by:

a(w) =
2w2·b(w)·p(w)

2 − b(w)
(1)

b(w) = (bhigh − 0.5)
log(w) − log(Wlow)

log(Whigh) − log(Wlow)
+ 0.5 (2)

p(w) =
0.078
w1.2

(3)

where bhigh, Whigh and Wlow are parameters of HSTCP.
According to Eqs. (1) and (2) and a typical parameter

set used in [2] (bhigh, Whigh and Wlow are 0.1, 83,000 and 38,
respectively), Fig. 1 shows how a(w) and b(w) vary with the
congestion window. We can see that the “increase” parame-
ter a(w) becomes larger, and the “decrease” parameter b(w)
becomes smaller, as the congestion widow size increases. In
this manner, HSTCP can sustain a large congestion window
and fully utilize the high-speed long-delay network.

Fig. 1 AIMD parameters in HSTCP.
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Fig. 2 Response function of TCP Reno and HSTCP.

The HSTCP response function† (3) is illustrated in
Fig. 2. We can observe from this figure that HSTCP re-
laxes the constraint between drop probability and the con-
gestion window. For example, when p = 10−7 is in steady-
state, HSTCP can send at the rate of 100,000 packets/RTT
while the sending rate of TCP Reno is around only
4,000 packets/RTT. Consequently, HSTCP can achieve a
large congestion window even with a high loss rate.

2.2 Related Work

There are other solutions for overcoming the limitations of
standard TCP in high-speed networks.

• Scalable TCP [22]. This is a simple change to the
traditional TCP congestion control algorithm. On de-
tection of congestion, it reduces the congestion win-
dow in segments by 0.125 × cwnd. For each acknowl-
edgment received when congestion has not been de-
tected, it increases the congestion window in segments
to cwnd + 0.01. This increase is exponential instead
of linear. Scalable TCP probing times are proportional
only to the RTT to make the scheme scalable to high-
speed networks. However, Scalable TCP exhibits un-
fairness to TCP Reno greater than that of HSTCP [2].

• FAST TCP [23]. This protocol is based on TCP-Vegas
[24] to provide a stable protocol for high-speed net-
works. In addition to packet loss, it uses queuing delay
as the main measure of congestion. Although experi-
mental results show Vegas can achieve better through-
put and fewer losses than standard TCP Reno, there are
few theoretical explanations for it. Any problems with
TCP-Vegas exist possibly within FAST TCP, since its
congestion control mechanism is based on that of TCP
Vegas [25].

• XCP [26]. This is a router-assisted protocol. XCP-
enabled routers inform senders concerning the degree
of congestion at a bottleneck. XCP introduces a new
concept in which utilization control is decoupled from
fairness control. It produces excellent fairness and re-
sponsiveness as well as a high degree of utilization.
However, it requires the deployment of XCP routers,
therefore it cannot be deployed incrementally.

Protocols aiming at high speed environment are still on
the way of development and not widely deployed. We think
that it is better at present to design a suitable protocol for
high speed network. Thus we focus on the performance and
solve the problem of fairness by modifying aggressive pro-
tocol in the whole network as the case of gHSTCP in this pa-
per. gHSTCP can utilize the high-speed network while pre-
serving the better fairness against the traditional TCP Reno.
In addition, it is simply and easy to deploy.

Both FAST TCP and gHSTCP use RTT as a method to
regulate the congestion windows. But gHSTCP is easy to
implement. It only changes the increasing speed of conges-
tion window based on the increasing RTT trend. Even with
inaccurate estimation, gHSTCP maintains the same increas-
ing speed of congestion window as TCP Reno does.

For using XCP, the mechanism of routers must be re-
constructed for the end hosts to get information from the
routers. In our proposal, gHSTCP can achieve good perfor-
mance even without gARED. The performance of gHSTCP
will become better if gARED can be deployed at routers.

3. gHSTCP: Gentle HighSpeed TCP

In this section we present simulation results to show prob-
lems with HSTCP and propose a simple yet effective mod-
ification, which we call gHSTCP. We take advantage of
HSTCP in terms of its AIMD algorithm for aggressive in-
crease and conservative decrease of the congestion window.
To gain better fairness with TCP Reno, we modify the strat-
egy for increasing the congestion window. We then illustrate
how gHSTCP outperforms HSTCP through simulations.

