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Abstract— In this paper, we propose TCP Symbiosis, which has
a robust, self-adaptive and scalable congestion control mechanism
for TCP. Our method is quite different from existing approaches.
We change the window size of a TCP connection in response
to information of the physical and available bandwidths of
the end-to-end network path. The bandwidth information is
obtained by an inline network measurement technique we have
previously developed. Using the bandwidth information we can
resolve the inherent problems in existing AIMD/MIMD-based
algorithms such as periodic packet loss and unfairness caused
by the difference in RTT. We borrow algorithms from biophysics
to update the window size: the logistic growth model and the
Lotka-Volterra competition model. This is because these models
describe changes in the population size of a species that depends
on the living environment. The population of a species can
be viewed as the window size of a TCP connection and the
living environment as the bandwidth of the bottleneck link. The
greatest advantage of using these models is that we can refer to
previous discussions and results for various characteristics of the
mathematical models, including scalability, convergence, fairness
and stability in these models. Through mathematical analysis
and extensive simulation experiments, we compare the proposed
mechanism with traditional TCP Reno, HighSpeed TCP, Scalable
TCP and FAST TCP, and exhibit its effectiveness in terms of
scalability to the network bandwidth and delay, convergence time,
fairness among competing connections, and stability.

I. Introduction
With increases in the heterogeneity and the complexity of the
Internet, many problems have emerged in TCP Reno’s con-
gestion control mechanism ([1-3] for example). The primary
reasons for these problems are that the congestion signals are
only indicated by packet loss and that TCP Reno uses fixed
Additive-Increase-Multiplicative-Decrease (AIMD) parameter
values to increase and decrease window size, whereas those
parameters should be changed according to the network condi-
tions. Although many solutions have been proposed for there
problems [4-6], most of them inherit the fundamental conges-
tion control mechanism of TCP Reno: the AIMD mechanism
triggered by the detection of packet losses in the network.
The congestion control mechanism improves the throughput by
adjusting the increasing and decreasing parameters statically
and/or dynamically. However, most previous studies have
focused on changing the AIMD parameters to accommodate
particular network environments. Since these methods employ
ad hoc modifications for a certain network situation, their
performance when applied to other network environments is
unclear.

Because window size indicates the maximum amount of

packets that TCP can transmit for one Round Trip Time
(RTT), an adequate window size for a TCP connection is
equal to the product of the available bandwidth and the round-
trip propagation delay between the sender and receiver hosts.
TCP Reno measures the RTTs of the network path between
sender and receiver hosts by checking the departure times of
the data packets and the arrival times of the corresponding
ACK packets. However, TCP Reno does not have an effective
mechanism to recognize the available bandwidth. This explains
the fundamental problem: TCP Reno cannot converge its win-
dow size to an adequate value when the network environment
varies. In a sense, traditional TCP Reno can be considered
to be a tool that measures available bandwidth because of
its ability to adjust the congestion window size to achieve
a transmission rate appropriate to the available bandwidth.
However, it is ineffective because it only increases the window
size until packet loss occurs. In other words, TCP Reno
induces packet loss in order to obtain information about the
available bandwidth(-delay product) of the network. That is,
even when the congestion control mechanism of TCP works
perfectly, the TCP sender experiences packet losses in the
network at some intervals. Since all modified versions of
TCP using the AIMD policy, including the generalized AIMD
algorithm [7] and its variants, contain this essential problem,
they cannot avoid packet losses in the network even if they
behave ideally.

There are some TCP variants, including TCP Vegas [8]
and FAST TCP [6], that utilize the RTT values for the
congestion indication, based on the fact that the RTTs for a
TCP connection usually increase before packet losses occur
when the network is congested. However, such RTT-based
approaches cannot be applied to high-speed networks due to
an inherent problem, i.e., changes in RTT values of the end-to-
end network path becomes invisible as the network bandwidth
becomes large. We believe, therefore, that if a TCP sender
recognizes the bandwidth information of the network path
quickly and adequately, it can create a better mechanism for
congestion control in TCP.

Although numerous measurement tools that measure the
physical and available bandwidths of network paths have been
proposed in the literature [9-14], we cannot directly employ
these existing methods in TCP mechanisms, primarily because
these methods utilize a lot of test probe packets. Moreover,
these methods also require too much time to obtain one
measurement result. Accordingly, we have proposed a method
called Inline measurement TCP (ImTCP) that avoids these



problems in [15, 16]. It does not inject extra traffic into the
network, and instead it estimates the physical/available band-
widths of the network path from data/ACK packets transmitted
by an active TCP connection in an inline fashion. Furthermore,
since the ImTCP sender obtains bandwidth information every
1–4 RTTs, it is well able to follow the traffic fluctuation
of the underlying IP network. We believe that, by directly
measuring bandwidth information, the congestion control in
TCP becomes truly scalable to the bandwidth delay product
of the network. AIMD- and MIMD-based mechanisms such as
HighSpeed TCP (HSTCP) [4] and Scalable TCP (STCP) [5]
are more scalable than TCP Reno, but they have serious
problems in parameter tuning. Since no knowledge of the
bandwidth information is obtained, the control parameters are
configured based on implicit/explicit assumptions about the
network environment. For example, in [4], the recommended
control parameters are to fill the network link with 10 Gbps
bandwidth, 100 msec RTT, and a packet loss rate of 10−7.
One of the advantages of the proposed mechanism is that it
is not necessary to configure the control parameters according
to the network environment. In addition, because ImTCP is
implemented at the bottom of the TCP layer, this measure-
ment mechanism can be included in various types of TCP
congestion control mechanisms.

