
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

高速TCPおよび並列TCP方式の実験ネットワークでの評価

張 宗升† 長谷川 剛† 村田 正幸†

† 大阪大学大学院情報科学研究科
E-mail: †{zhang,hasegawa,murata}@ist.osaka-u.ac.jp

あらまし 高速ネットワークにおいて TCPを用いてデータ転送を行うと、高速リンク帯域を使い切れないことが知ら

れている。この問題に対して、われわれは文献 [1] において gentle HighSpeed TCP (gHSTCP)を提案した。gHSTCP

はリンク帯域を有効に利用し、かつ TCP Renoとの公平性を大幅に改善できることをシミュレーションにより明らか

にした。そこで本稿では、実験ネットワークを用いた実証実験を行うことで、gHSTCPの実ネットワークでの有効性

を検証する。実験の結果、gHSTCPのアルゴリズムに問題点が存在することが明らかとなったため、本稿では改善手

法を提案する。また、他の高速 TCP方式および並列 TCP方式との性能の比較を行い、gHSTCPがスループットお

よび既存の TCP Renoとの公平性に関して、優れた性能を示すことを明らかにする。

キーワード 実装, gHSTCP, 利用率, 公平性

Implementation Experiments on HighSpeed and Parallel TCP

Zongsheng ZHANG†, Go HASEGAWA†, and Masayuki MURATA†

† Graduate School of Information Science and Technology, Osaka University
E-mail: †{zhang,hasegawa,murata}@ist.osaka-u.ac.jp

Abstract It is well-known that TCP Reno cannot provide satisfactory performance in high-speed long-delay net-

works. As a means addressing this problem, gentle HighSpeed TCP (gHSTCP) has been proposed in [1]. However,

its efffectiveness has only been demonstrated in simulation experiments. In the present paper, a refined gHSTCP

algorithm is proposed for application to real networks. The performance of the refined gHSTCP algorithm is then

assessed experimentally. The refined gHSTCP algorithm is based on the original algorithm, which uses two modes

(Reno mode and HSTCP mode) in the congestion avoidance phase and switches modes based on RTT increasing

trends. The refined gHSTCP algorithm compares two RTT thresholds and judges which mode will be used. The

experimental results demonstrate that gHSTCP can provide a better tradeoff in terms of utilization and fairness

against co-existing traditional TCP Reno connections.

Key words implementation, gentle HighSpeed TCP, utilization, fairness

1 Introduction

Transmission Control Protocol (TCP) [2] has been widely

used as a transport-layer protocol in the current Internet

from its inception. TCP has played a great role in the

advancement of the Internet. However, the infrastructures

of networks have been changing both with respect to end-

hosts and network links. End-hosts are becoming faster, and

network link bandwidths are becoming wider at an amaz-

ing rate. Moreover, an increasing number of new applica-

tions, such as data grids and storage area networks (SANs),

have begun to appear. These applications are placing new

demands on networks, especially in terms of transmission

speed. At present, networking infrastructure has the capa-

bility to transmit data quickly, and the problem is how TCP

uses it. Current TCP implementations, which are primarily

based on TCP Reno, cannot fully utilize Long Fat Networks

(LFNs) [3], which are high-speed long-delay networks. Essen-

tially, the characteristics of TCP Reno, i.e. the congestion

window size is halved when packet loss occurs and is in-

creased by one packet per Round Trip Time (RTT) when no

packet is dropped, limit its performance. In order to address

this problem, a number of improvements have been proposed

[1, 3–8].

One traditional method by which to improve TCP perfor-

mance on LFNs is to tune certain TCP parameters, e.g. us-

ing the Selective ACKnowledgement (SACK) option [4] and

tuning the TCP socket buffer size [5]. However, TCP cannot

achieve satisfactory throughput in LFNs because the TCP al-

gorithm itself is a limitation. Another solution is the use of

parallel TCP mechanism, which utilizes multiple TCP con-

nections concurrently to transmit a large amount of data.

Parallel TCP has been widely used to increase TCP perfor-

mance, primarily because of its easy implementation. For

— 1 —

example, GridFTP [6] supports parallel TCP connections to

transfer data. Fundamental to the use of parallel TCP is the

selection of the number of TCP connections. This number

affects both the aggregate throughput of parallel TCP and

the impact on other competing traffic that shares the same

links. Selecting the optimal number of parallel TCP connec-

tions in order to maximize the performance without affecting

the fairness is not an easy task.