3.1 Simulation with HSTCP

We first present the results of simulation experiments to clar-
ify HSTCP problems with throughput and fairness. ns-2
network simulator [27] is used for the simulations. The net-
work topology is shown in Fig. 3, where S1 and S2 represent
sender groups consisting of sender hosts, and D1 and D2 rep-
resent sink groups consisting of destination hosts. R1 and R2

are routers with buffer size of 10,000 packets. The packet
size is 1,500 bytes. The bandwidth of the bottleneck link is
set to 2.5 Gbps, and the propagation delay of the bottleneck
link is set to 25, 50 and 100 ms, respectively. UDP traf-
fic is used as background traffic. There are 10 connections
between senders and sinks. S1 contains five connections
with an access link bandwidth of 100 Mbps. S2 contains
five connections with an access link bandwidth of 1 Gbps.
For TCP Reno and HSTCP connections, we show the sim-
ulation results with and without the Selective ACKnowl-
edgement (SACK) option [28]. We denote HSTCP+SACK
(Reno+SACK) and HSTCP (Reno) in the results, respec-
tively. TailDrop is used as the queue management mecha-
nism in this section. We use a greedy FTP source for data
transmission.

†The TCP response function maps the steady-state packet drop
rate to the TCP average sending rate in packets per RTT.
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We consider homogeneous environment in the follow-
ing simulations although it is necessary to investigate het-
erogeneous environment, i.e., different delay of each con-
nection. Homogeneous environment represents the worst
case, which is worthy of special consideration to evaluate
the performance of a new protocol. Future work will be
conducted to find out how much difference exists between
homogeneous and heterogeneous environments.

Two metrics for the performance evaluation are used:
aggregate throughput and fairness (Jain’s fairness index).
From a viewpoint of protecting a Reno connection as much
as possible, max-min fairness criteria is used in the paper.
Other methods such as proportional fairness need to coop-
erate with other mechanisms. We thought it is very difficult
to attain proportional fairness only by improvement of TCP
in end hosts. Jain’s fairness index is defined as:

FairnessIndex =
(
∑n

i=1 xi)2

n
∑n

i=1 x2
i

Here, n is the total connection number and xi is the normal-
ized throughput for flow i defined as xi = Mi/Ci, where Mi is
the measured throughput and Ci is the fair throughput found
by max-min optimality. The fairness index always lies be-
tween 0 and 1. A value of 1 indicates that all connections
are receiving the fairest allocation of bandwidth.

We first show the results of four simulations.

• Case 1: TCP Reno is used for S1 and S2.
• Case 2: TCP Reno is used for S1 and HSTCP is used

Fig. 3 Simulation topology.

Table 1 Performance of HSTCP with DropTail.

for S2.
• Case 3: TCP Reno is used for S1 and HSTCP+SACK

is used for S2.
• Case 4: TCP Reno+SACK is used for S1 and

HSTCP+SACK is used for S2.

Table 1 shows the simulation results of four cases, and it
presents the average throughput in the latter half of the sim-
ulation time and the fairness index defined by above equa-
tion. In Case 1, TCP Reno flows having high-bandwidth
access links compete with TCP Reno flows having lower-
bandwidth access links. We can see that S1 group fully uti-
lizes its access link bandwidth, and S2 group, although it
achieves higher throughput, does not utilize the entire avail-
able bandwidth. This confirms that TCP Reno cannot fully
utilize the high link bandwidth, as mentioned in Sect. 1.

In Case 2, HSTCP is used in S2 group instead of TCP
Reno. S2 group obtains slight benefit from HSTCP, but per-
formance of S1 group is severely damaged and degradation
in total throughput occurs. This is because the congestion
window is inflated in S2 group, resulting in more frequent
buffer overflows and increasing packet loss in all of the
flows. As we know, TCP Reno lacks a mechanism for re-
covering from a multiple packet loss event without incurring
a timeout. Lost packets cause retransmission timeout (this
is a fundamental mechanism of TCP Reno [29]), and time-
out places the connection in the slow-start phase, resulting
in serious throughput degradation. Note that HSTCP uses
the same algorithm as TCP Reno for packet retransmission.
This is the reason why HSTCP connections in Case 2 can-
not obtain high throughput compared with the TCP Reno
connections in Case 1.