In this work, we propose a new congestion control mech-
anism for TCP, which we call TCP Symbiosis, that utilizes
the information of physical and available bandwidths obtained
from an inline measurement technique. The proposed mecha-
nism does not use ad hoc algorithms such as TCP Vegas and
instead employs existing algorithms, which enable us to math-
ematically discuss and guarantee their behavior even though
posing a simplification of the target system. More importantly,
it becomes possible to give a reasonable explanation for our
control parameter selections within TCP, instead of conducting
intensive computer simulations and/or choosing parameters in
an ad hoc fashion. We have designed a window size control
algorithm whose purpose is to quickly adjust the window size
to an adequate value based on bandwidth information in order
to fairly distribute bandwidth among competing connections.

For this, we borrowed algorithms from the logistic growth
model and the Lotka-Volterra competition model [17], both
of which are used in biophysics to describe changes in the
population of species. The biophysics models were chosen
based on their intrinsic stability and robustness, which is
achieved even when they behave without any interaction in
an autonomous and distributed fashion. This is the case for
the congestion control of TCP: each TCP connection behaves
independently, but still we want to improve the bandwidth uti-
lization and the throughput of the connection. When applying
the logistic growth and Lotka-Volterra competition models to
the congestion control algorithm of our TCP, the population of
a species can be viewed as the window size of a TCP connec-
tion, the carrying capacity of the environment as the physical
bandwidth, and interspecific competition among species as
bandwidth sharing among competing TCP connections.

In the present paper, an analytic investigation of the pro-
posed algorithm is performed based on previously reported
discussions and results regarding various biophysical char-
acteristics of the mathematical models, including scalability,
convergence, fairness and stability. Endowing TCP with these

characteristics is the primary objective of the present study.
Furthermore, a performance analysis for the situation where
the traditional TCP Reno and TCP Symbiosys share the
bottleneck is present to show the fairness property of the
proposed mechanism against the existing TCP version. We also
present extensive simulation results in order to evaluate the
proposed mechanism and show that, compared with traditional
TCP Reno and other TCP variants for high-speed networks, the
proposed mechanism utilizes network bandwidth effectively,
quickly, and fairly.

II. Lotka-Volterra Model and Application to
TCP Congestion Control Mechanisms
In this paper, we intend to build a robust self-adaptive conges-
tion control mechanism for TCP. In this sense, the proposed
method is quite different from existing approaches. The con-
cept of the window updating algorithm of the proposed method
is borrowed from a biological system, which is often pointed
out to be robust [18], because in many biological systems, the
actions of the entity (e.g., living organism) are not determined
based on the results of direct interactions among entities, but
rather on information obtained through the environment, which
is a fundamental necessary condition for the system to be
robust. The concept is often called “stigmergy” in the literature
(see, e.g., [19]). With respect to the current case, the window
increase/decrease strategy is determined based on the physical
and available bandwidth, rather than on the packet loss or
RTTs, which are direct consequences of the activities of the
TCP connections.

A. Brief Introduction to the Lotka-Volterra Model
1) Logistic Model
The logistic equation is a formula that represents the evolution
of the population of a single species over time. Generally, the
per capita birth rate of a species increases as the population of
the species becomes larger. However, since there are various
restrictions on living environments, the environment has a
carrying capacity (total population size), which is usually
determined by the available sustaining resources. The logistic
equation describes such changes in the population of a species
as follows [17]:

d

dt
N = ε

(
1 − N

K

)
N (1)

where t is time, N is the population of the species, K is the
carrying capacity (total population size) of the environment,
and ε is the intrinsic growth rate of the species (0 < ε).

2) Lotka-Volterra Competition Model
The Lotka-Volterra competition model is a well known model
for examining the population growth of two or more species
that are engaged in interspecific competition. In the model,
Equation (1) is modified to include the effects of both interspe-
cific competition and intraspecific competition. The basic two-
species Lotka-Volterra competition model with both species
N1 and N2 having logistic growth in the absence of the other
is comprised of the following equations [17]:

d

dt
N1 = ε1

(
1 − N1 + γ12 · N2

K1

)
N1 (2)

d

dt
N2 = ε2

(
1 − N2 + γ21 · N1

K2

)
N2 (3)
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Fig. 1. Changes in population of two species with the Lotka-Volterra
competition model

where Ni, Ki, and εi are the population of the species, the
carrying capacity of the environment, and the intrinsic growth
rate of the species i, respectively. In addition, γ ij is the ratio of
the competition coefficient of species i with respect of species
j.

In this model, the population of species 1 and 2 does not
always converge to a value larger than 0, and in some cases one
species becomes extinct, depending on the values of γ12 and
γ21. Commonly, the following equations are sufficient condi-
tions for the two species to survive in the environment [17]:

γ12 <
K1

K2
, γ21 <

K2

K1
(4)

Assuming that the two species have the same characteristics,
they have the same values: K = K1 = K2, ε = ε1 = ε2, and
γ = γ1 = γ2. Then, Equations (2) and (3) can be written as
follows:

d

dt
N1 = ε

(
1 − N1 + γ · N2

K

)
N1 (5)

d

dt
N2 = ε

(
1 − N2 + γ · N1

K

)
N2 (6)

In addition, Equation (4) can be written as γ < 1. Figure 1
shows the population changes in the two species using Equa-
tions (5) and (6), where K = 100, ε = 1.95 and γ = 0.90,
and species 2 joins the environment 10 seconds after species
1. From the figure, we can observe from this figure that the
population of the two species converges quickly to the same
value.