In recent years, efforts to improve the TCP performance

in LFNs have focused on modifying the congestion control

mechanism of TCP itself. These efforts include HSTCP [3],

FAST TCP [7], XCP [8] and gHSTCP [1]. In particular,

HSTCP is a simple, representative example that uses the

Additive Increase and Multiplicative Decrease (AIMD) prin-

ciple of TCP Reno and so is easily deployed in the current

Internet. In addition, HSTCP is currently the only protocol

that is recommended by IETF as an Experimental RFC in

LFNs [3].

However, the fairness between these new TCP variants and

the traditional TCP Reno is quite an important issue when

we consider the migration paths of new TCP variants. It

is very likely that HSTCP connections between server hosts

and the many traditional TCP Reno connections for Web

access and e-mail transmissions share the same high-speed

backbone links. Note that this does not mean that HSTCP

connections and TCP Reno connections receive the same

throughput; however, the HSTCP connections should not

achieve high performance by sacrificing the performance of

the TCP Reno connections.

Based on our previous study [1], we have demonstrated

that the fairness is a weakness of HSTCP. That is, HSTCP

achieves high throughput, whereas the throughput of the

competing TCP Reno is decreased when HSTCP and TCP

Reno share the link bandwidth. In order to address this prob-

lem, we proposed the gHSTCP mechanism in [1]. gHSTCP,

which is based on HSTCP, uses two modes in the conges-

tion avoidance phase according to the increasing RTT trends.

The simulation results presented in a previous study [1] in-

dicate that, compared to HSTCP, gHSTCP provides better

throughput on LFNs and maintains higher fairness against

the traffic that passes through the same network paths.

However, we have investigated the characteristics of

gHSTCP only by simulation experiments. Simulation plays

a vital role in attempting to characterize a protocol, whereas

the simulation condition is relatively ideal compared to the

real network. Because the heterogeneity of the real network

ranges from individual links and network equipments to the

protocols that inter-operate over the links and the “mix”

of different applications in the Internet, the protocol behav-

ior in the simulation may be quite different from that in a

real network. Therefore, emulating a protocol in a test-bed

network is important with respect to its application to real

networks, because the emulation network is more similar to a

real network. In addition, the repetition of experiments un-

der controlled conditions can be easier than in a real network.

Thus, we herein present the evaluation results of gHSTCP

in the test-bed network.

The present paper makes the following three contributions:
• A refined gHSTCP algorithm that improves the be-

havior of gHSTCP in real networks is proposed.
• The performances of TCP Reno, HSTCP and

gHSTCP are evaluated experimentally in an emulating test-

bed network.
• The parallel TCP mechanism is evaluated as a pos-

Window Size

Time

TCP Reno

HSTCP
Bandwidth*Delay

Fig. 1: Congestion Window (TCP Reno and HSTCP)

sible candidate for the high-speed transport mechanism in

LFNs.

The remainder of this paper is organized as follows.

In Section 2, we provide a short description of HSTCP

and gHSTCP. In Section 3, a refined gHSTCP algo-

rithm is proposed. The experimental results for TCP

Reno/HSTCP/gHSTCP and parallel TCP implementation

in the test-bed network are presented in Section 4. Sec-

tion 5 summarizes the conclusions of the present study and

discusses future areas for investigation.

2 HSTCP and gHSTCP

In this section, we briefly describe the algorithms of

HSTCP and gHSTCP. (For more detailed descriptions,

please refer to [1, 3].)

2. 1 HSTCP

In order to overcome the problems associated with using

TCP Reno in LFNs, HSTCP was proposed in [3]. Fig. 1

shows a rough sketch of the changes in the congestion win-

dow sizes of TCP Reno and HSTCP. The HSTCP algorithm

uses the AIMD principle of TCP Reno but is more aggressive

with respect to increases and more conservative with respect

to decreases in the congestion avoidance phase.

HSTCP addresses this behavior by altering the parameters

of the AIMD algorithm for the congestion window adjust-

ment, making these parameters functions of the congestion

window size, rather than constants, as in the case of TCP

Reno. In response to a single acknowledgment, HSTCP in-

creases the number of segments in its congestion window w

as:

w←w +
a(w)

w

In response to a congestion event, HSTCP decreases the

number of segments in its congestion window as:

w←(1 − b(w))×w

Here, a(w) is a monotonically increasing function of w,

whereas b(w) is a monotonically decreasing function of w.