In Case 3, the TCP SACK option is applied with
HSTCP for S2 group. The TCP SACK mechanism [28],
combined with a selective retransmission policy, can help
overcome limitations in recovering from many packet
losses. Table 1 shows that S2 group achieves very high
throughput while that of TCP Reno is severely degraded.
Although there are still multiple packet drops, S2 group, us-
ing the SACK option, infers the dropped packets and re-
transmits only the missed ones. Since this function is not
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available to S1 group, it receives less link bandwidth com-
pared to Case 2.

In Case 4, we can observe the aggregate throughput of
S1 group is slightly improved comparing with Case 3. It is
because there is not timeout occurred to S1 group due to the
SACK option used. However, the throughput of S1 group is
still low. It means that other mechanisms are necessary to
improve the fairness between S1 and S2 group.

It is clear in Case 1 that as propagation delay increases
S2 group does not affect S1 group. This is because both
groups employ the same mechanism and S2 group can-
not fully utilize the leftover bandwidth of S1 group. But
in Cases 2–4, the larger the propagation, the smaller the
throughput that can be achieved by S1 group due to the use
of different algorithms by the two groups.

3.2 gHSTCP Description

HSTCP increases the congestion window size based solely
on the current congestion window size. This may lead to
bursty packet losses, because the window size continues to
be rapidly increased even when packets begin queued at the
router buffer. In addition, differences in speed gains among
the different TCP variants result in unfairness. To alleviate
this problem, we consider changing the behavior of HSTCP
for speed increases to account for full or partial utilization
of bottleneck links. We regulate the congestion avoidance
phase in two modes, HSTCP mode and Reno mode, and
switch between modes based on the trend of changing RTT.

Denote the departure time and RTT value of a transmit-
ted packet i as di and ti, respectively, the correlation between
di and ti is tested statistically. From pairs (di,ti) to calculate
the correlation coefficient r [30]:

r =

∑N
i=1 (di − d̄)(ti − t̄)√∑N
i=1 (di − d̄)2(ti − t̄)2

where N is the size of congestion window in packet, d̄, t̄ are
the mean values of di and ti. If di and ti tend to increase
together, r is positive. If, on the other hand, one tends to
increase as the other tends to decrease, r is negative. The
value of correlation coefficient lies between -1 and +1.

Because the pairs (di,ti) are N independent observa-
tions, r can be used to estimate the population correlation
ρ. To make inference about ρ using r, usually N is a large
number, we require the sampling distribution of r by calcu-
lating the statistic Z:

Z =
1
2

ln

(
1 + r
1 − r

)√
N − 3

If Z is larger than a certain value, there is very strong evi-
dence of statistical significance, i.e. (di, ti) is positive corre-
lation, otherwise it is non-positive correlation. Z of 3.09 is
used in the following simulation results. The parameter Z
corresponds to the level of significance. The larger value of
Z shows there is very strong evidence of correlation. In or-
der to make a right estimation on the increasing RTT trend,

we recommend to select a larger value for Z.
If a positive correlation is recognized, that is, an in-

creasing trend in the observed RTT values is present, then
bottleneck congestion is occurring for a sender. If more
and more packets are buffered in the router queue, then
the bottleneck is fully used. The sender should therefore
slow down its increasing speed of the sending rate to keep
the fairness against TCP Reno connections. The process
during this period is referred to as Reno mode, in which
the sender increases its congestion window linearly as with
standard TCP. This will maintain fairness among TCP Reno
and gHSTCP connections. On the other hand, if there is
a non-positive correlation between di and ti, it means the
network is in an under-utilized state and the sender should
increase the congestion window rapidly to utilize the unused
bandwidth. The process during this period is called HSTCP
mode. The sender increases the window size in the same
way as HSTCP. The algorithm is summarized as follows.