We can easily extend Equations (5) and (6) for n species
as follows:

d

dt
Ni = ε

(
1 − Ni + γ ·∑n

j=1,i�=j Nj

K

)
Ni (7)

Note that survival and convergence conditions are identical,
i.e., γ < 1. Even when two or more species exist, each
independently utilizes Equation (7) to obtain N i, and the
population of the species can converge to the value equally
shared among competing species. We consider that the chang-
ing population trends of species depicted in Figure 1 is ideal
for controlling the transmission speed of TCP. That is, by using
Equation (7) for the congestion control algorithm of TCP,
rapid and stable link utilization can be realized, whereas each
TCP connection can behave independently as an autonomous
distributed system. However, this model cannot be directly
applied to the congestion control algorithm of TCP because the
model must obtain Nj . This is discussed in the next subsection.
B. Application to Window Size Control Algorithm
To convert Equation (7) to a window increase/decrease al-
gorithm, we consider Ni as the transmission rate of TCP
sender i and K as the physical bandwidth of the bottleneck
link. Furthermore, when applying Equation (7) to the con-
gestion control algorithm for connection i, it is necessary

for connection i to know the data transmission rates of all
other connections that share the same bottleneck link. This
assumption is quite unrealistic with respect to the current
Internet. Therefore, we use the sum of the data transmission
rates of all of the other connections using the physical and
available bandwidths as follows:

n∑
j=1,i�=j

Nj = K − Ai

where Ai is the available bandwidth for connections i. Thus,
Equation (7) becomes:

d

dt
Ni = ε

(
1 − Ni + γ · (K − Ai)

K

)
Ni (8)

Here we assume that all connections share the same bottleneck
link K in the equation. Note that when each TCP connection
has a different physical bandwidth, the proposed mechanism
share the bottleneck link bandwidth in a reasonable manner,
which we will discuss in Subsection IV-E.

The proposed mechanism requires modifications only with
respect to sender-side TCP, and no change in receiver-side TCP
is required. A TCP sender controls its data transmission rate by
changing its window size. To retain the essential characteristics
of TCP and decrease the implementation overhead, we employ
window-based congestion control in the proposed TCP by
converting Equation (8) to obtain an increasing algorithm of
window size in TCP. The window size of connection i, w i, is
calculated from Ni, the transmission rate, using the following
equation:

wi = Niτi

where τi is the minimum value of the RTTs of connection i,
which is assumed to equal the propagation delay without a
queuing delay in the intermediate routers between sender and
receiver hosts. Next, Equation (8) can be rewritten as follows:

d

dt
wi = ε

(
1 − wi + γ(K − Ai)τi

Kτi

)
wi (9)

Finally, we integrate Equation (9) as follows:

wi(t) = wi(0)e
εt

{
1−γ

(
1− Ai

K

)}
{K−γ(K−Ai)}τi

wi(0)

(
e

εt

{
1−γ

(
1− Ai

K

)}
−1

)
+{K−γ(K−Ai)}τi

(10)

In Equation (10), when we set the initial value of the window
size (wi(0)) and the current time to 0 (t = 0), we can directly
obtain window size wi(t) for any time t. We use the above
equation for the control algorithm of the window size of TCP
connections.

Equation (10) requires measurement of the physical and
available bandwidths of a network path. Therefore, we utilize
the inline network measurement technique in ImTCP [15, 16].
In [15, 16], the authors proposed ImTCP, which is an inline
network measurement technique for the physical and available
bandwidths of network paths between TCP sender and receiver
hosts. ImTCP can continuously measure bandwidth by using
data and ACK packets of a TCP connection under data
transmission. That is, the TCP sender transmits data packets
at intervals determined by an inline measurement algorithm
and checks the arrival interval times of the corresponding
ACK packets to estimate bandwidth. Since ImTCP performs
the measurement without transmitting additional probe pack-
ets over the network, the effect on other network traffic is
negligible. ImTCP can also quickly update the latest changes



in bandwidths by frequently performing measurements (one
result per 1–4 RTTs) as long as TCP transmits data packets.
The authors have also proposed an implementation design of
ImTCP, in which the measurement program is located at the
bottom of the TCP layer. The proposed implementation design
maintains the transmission/arrival intervals of TCP data/ACK
packets by introducing a FIFO buffer between the TCP and
IP layers. Note that the measurement algorithm has limited
effect on TCP’s congestion control algorithm [15], meaning
that the measurement algorithm can be applied to any TCP
variant including our method proposed in this paper.

Note that the inline network measurement algorithm can
estimate both of the physical and available bandwidths based
on the assumption that the narrowest link on the physical
bandwidth of the end-to-end network path becomes the tightest
link on the available bandwidth. According to the algorithm
in [16], when such an assumption is not satisfied, that is,
when the narrowest link and the tightest link are different in
the path, the physical bandwidth cannot be measured exactly,
whereas the available bandwidth can be obtained successfully.
However, in that case, since the physical bandwidth is likely
to be underestimated, this measurement error does not cause
a serious problem for the proposed congestion control mecha-
nism, because underestimation of the physical bandwidth does
not result in injecting too many packets into the network.

III. Characteristics of Proposed Mechanism
In this section, we analyze various characteristics of the pro-
posed mechanism, such as scalability, convergence, parameter
setting issues and fairness against TCP Reno. This analysis
illustrates that the proposed mechanism essentially solves the
problems inherent in TCP Reno.