Based on this characteristic, TCP connections using the

HSTCP mechanism can maintain large congestion windows

in LFNs, as shown in Fig. 1 so that the network link band-

width can be better utilized.

2. 2 gHSTCP

HSTCP increases the congestion window size based solely

on the current congestion window size. This may lead to

bursty packet losses, because the congestion window size con-

tinues to be rapidly increased even when packets are queued

at the router buffer, that is, when the network becomes con-

gested. In addition, differences in speed gains among TCP

Reno and HSTCP result in unfairness when these protocols

co-exist in the network. In order to alleviate this problem,

— 2 —

Window Size

Time

HSTCP
gHSTCP

Reno mode

HSTCP mode

Bandwidth*Delay

Fig. 2: Congestion Window (HSTCP and gHSTCP)

we considered changing the behavior of HSTCP in [1]. Two

modes, the HSTCP mode and the Reno mode, are used in the

congestion avoidance phase. Mode switching is based on the

trend of changes in RTT values. Fig. 2 shows the concept of

the gHSTCP mechanism. The HSTCP mode is used before

the link bandwidth is fully utilized, and the Reno mode is

used if the link bandwidth is fully utilized. Therefore, TCP

flows using gHSTCP can catch the link bandwidth as quickly

as the original HSTCP, while providing better fairness with

respect to competing TCP Reno flows.

For this purpose, the following algorithm is employed. De-

note the departure time and the RTT value of the i-th trans-

mitted packet as di and ti, respectively, the correlation be-

tween di and ti is tested statistically. If a positive correlation

is recognized, that is, if an increasing trend in the observed

RTT values is present, then the sender determines that con-

gestion is occurring. The sender should therefore slow down

the increase in the sending rate in order to maintain fair-

ness against TCP Reno connections. The process during

this period is referred to as Reno mode, in which the sender

increases its congestion window in a manner identical to that

in the standard TCP Reno. This will maintain fairness be-

tween TCP Reno and gHSTCP connections. On the other

hand, if there is a non-positive correlation between di and

ti, the network is in an under-utilized state and the sender

should increase the congestion window rapidly in order to

utilize the unused bandwidth. The process during this pe-

riod is called the HSTCP mode. The sender increases the

congestion window size in the same manner as in HSTCP.

The algorithm is summarized as follows. When a new ac-

knowledgment is received, gHSTCP increases its congestion

window in segments as:

w←w +
a(w)

w

where a(w) is given by:

a(w) =

{
2w2·b(w)·p(w)

2 − b(w)
in HSTCP mode

1 in Reno mode

We have shown that gHSTCP based on this mechanism can

provide better performance and fairness by simulations [1].

3 The Refined gHSTCP Algorithm

3. 1 Problem Description
In this subsection we present experimental results to

demonstrate the problems with the original gHSTCP algo-

rithm and then propose a refined algorithm.

We first conduct an experiment to check the behavior of

gHSTCP in our test-bed network. The topology of the test-

bed network, which is also used in following experiments,

is shown in Fig. 3. In this experiment, there is only one

em0
172.16.100.121

em1
172.16.200.121

172.16.100.210

IRC

IPC

172.16.100.10

172.16.200.210

IRS

IPS

172.16.200.10

PCI 3COM

Flow-1

Flow-2

Fig. 3: Topology

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

HSTCP

Reno

C
W

N
D

 (
pa

ck
et

)

M
od

e

time [sec] (BW=200M, Delay=22ms, Queue=200K)

BDP
CWND

Mode

Fig. 4: Congestion Window and Mode (Original Algorithm)

TCP flow from IPS to IPC to transfer unlimited data. The

gHSTCP mechanism introduced in the previous section is

used by the TCP connection. The run-time of the experi-

ment is 90 s. The packet size is 1460 bytes. Dummynet [9] is

used to emulate the bottleneck link between the sender and

receiver hosts, which defines the link bandwidth, the delay

and the buffer size. The setting of Dummynet in this ex-

periment is such that the bandwidth is 200 Mbps and delay

is 22 ms. Thus, the bandwidth-delay product (BDP) of the

network is 770 packets. A TailDrop mechanism is deployed

at the bottleneck link buffer, and the buffer size is equal to

137 packets.