When a new acknowledgment is received, gHSTCP in-
creases its congestion window in segments as:

w←w + a(w)
w

where a(w) is given by:

a(w) =


2w2·b(w)·p(w)

2 − b(w)
HSTCP mode

1 Reno mode

Once a retransmission timeout occurs, or duplicated ac-
knowledgments are received, the sender decreases the con-
gestion window in the same way as HSTCP does. When
a timeout occurs, the congestion window size is reset to
one packet and the phase is changed to slow-start. When
a packet loss event is detected and retransmitted by fast re-
transmit algorithm then sets its congestion window size to
(1 − b(w))×w, b(w) is given by Eq. (2) for two modes. If the
sender host is in HSTCP mode, it remains in HSTCP mode.
If a retransmission happens during Reno mode, the sender
switches to HSTCP mode.

3.3 gHSTCP Evaluation with Simulations

In this subsection we compare the performance of HSTCP
and gHSTCP based on simulations. Using TailDrop as the
queue management mechanism, the following simulations
are performed:

• Case 5: TCP Reno is used for S1 and gHSTCP is used
for S2.

• Case 6: TCP Reno is used for S1 and gHSTCP+SACK
is used for S2.

• Case 7: TCP Reno+SACK is used for S1 and
gHSTCP+SACK is used for S2.

The results are shown in Table 2. In Case 5, the throughput
is significantly improved for both TCP Reno and gHSTCP
comparing with Case 2. The fairness is also improved. In
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Table 2 Performance of gHSTCP with DropTail.

Case 6, the throughput of S2 group is further increased due
to the SACK option used for gHSTCP. However, it results in
the fairness decreasing. But it is better than that in Case 3. In
Case 7, when the SACK option is used with both groups, al-
though total throughput is almost the same as the case when
HSTCP is used, the fairness becomes better among the dif-
ferent flow types with the help of gHSTCP. The through-
put of S1 group is greatly improved comparing with that in
Case 4.

Tables 1 and 2 show that the bottleneck is under-
utilized when SACK option isn’t present and TailDrop is
deployed. They also illustrate degraded fairness among
HSTCP/gHSTCP and TCP Reno flows as the bottleneck link
delay become larger. In this situation, HSTCP/gHSTCP
connections are able to obtain larger throughput while the
TCP Reno connections suffer degraded throughput. This
is caused by the different algorithms used for increas-
ing/decreasing the congestion window size. TCP Reno re-
sizes its congestion window in the same way regardless
of the current window size. HSTCP/gHSTCP increases
its congestion window more rapidly and decreases it more
slowly when the window size is larger. Consequently, when
the propagation delay of the bottleneck becomes large, that
is, when the bandwidth-delay product of the bottleneck link
becomes large, HSTCP/gHSTCP connections increase the
size of their congestion windows quickly.

To improve network performance in terms of link uti-
lization and system fairness, it has been proposed that Ac-
tive Queue Management (AQM) such as RED be deployed
in the Internet [15]. In contrast to TailDrop, which drops
incoming packets only when the buffer is fully utilized,
the RED algorithm drops arriving packets probabilistically,
with the probability calculated based on changes in queue
length of the router buffer [14]. Here, we replace TailDrop
with RED and investigate the performance of HSTCP and
gHSTCP. Topology and other conditions are the same as
for the previous simulation experiments. According to [31],
the latest router (especially backbone router) tends to have
a buffer of 250 msec, and based on the simulation that we
have conducted, the parameter used for RED is set as fol-
lows to maintain a good performance. The queue length
minimum threshold, minth, is set to 2,500 packets. The
other RED parameters are set to their default values in ns-2
(maxth = 3 ∗ minth, wq = 0.002 and maxp = 0.1). Some ap-

plications cannot admit long queuing delay caused by such
a large threshold. It can be solved by adjusting the parame-
ters of RED. This is one of our future subjects that the better
performance can be maintained while the queuing delay is
shortened. The following simulation experiments are per-
formed:

• Case 8: TCP Reno is used for S1 and HSTCP is used
for S2 with RED deployed.

• Case 9: TCP Reno is used for S1 and HSTCP+SACK
is used for S2 with RED deployed.

• Case 10: TCP Reno+SACK is used for S1 and
HSTCP+SACK is used for S2 with RED deployed.

• Case 11: TCP Reno is used for S1 and gHSTCP is used
for S2 with RED deployed.

• Case 12: TCP Reno is used for S1 and gHSTCP+SACK
is used for S2 with RED deployed.