A. Convergence Time and Scalability
In this subsection, we assume that the physical bandwidth K
and available bandwidth A are constant, which means that the
utilization of the bottleneck link are stable. In the proposed
mechanism, the window size then converges to a certain value
in the proposed mechanism. The converged window size,
which is denoted as w∗, can be obtained by setting dw/dt = 0
in Equation (9):

w∗ = {(1 − γ)K + γA}τ (11)

where τ is the round-trip propagation delay the TCP connec-
tion. In what follows, we consider the time which is required
to increase the window size from w0 to ρ · w∗ (0 < ρ < 1,
w0 < ρw∗). In the proposed mechanism, using Equation (10),
the time T becomes as follows:

T=
1

ε
{
1 − γ

(
1 − A

K

)} ln

(
ρ

1 − ρ

w∗ − w0

w0

)

≤ 1
ε(1 − γ)

ln

(
ρ

1 − ρ

w∗ − w0

w0

)

=
1

ε(1 − γ)
ln

(
ρ

1 − ρ

((1 − γ)K + γA)τ − w0

w0

)
(12)

because 0 ≤ A ≤ K is satisfied. Note that ε and γ are fixed
parameters of the proposed mechanism. The issue of setting
these parameters will be discussed in the next subsection. This
equation indicates that time T of the proposed mechanism
increases logarithmically with respect to link bandwidth (K)
and propagation delay (τ ).

In the case of TCP Reno, we can easily calculate Treno,
the time necessary to increase window size from w0 to w∗, as
follows:
Treno = (w∗ − w0)τ̄ = [{(1 − γ)K + γA}τ − w0]τ̄ (13)
where τ̄ is the average value of the RTTs of the TCP
connection. Here, we ignore the effect of the delayed ACK
option [20] and focus only on the congestion avoidance phase
of TCP Reno. In the case of HSTCP, which is essentially based
on the AIMD policy as in the case of TCP Reno, Thstcp is
given by:

Thstcp ≥ w∗ − w0

amax
τ̄ =

{(1 − γ)K + γA}τ − w0

amax
τ̄ (14)

where amax is a parameter of HSTCP that indicates the
maximum window size increase during one RTT (equivalent
to a(W ) in [4]). Equations (13) and (14) indicate that the time
required to increase the window size is proportional to physical
bandwidth K and propagation delay τ . This illustrates that
the time required to fully utilize the bandwidth-delay product
of the network path is proportional to the bandwidth-delay
product. HSTCP was designed as a new congestion control
mechanism to resolve problems inherent in TCP Reno for
high-speed and long delay networks. However, since the win-
dow size control algorithm of HSTCP is essentially based on
the AIMD policy, this algorithm suffers from poor scalability
to the bandwidth-delay product.

STCP has a window size control algorithm based on Mul-
tiplicative Increase Multiplicative Decrease (MIMD) policy
and describes logarithmic increases in time with respect to
increases in link bandwidth [5]. We calculate its convergence
time Tstcp as follows:

Tstcp =
1
a

(
ln

w∗

w0

)
τ̄ =

1
a

(
ln

{(1 − γ)K + γA}τ
w0

)
τ̄ (15)

where a is an STCP parameter that indicates the increase
in window size when receiving one ACK packet. In [5],
a = 0.01 [packet] is the default value. This equation indi-
cates that STCP has good scalability to network bandwidth:
however, STCP has poor scalability to propagation delay.

FAST TCP has the same equilibrium properties as TCP
Vegas, and the window size is updated at intervals based on
the RTT [6]. This means that FAST TCP does not have good
scalability to the propagation delay of the end-to-end network
path, as will be shown in Section IV.
B. Stability and Fairness
In this Subsection, we utilize the microeconomics analogy as
in [21] and its followers to discuss the stability and fairness
property of the proposed congestion control mechanism.

We consider a single link with the following link cost
function:

C(x) =
1
2
px2 (16)

for possible constant p, which implicitly represents the param-
eter of Active Queue Management (AQM) at the link buffer.
x is the total traffic arrival rate to the link. By the definition
of the available bandwidth, we have;

K − Ai =
∑
k �=i

wk

τk
(17)

By using the above equation, we can re-write Equation (9) as
follows:

d

dt
wi =

ε

K

(
K − (1 − γ)

wi

τi
− γ

∑
k

wk

τk

)
wi



the Proposed Mechanism

TCP Reno

Physical Bandwidth = K [Mbps]

Minimum Round-trip Propagation Delay = τ[msec]

Size of the Output Buffer of the Bottleneck Link = B [packets]

Fig. 2. Model used for fairness analysis
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We define the sending rate of connection i as xi = wi/τi, and
assume τi is constant. Then we can derive the dynamics of x i

as follows:
d

dt
xi =

εγxi

Kp

(
p

γ
(K − (1 − γ)xi) − p

∑
k

xk

)
(18)

We here introduce the following function U i(x):

Ui(x) =
p

γ

(
K − 1

2
(1 − γ)x

)
x

Then we can obtain the following eqation from Equation (18):
d

dt
xi =

εγxi

Kp
(U ′

i(xi) − C′(
∑

k

xk))

From this equation, we can regard the proposed mechanism
as the source with the utility function Ui(x) and link cost
function C(x) under the prevailing assumptions. We first note
that Ui(x) is independent of the RTT τi, which means that
there is no RTT bias in the proposed mechanism. We confirm
this characteristics in Section IV.

The next remark is that Ui(x) depends on the parameters K
(physical capacity of the link), p (parameter pof link cost), and
γ. For K , since we assume that each TCP connection obtains
the value of physical capacity by using ImTCP, we can say that
the proposed mechanism provides fair performance when the
same value of K is obtained by competing connections. The
effect of different values of K is discussed in Subsection IV-
E. For γ, which is the control parameter of the proposed
mechanism, we show the setting guideline of γ in the next
Subsection, and show that the value of γ would affect on
the buffering behavior of the bottleneck link, not on the
behavior of each connections. This means that the source of
the proposed mechanism should use the identical value for γ,
which does not affect on the fairness property. For p, on the
other hand, it means that we have a problem in the proposed
mechanism that its behavior depends on the AQM parameter.
Modifying the algorithm to remove this dependency is one of
the future research topic of this work.