The experimental results of the change of the congestion

window size as a function of time are shown in Fig. 4, where

the mode-switching and BDP are also plotted. The mode of

gHSTCP does not change as expected. When the congestion

window size is less than the BDP of the network path be-

tween the sender and receiver hosts, HSTCP mode is used,

otherwise Reno mode is used. Its mode-switching oscillates

severely in the experimental result. The shortcomings of

this oscillation are as follows. First, gHSTCP cannot fill the

link bandwidth quickly when the congestion window size is

less than the BDP. Second, this oscillating action induces

unfairness against the competing TCP Reno flow when the

congestion window size is larger than the BDP. Third, the

oscillation will lead to bursty packet losses if gHSTCP is in

HSTCP mode just before the buffer overflows. Note that

bursty packet losses cause retransmission timeout in TCP.

The reason for the mode oscillation is that the metric by

which to determine the mode is based only on the increasing

trend of the RTT. In a real network, RTT does not increase

monotonously in a local period, even if the congestion win-

dow becomes large. In Fig. 5, the average RTT values per

congestion window are plotted so that the RTT trend be-

havior can be clarified further. The enlarged sub-figure in

Fig. 5 shows the period of 24 – 29 s. Together with Fig. 4,

this figure shows that the RTT fluctuates near the minimum

RTT before the congestion window size reaches the BDP.

When the congestion window size is larger than the BDP,

on the whole, the RTT increases as the congestion window

— 3 —

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 R
T

T
 p

er
 C

W
N

D
 (

m
s)

time [sec] (BW=200M, Delay=22ms, Queue=200K)

RTT

 46

 47

 48

 49

 50

 51

 24 25 26 27 28 29

Fig. 5: RTT Change

increases. However, the RTT does not always remain in the

increasing state. The change of the RTT is affected by sev-

eral factors, such as the performance of end host, the process

schedule of the operating system and interaction with other

flows.
3. 2 Refined Algorithm
In order to reduce the above-mentioned unnecessary mode-

switching behavior, a refined algorithm for gHSTCP is re-

quired. The basic idea of the modification is that the RTT is

larger than the propagation delay when the link bandwidth

is fully utilized. That is, the RTT is larger than a pre-defined

threshold, Reno mode should be used even when the fluctua-

tion of the RTT is large and there is a short-term decreasing

trend. In particular, Reno mode is expected to be used at the

point before the packet drop occurs, so that large amounts

of simultaneously dropped packets can be avoided when the

buffer overflow occurs. On the other hand, HSTCP mode

is used if the RTT oscillates around the minimum RTT and

the RTT is not larger than a pre-defined threshold. Based on

this concept, the algorithm of gHSTCP is refined as follows:

Notation:

RTT_min: minimum of the average RTT in

a sample cycle between two loss events.

RTT_std: standard deviation of RTT in a

sample cycle. RTT_std is used as a metric

for evaluating the dynamic property of RTT.

RTT_min+2*RTT_std, RTT_min+4*RTT_std: two

thresholds that indicate the boundaries

in which gHSTCP is in effect.

If RTT < RTT_min + 2*RTT_std

HSTCP mode is used.

If RTT >= RTT_min + 2*RTT_std and

RTT < RTT_min + 4*RTT_std

(this period is considered as an

incredible interval)

the mode is decided by the RTT trend.

If RTT >= RTT_min + 4*RTT_std

Reno mode is used.

Next, we check the refined gHSTCP algorithm experimen-

tally. The experimental condition and the environment are

identical to those of the previous experiment. The exper-

imental result for the congestion window is illustrated in

Fig. 6. The TCP connection is in HSTCP mode when the

congestion window size is less than the BDP. If the conges-

tion window size is larger than the BDP, Reno mode is used.

When the congestion window is around the BDP, the mode is

changed according to the RTT trend. This mode-switching

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

HSTCP

Reno

C
W

N
D

 (
pa

ck
et

)

M
od

e

time [sec] (BW=200M, Delay=22ms, Queue=200K)

BDP
CWND

Mode

Fig. 6: Congestion Window and Mode (Refined Algorithm)

behavior is as expected based on the refined algorithm. In

the following experiments, we use the refined algorithm for

gHSTCP.