• Case 13: TCP Reno+SACK is used for S1 and
gHSTCP+SACK is used for S2 with RED deployed.

Comparing the results of Table 3 for Cases 8–13 with
Tables 1 and 2, we see that fairness is improved, but link
under-utilization is present and total throughput is less than
that using TailDrop in some cases, especially in the case
when the SACK option is not available. We expect the fair-
ness is to be improved while maintaining the high utilization
by introducing RED based on its policy of randomly drop-
ping packets. However, the under-utilization problem can’t
be alleviated.

In this high-speed environment, high-speed flow has a
very large congestion window. Once a packet loss event
occurs, multiple packets are dropped although the packet
drop probability is quite small. This results in timeout if
the SACK option is not used for high-speed flow. Fig-
ure 4 shows the change in the congestion window when
HSTCP/gHSTCP is used with RED and the bottleneck link
propagation delay is 50 ms. Although RED is deployed at
the routers, global synchronization also occurs because of
the multiple packet losses. This phenomena is present to a
smaller extent when gHSTCP is used but can still happen.
If the SACK option is used for the HSTCP/gHSTCP flows,
though the congestion windows will not be reset to 1 packet
as shown in Fig. 5, it still occurs that all flows simultane-
ously decrease their congestion window due to the improper
setting of RED. This may result in an under-utilization of
the bottleneck link.
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Table 3 Performance of HSTCP/gHSTCP with RED (maxp = 0.1).

Fig. 4 Congestion window (HSTCP/gHSTCP with RED).

In addition, it is reported [31] that synchronization
tends to exist with certain condition, such as the number of
coexisting connections is 100 or less regardless of the vari-
ation in RTT. In the environment where HSTCP/gHSTCP is
used, since it is assumed that the multiplexed degree is not
so high, it is necessary to develop a mechanism to reduce
synchronization occurring.

It is well-known that system performance is quite sen-

Fig. 5 Congestion window (HSTCP+SACK/gHSTCP+SACK with
RED).

sitive to the RED parameters [16]–[20]. The following sim-
ulation experiments illustrate this problem, with correctly
tuned RED parameter maxp set to 0.001:

• Case 14: TCP Reno is used for S1 and HSTCP is used
for S2 with RED (maxp = 0.001).

• Case 15: TCP Reno is used for S1 and HSTCP+SACK
is used for S2 with RED (maxp = 0.001).
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Table 4 Performance of HSTCP/gHSTCP with RED (maxp = 0.001).

• Case 16: TCP Reno+SACK is used for S1 and
HSTCP+SACK is used for S2 with RED (maxp =

0.001).
• Case 17: TCP Reno is used for S1 and gHSTCP is used

for S2 with RED (maxp = 0.001).
• Case 18: TCP Reno is used for S1 and gHSTCP+SACK

is used for S2 with RED (maxp = 0.001).
• Case 19: TCP Reno+SACK is used for S1 and

gHSTCP+SACK is used for S2 with RED (maxp =

0.001).

The results in Table 4 show that the system can achieve both
higher throughput and better fairness in this situation. It
means that in this situation, maxp is an important parameter
to improve the performance of the RED algorithm. How-
ever, there is no complete parameter set of the RED mech-
anism to successfully cope with the various network con-
ditions, since the RED parameters are very sensitive to the
network factors [16]–[20]. In the next section, an additional
mechanism will be introduced to address this problem.

4. gARED: Gentle Adaptive RED

The results in Sect. 3 are primarily the effects of the
TailDrop and RED mechanisms at the bottleneck routers.
We observed that maxp is an important parameter that sig-
nificantly affects system performance when RED is de-
ployed. We need a mechanism that can adjust the parameters
automatically, especially maxp, in response to the network
environment. Adaptive RED (ARED) [21], an improved
version of RED, is such a mechanism, and its application is
expected to improve system performance. We first conduct
simulation experiments with ARED and reveal its shortcom-
ings from the results. We then propose a modification to
alleviate these deficiencies, through a process of automatic
parameter setting, but that still preserves the effectiveness of
the ARED mechanism, especially aiming at the absence of

the SACK option.