We also note that since U ′′
i (x) = −p(1 − γ)/γ and γ < 1,

the utility function Ui(x) is strictly concave. This guarantees
that the social welfare problem as follows has a unique
solution:

SY STEM

maximize
∑

i Ui(xi) − C(
∑

k xk)
over xi ≥ 0, for all i

This characteristics clearly shows the stability of the proposed
congestion control mechanism.

C. Parameter Settings
The congestion control algorithm of the proposed mechanism
has two parameters, γ and ε. In this subsection, we discuss
the effect of these parameters and present some guidelines for
configuring γ and ε.
1) γ Setting
The parameter γ indicates the degree of the influence of the
other competing connections that share the same bottleneck
link. To converge window size to a positive value despite the
physical bandwidth Ki of each connection, it is necessary
to satisfy the condition 0 < γ < 1. Furthermore, based on
Equations (11) and (12), we need to consider the trade-off
between convergence speed and the final number of packets
accumulated within the buffer at the bottleneck link. That
is, although smaller γ leads to faster convergence speed, it
increases the queue size of the bottleneck router buffer when
the window size is converged. Using Equation (11) we can
easily obtain the sum of the window size of n TCP connections
as follows:

n∑
i=1

wi =
n

1 + (n − 1)γ
Kτ (19)

where we assume that the physical bandwidth K and the delay
τ of each connection are identical. From Equation (19) queue
size Q at the bottleneck link is given by:

Q =
(n − 1)(1 − γ)
1 + (n − 1)γ

Kτ (20)

This equation shows that Q increases as n becomes larger.
However, as n goes to infinity, we can obtain the following
equation:

lim
n→∞Q =

1 − γ

γ
Kτ (21)

That is, there exists an upper bound of the queue size with
respect to an increase in the number of concurrent TCP
connections. Therefore, if the bottleneck link has a large
enough buffer, the proposed mechanism will induce no packet
losses regardless of the number of TCP connections. TCP
Reno, HSTCP, and STCP, on the other hand, increase their
window size until they fully utilize the buffer at the bottleneck
link, and as a result, they cannot avoid periodic packet losses.
2) ε Setting
ε determines convergence speed, as shown in Equation (9).
Generally, when we convert Equation (1) into a discrete
equation, the population of the species does not converge
with ε ≥ 2 [17]. In contrast, the window size updating



algorithm proposed in Subsection II-B converts Equation (10)
into a discrete equation in such a way that it does not cause
oscillation. Therefore, in the proposed algorithm, there is no
limitation on ε, which means that as ε becomes larger, the
window size converges faster. However, an excessively large
value of ε causes the TCP sender to transmit numerous packets
in bursty fashion, which may reduce the network performance.

D. Competition with TCP Reno
In this subsection, we investigate the fairness property of the
proposed mechanism with respect to competing TCP Reno
connections. For this purpose, we compare the throughput
of two TCP connections which TCP Reno and the proposed
mechanism share a bottleneck link, by analyzing changes
in congestion window sizes. Figure 2 depicts the network
model for analysis, where K is the physical bandwidth, τ is
the minimum round-trip propagation delay, not including the
queuing delay, and B is the size of the output buffer adopting
a TailDrop scheme, of the bottleneck link.

As explained above, the proposed mechanism converges its
window size to a certain value whereas TCP Reno continues
to increase its window size until a packet loss occurs. Hence,
even when both TCP connections compete at the bottleneck
link bandwidth, periodic packet loss occurs at the buffer.
We, therefore, assume that both TCP connections experience
packet loss when the buffer becomes fully utilized. Therefore,
the window size of the two TCP connections changes cycli-
cally, triggered by packet loss. Figure 3 describes such changes
in the window size. Here, we define one cycle as the period
between two packet losses and denote the length of the cycle
as T . We assume that the received socket buffer of each TCP
connection is large enough not to limit the congestion window
size evolution.

In this analysis, we assume that the sender of the proposed
mechanism can obtain precise physical bandwidth information.
From Figure 3, by using ρ (0 < ρ < 1), the window size
of the proposed mechanism just before packet loss occurs is
represented as ρKτ . Since the sum of the window size of
both connections is Kτ + B when the buffer becomes full,
the window size of TCP Reno connection at that time can
be described as (1 − ρ)Kτ + B. Then, the window size of
the proposed mechanism immediately after packet loss occurs
becomes decreased to ρKτ/2, and that of TCP Reno becomes
((1 − ρ)Kτ + B)/2. Since TCP Reno increases its window
size by one packet every RTT, T , which is the duration time
of one cycle, can be calculated as follows:

T =
(1 − ρ)Kτ + B

2
τ̄ (22)

where τ̄ is the average value of the RTTs of the TCP
connection. the window size of the proposed mechanism can
be obtained from Equation (10) by substituting K for A as
follows:

w(t) =
w(0)eεtKτ

w(0)(eεt − 1) + Kτ
(23)

From Equations (12) and (23), we can calculate T , which is
equal to the time required for the window size to increase from
ρKτ/2 to ρKτ , as follows:

T =
1
ε
ln

(
ρ

1 − ρ

Kτ − ρKτ/2
ρKτ/2

)
=

1
ε
ln

(
2 − ρ

1 − ρ

)
(24)

From Equations (22) and (24), we obtain the following equa-
tion:

(1 − ρ)Kτ + B

2
τ̄ =

1
ε
ln

(
2 − ρ

1 − ρ

)
(25)

Note that the ratio of the throughput of the TCP Reno
connection to that of the proposed mechanism is equal to
the ratio of areas enclosed by the the x axis and each line,
indicating changes in the window size, as depicted in Figure 3.
The area for TCP Reno, Sreno, is given by:

Sreno =
3
4
{(1 − ρ)Kτ + B}2 τ̄

On the other hand, the area for the proposed mechanism,
denoted as Sproposed, is calculated as follows:

Sproposed =
∫ T

0

w(t)dt =
Kτ

ε
ln

2 − ρ

2(1 − ρ)
Finally, the average ratio of the throughput of TCP Reno to
that of the proposal mechanism is given by:

λ =
Sreno

Sproposed
=

3
4 {(1 − ρ)Kτ + B}2

Kτ
ε ln 2−ρ

2(1−ρ)

(26)

Note that ρ is given by solving Equation (25).
From Equations (25) and (26), we can understand the

relationship between the variables (ε, K and B) and the ratio
of throughput λ. Next, we show some numerical examples
of the throughput ratio. Here we ignore the queuing delay
and assume τ̄ = τ . Figure 4 shows changes in the throughput
ratio with respect to ε, where we set K = 10 [Mbps] and
τ = 50 [msec]. The five lines represent the results when the
buffer size B is 1/4, 1/2, 1, 2, and 4 times the bandwidth-
delay product (BDP) of the bottleneck link, respectively. In
Figure 5, we show the results when we set τ = 50 [msec] and
B to 41 [packets] (equal to BDP when K = 10 [Mbps]), where
the five lines describe the results when K = 10, 50, 100, 500,
and 1000 [Mbps].

These results show that ε, which realizes fairness between
TCP Reno and the proposed mechanism, drastically changes
when we modify K and/or B. Furthermore, in some situa-
tions, especially when the buffer size is large compared with
the bandwidth-delay product, fairness cannot be realized by
configuring ε. One reason is that the proposed mechanism con-
verges its window size to Kτ , whereas TCP Reno continues
increasing its window size until the buffer has been fully used.
The primary reason of this unfairness is the characteristics
of ImTCP [15, 16] which we deployed in the proposed
mechanism for bandwidth measurement: ImTCP estimates an
available bandwidth of the end-to-end network path, not a fair
shair of the bottleneck link bandwidth. In other words, if there
exists an inline measurement algorithm which can estimate a
fair bandwidth share of the network, we can employ it to our
proposed congestion control mechanism.

From another point of view, the congestion control algo-
rithm of the proposed mechanism is essentially more con-
servative than TCP Reno. In contrast, TCP Reno has an
aggressive window size control algorithm. Therefore, the
unfairness between the proposed mechanism and TCP Reno
cannot be avoided when they co-exist in the network. A similar
discussion can also be found in the literature regarding TCP
Vegas [22, 23], and we believe this is the primary reason that
TCP Vegas was not successfully deployed in the Internet. In
the case of TCP Reno and its variants using AIMD/MIMD
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policies, the window size just after packet loss occurs depends
on the bottleneck link buffer size. That is, the throughput of
these connections is improved as the buffer size increases.
However, as buffer size becomes larger, the packets within
the buffer also become larger, which means that the queuing
delay is also increased.

IV. Simulation Results
In this section, we present simulation results by which to
evaluate the performance of the congestion control mechanism
proposed in Section II.
A. Simulation Settings
We use ns-2 [24] for the simulation experiments. Traditional
TCP Reno, HighSpeed TCP (HSTCP), Scalable TCP (STCP),
and FAST TCP are chosen for performance comparison. We
set ε = 1.95 and γ = 0.9 for the proposed mechanism according
to the discussion in Subsections II-A and III-C. Note that
we have confirmed that changes in these parameters have a
limited effect on the performance of the proposed mechanism,
especially on the transient behavior, and that the characteristics
of the proposed mechanism shown below does not change. The
parameters in HSTCP and STCP are set to the value described
in [4] and [5], respectively, and SACK option [25] is set to
be enabled for both protocols. FAST TCP has the parameter
α, which should be changed according to the link bandwidth.
According to the guidelines in [26] we set α = 10, 20, 50,
100, 200, 500, and 1000 for link bandwidths K = 10, 20, 50,
100, 200, 500, and 1000 [Mbps], respectively.

The network model used in the simulation is depicted in
Figure 6. The model consists of sender/receiver hosts, two
routers, and links between the hosts and routers. N tcp TCP
connections are established between TCP sender i and TCP
receiver i. To create background traffic, we injected UDP
packets at a rate of rudp into the network, where the packet
size distribution follows the traffic observation results in the
Internet [27]. That is, Ntcp TCP connections and an UDP flow
share a bottleneck link between the two routers. The bandwidth
of the bottleneck link is denoted as BW , and the propagation
delay is τ . The bandwidth and the propagation delay of the
access link for TCP sender i are bwi and τi, respectively.
We deployed the TailDrop scheme at the router buffer, and
the buffer size is set to be equivalent to the bandwidth-delay
product between sender and receiver hosts.
B. Basic Behavior
First, we confirm the fundamental behavior of the proposed
mechanism with one TCP connection. Figure 7 shows the