4 Performance Comparison

4. 1 Test-bed Network Setup

In this section, we use the test-bed network to assess the

behavior of high-speed TCP and parallel TCP variants. All

of the following experiments use Dummynet as the infras-

tructure, which is included in FreeBSD 5.2.1. In the follow-

ing experiments, the dumbbell topology shown in Fig. 3 is

used. In each experiment, there is one TCP flow from IPS

to IPC, using TCP Reno, HSTCP, gHSTCP, and parallel

TCP, respectively. There are two additional TCP Reno con-

nections between IRS and IRC. For convenience, the TCP

flow from IPS to IPC is referred to as Flow-1, and the TCP

flow from IRS to IRC is referred to as Flow-2. The access

link bandwidth of Flow-1 is 1 Gbps, and the access link band-

width of Flow-2 is 100 Mbps. The link between two Ethernet

switches (labeled PCI and 3Com in Fig. 3) is referred to as

the bottleneck link. The experiment run-time is 300 s.

In order that the socket buffer size does not restrict the

throughput of Flow-1, the socket buffer size is set to a large

value if TCP Reno/gHSTCP/HSTCP is used. When parallel

TCP is used, the system default value of 64 Kbytes is used

because the main factor of parallel TCP is the number of

parallel TCP connections. In our experiments, the RTT of

each connection is approximately 45 ms. In this situation,

the largest throughput that Flow-2 can achieve is approxi-

mately 12 Mbps, if its socket buffer size is 64 Kbytes. In this

condition, the two connections in Flow-2 using socket buffer

size of 64 Kbytes cannot fully utilize its access link. How-

ever, the access link can be fully utilized if the socket buffer

size of Flow-2 is set to 512 Kbytes. Therefore, we present the

experimental results when the socket buffer size for Flow-2

connections are set to 64 Kbytes and 512 Kbytes.

There are two scenarios designed for experiments accord-

ing to differences in the Dummynet settings:
• Scenario-1: Delay = 23 ms, Bandwidth = 100 Mbps,

and Buffer-size = 200 Kbytes.
• Scenario-2: Delay = 23 ms, Bandwidth = 200 Mbps,

and Buffer-size = 500 Kbytes.

Each scenario contains two cases, i.e. the socket buffer size of

Flow-2 is set to 64 Kbytes and 512 Kbytes. In Scenario-1, the

access link bandwidth of Flow-2 is equal to the bottleneck

link bandwidth. In Scenario-2, the access link bandwidth of

Flow-2 is less than the bottleneck link bandwidth. Thus, the

position of the bottleneck link of Flow-2 varies for different

— 4 —

Table 1: Fair throughput (Ci) (Mbps)

Socket buffer size of Flow-2 64 KB 512 KB

Scenario-1 Flow-1 76 33
BW=100 Mbps Flow-2 12, 12 33, 33

Scenario-2 Flow-1 176 100
BW=200 Mbps Flow-2 12, 12 50, 50

experiments.

4. 2 Metrics

Throughput, link utilization and fairness are used as per-

formance evaluation metrics. The throughput is the average

rate of data successfully received by a TCP receiver. The link

utilization is defined as the ratio of the aggregate through-

put over the bottleneck link bandwidth. The fairness (Jain’s

fairness index) is defined as follows:

FairnessIndex =
(
∑n

i=1
xi)

2

n
∑n

i=1
x2

i

Here, n is the total number of connection and xi is the nor-

malized throughput for flow i, defined as xi = Mi/Ci, where

Mi is the measured throughput and Ci is the fair throughput

determined by max-min optimality. Table 1 shows the fair

throughput determined by max-min optimality in our ex-

periments. By this metric, we evaluate the fairness between

gHSTCP/HSTCP/parallel TCP variants and TCP Reno.

4. 3 Experiments of Scenario-1

In this scenario, the following four experiments are per-

formed, where the buffer size of Flow-2 is set to 64 Kbytes

or 512 Kbytes:
• Exp-1: Flow-1 uses TCP Reno.
• Exp-2: Flow-1 uses gHSTCP.
• Exp-3: Flow-1 uses HSTCP.
• Exp-4: Flow-1 uses the parallel TCP mechanism.

Note that when the parallel TCP mechanism is used, we use

eight TCP connections in order to fully utilize the bottle-

neck link due to the default buffer size of 64 Kbytes. The

results of link utilization, fairness index and throughput are

illustrated in Fig. 7. Note that the throughput of Flow-2

represents the total throughput of the two TCP connections

in Flow-2.