4.1 ARED Mechanism

RED monitors impending congestion by maintaining an ex-
ponential weighted moving average of the queue length (q̄).
However, RED parameter settings have proven to be highly
sensitive to network conditions, and performance can suffer
significantly for a misconfigured RED [16], [17]. The moti-
vation for ARED is to diminish or eliminate the shortcom-
ings of RED, i.e., remove the effect of the RED parameters
on average queue length and performance. Following is a
brief overview of the differences between RED and ARED,
the details of which can be reviewed in [21].

• maxp: In RED, this value does not change at runtime.
In ARED, maxp is dynamically adapted to keep the av-
erage queue size within the target queue boundaries
according to network conditions. When the average
queue size is larger than the target queue size, maxp

is increased. When the average queue size is less than
the target queue size, maxp is decreased. One recom-
mended range for maxp is (0.01, 0.5).

• maxth: RED recommends setting maxth to at least twice
minth. In ARED, the rule of thumb is to set maxth to
three times that of minth. The target queue is deter-
mined by maxth and minth as [minth + 0.4 ∗ (maxth −
minth),minth + 0.6 ∗ (maxth −minth)]. The target queue,
the objective for ARED adapting the maxp setting, de-
termines the queuing delay expected at the router. The
setting for minth is determined by the network manager.

• wq: This parameter is used as a low-pass filter on the
instantaneous queue size in order to estimate the long-
term queue average. RED sets it to a fixed value. The
fixed value is not suitable as the bandwidth link in-
creases. ARED sets it to 1 − exp(−1/C), where C is
the link capacity in packets/second. The intent here is
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Table 5 Performance comparison of HSTCP/gHSTCP with ARED.

to maintain the time constant on the order of RTT. Cal-
culating the average queue size is the basis of the RED
algorithm.

Of the above three changes, the first is a key factor be-
cause it is an adaptation to network conditions. The other
settings are determined at system startup.

4.2 Simulation with ARED

To evaluate the effectiveness of ARED in a high-speed long-
delay network some simulations are conducted under the
same conditions as in the previous section but with ARED
deployed at the routers. Setting minth to 2,500 packets, and
setting the other ARED parameters as described in the pre-
vious subsection:

• Case 20: TCP Reno is used for S1 and HSTCP is used
for S2 with ARED deployed.

• Case 21: TCP Reno is used for S1 and HSTCP+SACK
is used for S2 with ARED deployed.

• Case 22: TCP Reno+SACK is used for S1 and
HSTCP+SACK is used for S2 with ARED deployed.

• Case 23: TCP Reno is used for S1 and gHSTCP is used
for S2 with ARED deployed.

• Case 24: TCP Reno is used for S1 and gHSTCP+SACK
is used for S2 with ARED deployed.

• Case 25: TCP Reno+SACK is used for S1 and
gHSTCP+SACK is used for S2 with ARED deployed.

The results are shown in Table 5. System performance is
improved in terms of throughput and fairness compared with
that of RED (Table 3). However, the bottleneck link remains
under-utilized. Figure 6 shows the change in queue length
for a propagation delay of 50 ms, and it is apparent that the
router buffers are frequently in the idle state. This is why
the bottleneck link bandwidth is not fully utilized due to an
improper setting for the ARED packet drop probability. We

Fig. 6 Instantaneous queue length (HSTCP/HSTCP+SACK with
ARED).

Fig. 7 Sketch of average queue length (ARED).

now describe the shortcomings of ARED in detail.
The graph in Fig. 7 shows a sketch map of the aver-

age queue size as it varies over time when using ARED.
The purpose of the changing maxp is to maintain an average
queue size within the target queue range. In the figure, the
x-axis is time, the y-axis is the average queue length. When
the average queue size increases to greater than the target
queue size, ARED will increase maxp which in turn causes
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many of the flows to reduce their sending rates. This results
in a decrease of the average queue size. When the average
queue size decreases to less than the target queue, maxp is
decreased. With a smaller maxp, fewer connections suffer
packet losses and the average queue size therefore increases.
In this manner, ARED achieves its expected performance.