changes in window size of TCP Reno, HSTCP, STCP, FAST
TCP, and the proposed mechanism, where we set N tcp = 1,
BW = 100 [Mbps], τ = 25 [msec], bw1 = 200 [Mbps],
and τ1 = 5 [msec]. In this case, we do not inject UDP
traffic into the network. The result shows that TCP Reno,
HSTCP, and STCP connections experience periodic packet
loss due to buffer overflow, because these connections continue
increasing the window size until packet loss occurs. On the
other hand, since the window sizes of FAST TCP and the
proposed mechanism converge quickly to an ideal value, no
packet loss occurs. The speed of window size increase is much
higher for FAST TCP and the proposed mechanism than for
HSTCP and STCP, meaning that FAST TCP and the proposed
mechanism can more effectively utilize the link bandwidth.
Furthermore, Figure 8 describes the results for the case in
which BW = 1 [Gbps] and bw1 = 2 [Gbps]. Based on these
results, we observe that TCP Reno and HSTCP increase their
window size slowly. However, the speed of the window size
increase of the other mechanisms remains fast regardless of
the link bandwidth. Note also that HSTCP and STCP, which
rapidly increase their window size, cause more packet losses
than TCP Reno. In the case of Figure 7, the SACK mechanism
works well, and the sender host avoids timeouts. However,
as shown in Figure 8, many retransmission timeouts occur
because the SACK mechanism cannot recover all of the lost
packets as the link capacity becomes large.
C. Scalability to Network Bandwidth and Delay
We next investigate the scalability to the link bandwidth of
the proposed mechanism by checking the convergence time,
defined as the time required for the TCP connection to utilize
99% of the link bandwidth. We set Ntcp = 1, τ1 = 5 [msec],
τ = 25 [msec], and τu = 5 [msec]. Figure 9 shows changes in
the convergence time when we change BW from 10 [Mbps]
to 1 [Gbps], where rudp is set to (0.2 BW ) [Mbps] and bw1 is
set to be equal to BW . In the figure, the average values and
the 95% confidence intervals for 10 simulation experiments
are shown. From this figure, we can see that the TCP Reno
connection requires a great deal of time to fully utilize the
link bandwidth since the increasing speed of the window size
is fixed at a small value, regardless of the link bandwidth.
HSTCP dramatically reduces the convergence time, but the
larger the link bandwidth becomes, the greater the convergence
time that is required in order to fill the bottleneck link
bandwidth. This means that HSTCP is fundamentally unable
to resolve the scalability problem of TCP Reno. In the case of
STCP and FAST TCP, the convergence time remains constant
regardless of the link bandwidth, which is also confirmed in [5]
and [6]. The proposed mechanism retains an approximately
constant convergence time regardless of the link bandwidth,
which shows good scalability to network bandwidth.

We also note that the convergence time of the proposed
mechanism is a slightly worse than that of FAST TCP,
especially in Figure 9. This is because of the choice of the
control parameters in both mechanisms. In other words, with
a different set of the control parameters for FAST TCP and
the proposed mechanism, the opposite results may be obtained.
In addition, since the congestion control mechanism of FAST
TCP is based on that of TCP Vegas, it is considered that
FAST TCP has the same difficluty in parameter setting as
TCP Vegas described in [28]. Anyway, the most important
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characteristics observed in Figures 9 and 10 is scalability to
the bandwidth-delay product of the network, which means that
the convergence time changes as the bandwidth and/or delay
become large.

Moreover, we investigate the scalability to the propaga-
tion delay of the proposed mechanism. We set N tcp = 1,
BW = 100 [Mbps], bw1 = 200 [Mbps], τ1 = 5 [msec], and
rudp = 20 [Mbps]. Figure 10 shows the changes in the conver-
gence time when we change τ from 10 [msec] to 500 [msec].
This figure shows that the TCP Reno connection requires quite
a long time to fully utilize the link bandwidth because it
only increases its window size by one packet per RTT. The
convergence time of HSTCP and FAST TCP is less than that of
TCP Reno. However, the greater the increase in propagation
delay, the larger the convergence time becomes. STCP has
good scalability to link bandwidth as described in Figure 9,
but the convergence time increases when the delay becomes
larger because HSTCP, STCP, and FAST TCP increase their
window size when receiving ACK packets, which depends on
RTT. The proposed mechanism maintains the best scalability
to the network delay, because, as shown in Subsection III-A,
the convergence time increases logarithmically with increases
in the delay or bandwidth.
D. Adaptability and Fairness
We also investigate the adaptability and fairness of the
proposed mechanism by checking the effect of changes
in the number of TCP connections. We set Ntcp = 5,
BW = 100 [Mbps], τ = 25 [msec], bwi = 100 [Mbps]
(1 ≤ i ≤ 5), and τi = 5 [msec]. We do not inject UDP traffic
into the network. TCP connections 1–5 join the network at 0,
100, 300, 500, and 700 [sec] and stop sending data packets at
900, 950, 1000, 1050, and 1100 [sec], respectively. Figure 11
shows changes in window size for the five TCP connections
with respect to the time for HSTCP, STCP, FAST TCP, and
the proposed mechanism.

Figure 11(a) shows that HSTCP control their window size
with the AIMD policy and realize fairness among connections
by inducing periodic packet losses. From Figure 11(b), we
can see that STCP cannot realize fairness among connections
because its window size control algorithm is based on the
MIMD policy. In Figure 11(c), we can see that the nature of
FAST TCP is as follows. Since FAST TCP utilizes queuing
delay as a congestion signal, it can adjust its window size
without inducing any packet loss when a new TCP connec-
tion joins the network. However, FAST TCP cannot achieve
fairness among existing connections and a new connection.
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Although FAST TCP needs RTT information to control the
window size, the new connection cannot successfully measure
the minimum RTT due to the queuing delay caused by the
existing connection. When a connection stops a transmission
and exits from the network, the remaining connections enjoy
equal throughput because the buffer becomes temporarily
empty, and the existing connections can measure the precise
values for minimum RTT. On the other hand, Figure 11(d)
shows that the proposed mechanism converges the window
sizes very quickly, so that no packet loss occurs when a
new connection joins the network. Furthermore, when the
TCP connection leaves the network, the proposed mechanism
connections quickly fill the unused bandwidth. Borrowing the
terminology of biophysics, we say that TCP connections are
competitive, but still symbiotic even against the environmental
changes.