Fig. 7(a) shows that the link utilization of gHSTCP is

slightly less than the largest link utilization (for parallel

TCP). However, the link utilization of gHSTCP is better

than that for the case in which TCP Reno or HSTCP is

used for Flow-1. The utilization when HSTCP is used by

Flow-1 is approximately the same as that when TCP Reno is

used by Flow-1, because packet losses occur frequently when

HSTCP is used. Fig. 7(b) shows that the fairness is better in

all cases when the buffer size of Flow-2 is set to 64 Kbytes.

This is because the main limitation on the throughput of

Flow-2 is its socket buffer size. In contrast, when the buffer

size of Flow-2 is set to 512 Kbytes, the fairness is determined

by the algorithms of TCP and the competing flows. When

parallel TCP is used with this condition, the fairness is very

poor, although the best utilization can be achieved. The fair-

ness of parallel TCP is determined by the number of parallel

TCP connections. This factor also affects its throughput.

Fig. 7(c) intuitively shows the performance and interaction

of competing flows through the throughput of Flow-1 and

Flow-2 in each case. The throughput of Flow-2 is clearly in-

fluenced by the competing TCP flows when its socket buffer

size is set to 512 Kbytes. This means that the fairness must

be taken into consideration when a new mechanism is de-

ployed in networks.

 50

 60

 70

 80

 90

 100

Exp-4Exp-3Exp-2Exp-1Exp-4Exp-3Exp-2Exp-1

U
til

iz
at

io
n

(%
)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)
(a) Utilization

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Exp-4Exp-3Exp-2Exp-1Exp-4Exp-3Exp-2Exp-1
F

ai
rn

es
s

In
de

x
(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(b) Fairness

 0

 20

 40

 60

 80

 100

Exp-4Exp-3Exp-2Exp-1Exp-4Exp-3Exp-2Exp-1

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

Flow-1
Flow-2

(c) Throughput

Fig. 7: Scenario-1 (Bandwidth=100 Mbps)

To summarize, gHSTCP offers the best tradeoff in terms

of utilization and fairness due to its graceful behavior. Be-

fore the link bandwidth of the bottleneck is fully utilized,

gHSTCP increases its congestion window size as rapidly

as HSTCP. Therefore, it can achieve higher utilization.

When the link bandwidth of the bottleneck is fully utilized,

gHSTCP increases its congestion window size in the man-

ner of TCP Reno. Therefore, gHSTCP can maintain bet-

ter fairness while sharing the bottleneck bandwidth with the

competing TCP Reno.
4. 4 Experiments of Scenario-2
In Scenario-2, four experiments are conducted, in which

similar to Scenario-1, the buffer size of Flow-2 is set to ei-

ther 64 Kbytes or 512 Kbytes, respectively. The difference

between Scenario-1 and Scenario-2 is that the bandwidth of

the bottleneck link is set to 200 Mbps and the buffer size of

the router is 500 Kbytes.
• Exp-5: TCP Reno is used by Flow-1.
• Exp-6: gHSTCP is used by Flow-1.
• Exp-7: HSTCP is used by Flow-1.
• Exp-8: Parallel TCP mechanism is used by Flow-1.

As discussed in Scenario-1, when the parallel TCP mecha-

nism is used, we use 16 TCP connections in order to fully

utilize the bottleneck link due to the default buffer size of

— 5 —

64 Kbytes. The results of utilization, fairness index and

throughput are shown in Fig. 8.

On the whole, the utilization and fairness trends are the

same as those demonstrated in Scenario-1. Parallel TCP

achieves the best utilization, but the worst fairness. gHSTCP

offers higher utilization and better fairness than the other

protocols. That is, gHSTCP is the best tradeoff in terms

of link utilization and fairness. On the other hand, differ-

ences between the two scenarios remain because the link

bandwidth of the bottleneck is changed from 100 Mbps to

200 Mbps. First, when TCP Reno is used, the utilization

decreases as the link bandwidth increases. This illustrates

the well-known problem of TCP Reno in LFNs. TCP Reno

cannot fully utilize the network, due to the characteristics

of conservative increase and dramatic decrease. Second, the

access link of Flow-2 is equal to the bottleneck link band-

width in Scenario-1 (Fig. 7). In this case, the access link

bandwidth is not the bottleneck for Flow-2. Thus, any in-

crease in cross traffic will affect the throughput of Flow-2

when the buffer size of Flow-2 is set to 512 Kbytes. However,

Fig. 7(c) shows that gHSTCP steals resources from Flow-2,

as compared with HSTCP and parallel TCP. In Scenario-2,

the bottleneck link bandwidth is larger than the access link

bandwidth of Flow-2. Therefore, redundant link bandwidth

exists that can be used by other flows. As illustrated in

Fig. 8(c), gHSTCP can use the redundant link bandwidth

very well when the buffer size of Flow-2 is set to 512 Kbytes.