A problem with ARED is that it does not consider the
trend in average queue variation. Given t = t1, maxp =

p1, the average queue size (q̄) is q1. As q̄ increases, maxp

reaches a local maximum value p2 at t = t2, q̄ = qm. This
p2 is large enough to ensure an average queue reduction. At
t = t3, q̄ decreases and maxp is still increasing. At t = t4,
maxp reaches its maximum pm, pm > p2. The larger maxp

will converge the average queue size to the target queue size
at a faster pace, but at the expense of a less stable state.

We can view this process as a feedback control system
[19] with the TCP senders as the controlled element, the
drop module as the controlling element and the drop proba-
bility as the feedback signal. The feedback signal, delayed
by about one RTT, causes senders to decrease their send
rates to less than the ideal rate. Especially, the larger the
drop probability, the more the TCP senders rates will be less

Fig. 8 Sketch of average queue length (gARED).

Table 6 Performance comparison of HSTCP/gHSTCP with gARED.

than ideal. Moreover, as the propagation delay and queue
size increase, this phenomenon will become more serious.

Another problem with ARED, the same as with RED,
is that the lower bound of parameter maxp is determined
to some extent by the network manager to ensure ARED
performance.

4.3 An Improvement of ARED

To solve these problems inherent to ARED, we propose a
modified version referred to gARED as shown in Fig. 8.
When the average queue becomes larger than the target
queue and there is an increasing trend, maxp is increased.
When the average queue becomes smaller than the target
queue, then only if the average queue length is larger than
minth and there is a decreasing trend, maxp is decreased.
When the average queue size is within target queue or less
than minth, there is no change on maxp.

Comparing gARED with ARED, if the average queue
size is larger than the target queue size while t is in the inter-
val (t2, t4), ARED increases maxp but gARED does not. The
small maxp gives the network more stability. On the other
hand, if the average queue size is less than the target queue,
maxp is larger for gARED than one for ARED. So that the
average queue can return to the target queue slowly.

Another difference between gARED and ARED is that
there is no limit on the lower bound of maxp in gARED. It
is determined automatically based on minth.

The algorithm of gARED is given as:

Every interval seconds:

if (avg > target and avg > old_avg and

max_p < top)

increase max_p:

max_p = max_p + alpha

if (min_th < avg and avg < target and
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avg < old_avg)

decrease max_p:

max_p = max_p * beta

avg: average queue length

old_avg: previous average queue length

top: upper bound of max_p

alpha: increment, min(0.01,max_p/4)

beta: decrease factor, 0.9

4.4 Evaluation of HSTCP/gHSTCP with gARED

Table 6 shows throughput and fairness of simulation exper-
iments when there are 5 HSTCP/gHSTCP flows competing
with 5 TCP Reno flows, and gARED is used at the routers:

• Case 26: TCP Reno is used for S1 and HSTCP is used
for S2 with gARED deployed.

• Case 27: TCP Reno is used for S1 and HSTCP+SACK
is used for S2 with gARED deployed.

• Case 28: TCP Reno+SACK is used for S1 and
HSTCP+SACK is used for S2 with gARED deployed.

• Case 29: TCP Reno is used for S1 and gHSTCP is used
for S2 with gARED deployed.

• Case 30: TCP Reno is used for S1 and gHSTCP+SACK
is used for S2 with gARED deployed.

• Case 31: TCP Reno+SACK is used for S1 and
gHSTCP+SACK is used for S2 with gARED deployed.

Table 6 shows the utilization is improved under
gARED deployed. However, the fairness with HSTCP is
not good. Especially, as delay is increased. It is because
smaller packet drop rate is set by gARED for keeping the
target queue length. HSTCP increases its congestion win-
dow rapidly without having consideration for other compet-
ing TCP Reno flows. In contrast, gHSTCP based on RTT
detection not only can achieve approving throughput, but
also the better fairness can be obtained.

5. Evaluation with Web-Traffic

In previous sections, we evaluated the performance of
HSTCP/gHSTCP in the environments where it competes the
system resources with long-lived flows. A recent study [32]
shows that short-lived flows such as Web traffic is one of
main class applications in the Internet. In this section, we
assess the performance of HSTCP/gHSTCP when they co-
exist with Web traffic.

