On the integration of IP routing and wavelength routing in IP over WDM networks

Yuki Koizumi, Shin'ichi Arakawa and Masayuki Murata

Osaka University, Japan

ykoizumi@ist.osaka-u.ac.jp

IP over WDM networks

- IP packets are forwarded on lightpaths
 - This doesn't require any electronic packet processing at the intermediate nodes
- Construct a logical topology in the WDM layer and IP packets are forwarded on that topology
- How to construct a logical topology?
 - Statically, depending on measured traffic statistics
 - Dynamically, depending on a network status

Disaccord of routing of IP and WDM

- IP networks and WDM networks have their own routing mechanisms
 - Lightpaths configured in the WDM network may not be fully utilized by the IP network
 - Wavelength resources are not used efficiently
- We need the integrated routing method to utilize wavelength resources more efficiently

Research objective

- Propose the integrated routing method in IP over WDM networks
 - □ Provide efficient wavelength resource utilization
 - IP packets surely use lightpaths configured in the WDM layer
 - □ Provide flexible adaptation against traffic changes
 - Construct logical topologies dynamically depending on the network status

Related works

They assumed IP/MPLS as IP networks

- □ They dealt with LSP (Label Switching Path) setting requests that require specific bandwidth as IP traffic
- □ Their objective is to improve blocking probability
- IP/MPLS over WDM is redundant
 - □ It requires to introduce MPLS-capable linecards into routers
 - Resource optimization becomes difficult as the number of layers increase
- It is important to evaluate performance by throughput or delay in IP (directly) over WDM networks
- 1. J. Li, G. Mohan, E. C. Tien, and K. C. Chua, "Dynamic routing with inaccurate link state information in integrated IP over WDM networks," *Computer Networks* **46**, pp. 829–851, Dec. 2004.
- 5. M. Kodialam and T. V. Lakshman, "Integrated dynamic IP and wavelength routing in IP over WDM networks," in *Proceeding of IEEE INFOCOM*, pp. 358–366, Apr. 2001.

November 7, 2005

Network model and virtual-link

Assumed network

- $\hfill\square$ Node: IP router and OXC
- □ Link: Optical fiber
- Configure one lightpath
 between each adjacency node
 - To ensure end-to-end reachability

Virtual-link

- "Virtual" links
- Configure in the logical topology when calculating routes
- Integrate routing by using virtual-links

Integrated routing with virtual-link

selected as Activate the virtual-link

1

Virtual-link

- Algorithm
 - 1. Set virtual-links
 - Assign cost values to the virtual-links
 - 3. Search a minimum cost route from logical topology including virtual-links
 - 4. Activate virtual-links if the resulting route contains the virtual-links
- Calculate necessary lightpaths at the same

Assign as the real logical link Virtual-link N_4 N_4 C_2 N_4 C_2 N_1 N_2 IP layer

Assig

Logical topology including virtual-links

Selected lightpaths are surely utilized for forwarding IP packets because those are selected by using IP routing method

Cost function of virtual-links

Main objective

 $\hfill\square$ To reduce the load of nodes

Use the load of the destination node of the virtual-link

Prevent IP traffic from flowing into over-loaded nodes
 Balance the load of nodes

Cost function

$$C_{ij} = \alpha \cdot (v_j)^2 + \beta$$

$$\Box C_{ij}: \text{ Cost value of the virtual-link from node } i \text{ to } j$$

$$\Box v_j: \text{ Load of node } j$$

$$\blacksquare [0, 1]$$

Simulation model (1/2)

- Topology
 - □ NSFNET (14 nodes, 21 links)
 - □ European Optical Network (19 nodes, 38 links)

Parameters

- □ Number of wavelength: 8
- □ Processing capacity of routers: 10 Gbps
- Bandwidth per a wavelength channel:
 10 Gbps

Traffic

- \Box Flows arrive according to Poisson process with rate d_{ij}
 - *d_{ij}*: traffic demand from node *i* to node *j*
- □ Flow length is exponential distributed with mean value 75 Mbytes

EON

NSFNET

Simulation model (2/2)

- Traffic demand matrix D={d_{ij}}
 Randomly generated traffic demand matrix
 Actual traffic demand matrix in Ref. [11]
- Static topology design methods
 SHLDA [9]
 MLDA [11]

Flow-level simulation method based on fluid flow model

- 9. J. Katou, S. Arakawa, and M. Murata, "A design method for logical topologies with stable packet routing in IP over WDM networks," *IEICE Transactions on Communications* **E86-B**, pp. 2350–2357, Aug. 2003.
- 11. R. Ramaswami and K. N. Sivarajan, "Design of logical topologies for wavelength–routed optical networks," *IEEE Journal on Selected Areas in Communications* **14**, pp. 840–851, June 1996.

November 7, 2005

Average end-to-end delay (matrix in [11])

Traffic demand matrix in Ref. [11] has large variation

- The degradation of our proposal is also much less than that of SHLDA/MLDA when traffic changes
- There is no difference between the result of our method and SHLDA/MLDA when traffic doesn't change
- 11. R. Ramaswami and K. N. Sivarajan, "Design of logical topologies for wavelength–routed optical networks," *IEEE Journal on Selected Areas in Communications* **14**, pp. 840–851, June 1996.

November 7, 2005

APOC 2005

Load of nodes

- NSFNET topology
- With traffic change
- Total traffic amount of network
 - □ Proposal: 45 Gbps
 - □ SHLDA: 33 Gbps
 - □ MLDA: 30 Gbps
- Evaluate at the saturation points
- Proposal method balances the load around 0.6
- SHLDA/MLDA don't balance the load
 - □ The node 12 is saturated while other nodes are under-utilized

Conclusions and future works

Conclusion

- We proposed the integrated routing method in IP over WDM networks
- Our method showed almost same end-to-end delay performance as statically designed topology without traffic changes
- □ Our method was robust against traffic changes

Future work

- $\hfill\square$ We will solve this problem
 - Little difference between our proposal and SHLDA/MLDA was observed when traffic matrices varied greatly was used