In this situation, HSTCP pillages vast resources from TCP

Reno because of the aggressive increase of its congestion win-

dow size.

The results of both Scenario-1 and Scenario-2 show that

parallel TCP outperforms gHSTCP in terms of link utiliza-

tion. However, this advantage is at the expense of fairness

with respect to Flow-2. There exists an important param-

eter when parallel TCP is used, i.e. the number of parallel

TCP connections, and it is quite difficult to choose a suitable

value. That is, the bottleneck link bandwidth cannot be uti-

lized well if the number of parallel TCP connections is small.

In contrast, if the number of parallel TCP connections is too

large, severe unfairness results with respect to the competing

flows. Due to limited space, the results of varying number of

parallel TCP connections are not presented here.

5 Conclusion

In this paper, we performed an experimental study to as-

sess the performance of high-speed TCP and parallel TCP

variants in terms of utilization, throughput and fairness.

Based on these experiments, a refined gHSTCP algorithm

was proposed for its application in a real network. The re-

sults indicate that gHSTCP can offer a better tradeoff be-

tween utilization and fairness on LFNs.

In the present paper, the performance of gHSTCP is eval-

uated only when the TailDrop mechanism is deployed at

routers. Active Queue Management (AQM), such as Ran-

dom Early Detection (RED) [10], is an important queue man-

agement mechanism. Furthermore, it is necessary to evalu-

ate gHSTCP with AQM. In addition, gHSTCP must also

be evaluated in both a higher speed network (e.g. the link

bandwidth of the bottleneck is 1 Gbps) and the Internet.

References

[1] Z. Zhang, G. Hasegawa, and M. Murata, “Perfor-

mance analysis and improvement of HighSpeed TCP with

TailDrop/RED routers,” Proc. 12th IEEE International

 50

 60

 70

 80

 90

 100

Exp-8Exp-7Exp-6Exp-5Exp-8Exp-7Exp-6Exp-5

U
til

iz
at

io
n

(%
)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)
(a) Utilization

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Exp-8Exp-7Exp-6Exp-5Exp-8Exp-7Exp-6Exp-5
F

ai
rn

es
s

In
de

x
(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

(b) Fairness

 0

 50

 100

 150

 200

Exp-8Exp-7Exp-6Exp-5Exp-8Exp-7Exp-6Exp-5

T
hr

ou
gh

pu
t (

M
bp

s)

(Buffer size of Flow-2=64K) (Buffer size of Flow-2=512K)

Flow-1
Flow-2

(c) Throughput

Fig. 8: Scenario-2 (Bandwidth=200 Mbps)

Symposium on Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems, October 2004.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP congestion

control,” IETF RFC 2581, April 1999.

[3] S. Floyd, “HighSpeed TCP for large congestion windows,”

IETF RFC 3649, December 2003.

[4] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP

selective acknowledgement options,” IETF RFC 2018, Oc-

tober 1996.

[5] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP

buffer tuning,” Proc. ACM SIGCOMM, August 1998.

[6] W. Allcock, “GridFTP: Protocol extensions to FTP for the

grid,” April 2003. Available as: http://www.globus.org/

research/papers/GFD-R.0201.pdf.

[7] C. Jin, D.X. Wei, and S.H. Low, “FAST TCP for high-speed

long-distance networks,” Internet Draft: draft-jwl-tcp-fast-

01.txt, June 2003.

[8] D. Katabi, M. Handley, and C.E. Rohrs:, “Congestion con-

trol for high bandwidth-delay product networks,” Proc.

SIGCOMM 2002, August 2002.

[9] L. Rizzo, “IP dummynet.” Available as: http://info.iet.

unipi.it/∼luigi/ip dummynet/.

[10] S. Floyd and V. Jacobson, “Random early detection gate-

ways for congestion avoidance,” IEEE/ACM Transactions

on Networking, vol.1, no.4, pp.397–413, August 1993.

— 6 —