Adaptability to changes in the available bandwidth is also
an important characteristic of the transport layer protocol.
To confirm that performance of the proposed mechanism,
we set Ntcp = 1, BW = 100 [Mbps], τ = 25 [msec],
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Fig. 11. Effect of changes in number of connections
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Fig. 12. Adaptability to change in available bandwidth (throughput)

bw1 = 100 [Mbps], τ1 = 5 [msec], and change rudp so that
the available bandwidth of the bottleneck link is 80 [Mbps]
at 0–50 [sec], 65 [Mbps] at 50–100 [sec], 50 [Mbps] at
100–150 [sec], and 80 [Mbps] at 150–200 [sec]. Figures 12
and 13 present the changes in the throughput of a TCP
connection and the queue size of the bottleneck link buffer
for TCP Reno, HSTCP, STCP, and the proposed mechanism.
The results obviously show the effectiveness of the proposed
mechanism, which gives good adaptability to the changes in
the available bandwidth. Furthermore, no packet loss occurs
even when the available bandwidth suddenly decreases. On the
other hand, TCP Reno connections experience packet losses
during simulation time, and link utilization is much lower
than 100%. Although HSTCP and STCP can retain their link
utilization because of a sufficient buffer, they have largely
fluctuating RTTs caused by queuing delays. FAST TCP and the
proposed mechanism experience no packet loss and retain their
link utilization with small RTTs, but the proposed mechanism
has a smaller queue size than FAST TCP. This is one of
the advantages of the proposed mechanism, which uses an
inline measurement technique, which means that the proposed
mechanism is quite robust against environmental changes of
the network.

E. Effect of Heterogeneity in Physical Bandwidth
In the above subsections we demonstrated the effectiveness
of the proposed mechanism with respect to various aspects.
However, in a sense, these results are expected as a result
of the newly developed congestion control mechanism based
on the bandwidth measurement technique. A more striking
feature of the proposed mechanism is detailed in the following
results. Here, we investigate the effects of the heterogeneity
of access networks such as the differences in access link
bandwidth. We set Ntcp = 2, τ = 40 [msec], bw1 = 10 [Mbps],
bw2 = 20 [Mbps], τ1 = τ2 = 5 [msec], and we change BW

from 5 [Mbps] to 30 [Mbps]. UDP traffic is not injected into
the network. Figure 14 shows the changes in the throughput
of the two TCP connections in TCP Reno and the proposed
mechanism with respect to BW . The figure shows that TCP
Reno shares the bottleneck link bandwidth fairly, regardless of
the value of BW . On the other hand, the proposed mechanism
shows an interesting characteristic. When BW < bw1, the
two TCP connections share bottleneck link bandwidth fairly.
However, when bw1 < BW < bw2, the bottleneck link
bandwidth is distributed proportionally to the ratio of bw 1 and
bw2. This property can be explained using the equation of
the proposed mechanism. Using Equation (8), the converged
transmission rate for connection i, denoted by N̂i, which has
a different physical link bandwidth (K i), can be calculated as
follows:

N̂i =
Ki∑n
i=1 Ki

· BW (27)

This equality is satisfied when γ < 1. This equation means
that the bottleneck link bandwidth is shared proportionally to
the physical bandwidth of each TCP connection. Since the
physical bandwidth of the network path is defined as the
bandwidth of the tightest link between TCP hosts (a sender and
a receiver), the simulation results shown in Figure 14 agree
with Equation (27). We argue that this characteristic is ideal for
an Internet congestion control strategy. Throughout the history
of the Internet, the ratio of the bandwidth of access networks
to backbone networks has been changing over time [29].
Compared with access networks, the resources of backbone
networks are sometimes scarce and sometimes plentiful. We
believe that when backbone resources are few, they should
be shared fairly between users, regardless of their access link
bandwidth. On the other hand, when backbone resources are
sufficient, they should be shared according to the access link
bandwidth. The characteristics of the proposed mechanism,
shown in Figure 14 and Equation (27), realize such a resource
sharing strategy.

V. Conclusion
In this paper, we propose a new congestion control mechanism
for TCP based on inline network measurement. The proposed
mechanism obtains information about the physical and avail-
able bandwidths from inline network measurement via ImTCP.
Using bandwidth information, the proposed mechanism adjusts
its window size with an algorithm based on mathematical
models borrowed from biophysics. Consequently, the proposed
mechanism can converge its window size to an ideal value and
avoid the periodic packet loss experienced by TCP Reno.

Through mathematical analysis, we confirm that the pro-
posed mechanism has good scalability to not only link band-
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Fig. 14. Effect of different access link bandwidths

width but also propagation delay between the sender and re-
ceiver hosts. Other transport layer protocols such as TCP Reno,
HighSpeed TCP, Scalable TCP, and FAST TCP cannot provide
such scalability. Furthermore, based on the results of mathe-
matical analysis regarding competition between TCP Reno and
the proposed mechanism, although the realization of fairness
between them was observed to be difficult, we believe that
the proposed mechanism is a possible solution for transport
layer protocols for future high-speed networks. Furthermore,
through extensive simulations, we have confirmed that the
proposed mechanism does exhibit the analytically determined
characteristics. Therefore, the proposed mechanism is effective
regardless of network bandwidth or delay and can solve many
of the problems associated with TCP Reno and its variants.

For future work, we will confirm additional characteristics
of the proposed mechanism, which include fairness among
connections with different RTTs and the effect of measurement
errors on the physical and available bandwidths. We are
now implementing the proposed mechanism on the FreeBSD
system. Experiments on the actual network are also important
research tasks.
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