Topology used in simulation is shown in Fig. 9. The
delay of the bottleneck link is 25 ms. TailDrop is deployed
at routers R1 and R2. S i, Di are HighSpeed flow senders
and receivers, respectively. The access link bandwidth of
each sender/receiver is 1 Gbps. Access-link of WWW server
cluster and WWW client cluster are also 1 Gbps. In WWW
server cluster, there are 200 servers. Each www server ac-
cess link is 1 Gbps, its link delay is uniform [10,20] ms. In
WWW client cluster, there are 1000 clients with access link
bandwidth of uniformly distributed in [100,155] Mbps, and

Fig. 9 Topology with Web-traffic.

Fig. 10 Packet loss rate (bandwidth=1000 Mbps).

the delay is distributed in [20,50] ms.
We use PagePool/WebTraf, a Web traffic model of ns-

2, to generate synthetic Web traffic between the Web servers
and clients. Probability distributions for user/session at-
tributes are as follows [33]:

• Inter-page time: Pareto, mean=10 s, sharp=2
• Objects per page: Pareto, mean=3, sharp=1.5
• Inter-Object time: Pareto, mean=0.5 s, sharp=1.5
• Object size: Pareto, mean=12 KB, sharp=1.2

The packet loss rate at the router R1 is used as a performance
metric. In the simulations, the most Web traffic is alive in
50–800 s of the simulation time. The results are obtained in
this period.

There are 4 sets of simulation conducted:

• Case 32: The bottleneck link bandwidth is 1000 Mbps,
the router buffer size is 5000 packets.

• Case 33: The bottleneck link bandwidth is 1000 Mbps,
the router buffer size is 500 packets.

• Case 34: The bottleneck link bandwidth is 500 Mbps,
the router buffer size is 5000 packets.

• Case 35: The bottleneck link bandwidth is 500 Mbps,
the router buffer size is 500 packets.

In each case, one of two different protocols—HSTCP and
gHSTCP, is used for the high-speed flows and the number
of high-speed flows is set to 5, 10 and 20, respectively. The
results when the bottleneck link bandwidth is 1000 Mbps are
illustrated in Fig. 10. Figure 11 shows the results when the
bottleneck link bandwidth is 500 Mbps.

From the results we observe that as the router buffer
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Fig. 11 Packet loss rate (bandwidth=500 Mbps).

Fig. 12 Web responding time.

size is decreased, the packet loss rate increases. It is because
that there is no room enough to buffer the bursty coming
packets, especially when HSTCP is used. If the bottleneck
link bandwidth becomes small, the system has no sufficient
ability to forward the coming packets, this leads to a higher
packet loss rate.

However, we observe that the system has a lower
packet loss rate in any case when gHSTCP is used for high-
speed flows. These results reveal the merits of gHSTCP
again. gHSTCP adjusts the increase speed of the congestion
window according to the network conditions, and therefore
can avoid the buffer overflow occurring frequently.

Web responding time is also checked. Figure 12 shows
a CDF (Cumulative Distribution Function) graph of web re-
sponding time when the number of high speed flow is 10,
the bottleneck is 1000 Mbps and the router buffer size is
5000 packets. It is slightly improved under the circumstance
when gHSTCP is used. The loss rate is relatively small in
these experiments. As discussed in [8], the responding time
of web flows is not very sensitive to lower loss rate. Thus,
the difference of web responding time isn’t so conscious in
these experiments. However, associating the previous exper-
iments in which gHSTCP can provide better utilization and
fairness when competing against TCP flows with the exper-
iments here it does not increase the responding time of short
TCP flows yet, it can be concluded that gHSTCP is valid.

6. Conclusion

We have proposed a new approach for improving HSTCP
performance in terms of fairness and throughput. Our
proposal, gHSTCP, achieves this goal by introducing two
modes in the congestion avoidance phase: Reno mode and
HSTCP mode. When there is an increasing trend in RTT,
gHSTCP uses Reno mode; otherwise, it uses HSTCP mode.
In addition, to address problems with ARED in high-speed
long-delay networks, we also proposed a modified version
of ARED, called gARED, that adjusts maxp according to
the average queue length and the trend in variation. This
technique avoids the problem of determining an appropriate
lower bound for maxp. We showed through simulations that
our proposed algorithms outperform the original algorithms.
Future work will include further investigation of gHSTCP,
e.g., how to recover effectively from simultaneous packet
losses, refinement of the technique for making estimations
based on trends.
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