
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006
2319

PAPER Special Section on Networking Technologies for Overlay Networks

Design and Evaluation of a Cooperative Mechanism for Pure P2P
File-Sharing Networks

Junjiro KONISHI†, Nonmember, Naoki WAKAMIYA†a), Member, and Masayuki MURATA†, Fellow

SUMMARY To provide application-oriented network services, a vari-
ety of overlay networks are deployed over physical IP networks. Since they
share and compete for the same physical network resources, their selfish
behaviors affect each other and, as a result, their performance deteriorates.
Our research group considers a model of overlay network symbiosis, where
overlay networks coexist and cooperate to improve their application-level
quality of service (QoS) while sustaining influences from the physical net-
work and other overlay networks. In this paper, we especially focus on
Peer-to-Peer (P2P) networks among various overlay networks. We propose
a mechanism for pure P2P networks of file-sharing applications to coop-
erate with each other. In our proposal, cooperative peers establish logical
links among two or more P2P networks, and messages and files are ex-
changed among cooperative P2P networks through these logical links. For
efficient and effective cooperation, we also propose an algorithm for se-
lection of cooperative peers and a caching mechanism to avoid putting too
much load on cooperative peers and cooperating networks. Simulation re-
sults show that our proposed mechanism improves the search efficiency of
P2P file-sharing applications and reduces the load in P2P networks.
key words: cooperative overlay network, peer-to-peer (P2P), file-sharing

1. Introduction

To provide application-oriented network services, a variety
of overlay networks are deployed over physical IP networks.
Each overlay network independently measures network con-
ditions such as the available bandwidth and latency through
active or passive measurement schemes. Based on its ob-
servations, each overlay network controls traffic, chooses
routes, and changes topologies in a selfish manner to satisfy
its own application-level QoS. Since overlay networks share
and compete for the same physical network resources, their
selfish behaviors affect each other and their performance de-
teriorates [1], [2]. For example, to communicate faster with
other nodes, a node measures bandwidth and latency to other
nodes and changes its neighborship accordingly. As a re-
sult, the load in the physical network dynamically changes
and consequently the quality of communication perceived
by other overlay networks which compete for the same links
and routers in the physical networks deteriorates. Those
affected overlay networks then adapt data rate, routes, and
topologies to satisfy or improve their application-level QoS.
This further affects other overlay networks and it causes fre-
quent changes of routing and introduces congestions in the

Manuscript received December 16, 2005.
Manuscript revised March 24, 2006.
†The authors are with the Department of Information Net-

working, Graduate School of Information Science and Technology,
Osaka University, Suita-shi, 565-0871 Japan.

a) E-mail: wakamiya@ist.osaka-u.ac.jp
DOI: 10.1093/ietcom/e89–b.9.2319

physical network. Finally, the selfish behavior of overlay
networks trying to improve their application-level QoS in
fact results in the deterioration of application-level QoS.

Recently there are several publications on cooperative
overlay networks to enhance their collective performance
and efficiently utilize network resources [3]–[7]. In [3],
from one overlay network to another, the authors investi-
gated a spectrum of cooperation among competing overlay
networks. For example, they proposed the Synergy overlay
internetwork which improved routing performance in terms
of delay, throughput, and loss of packets by cooperative for-
warding of flows. In [5], mechanisms of inter-overlay com-
munications are proposed to exchange information among
overlay networks without knowing the destination addresses
by using an overlay network called i3 (Internet Indirection
Infrastructure) network. The i3 network is a network archi-
tecture consisted of some servers. In the i3 network, a user
sends trigger messages with a service identifier and user’s
address to the i3 network. A service provider sends packet
messages with a service identifier to the i3 network. The i3
network transfers packet messages to users whose trigger
messages have the same or similar service identifier.

Our research group considers the symbiosis among
competing overlay networks [8]–[10]. In the model of
symbiotic overlay networks, overlay networks in a system
evolve, interact with each other, and dynamically change
internal structures, but they still behave in a selfish man-
ner. Overlay networks meet and communicate with each
other in a probabilistic way. Overlay networks that bene-
fit from each other reinforce their relationship, eventually
having many inter-overlay links, and merging one overlay
network. Otherwise, they separate from each other. All evo-
lutions, interactions, and internal changes are performed in
a self-organizing way. Each node independently decides its
behavior based on locally available information. Symbiosis
among overlay networks emerges as a consequence of inde-
pendent and autonomous behaviors of nodes and networks.

For this purpose, we need mechanisms for overlay net-
works to communicate with each other. In our previous
works [9], [10], we proposed mechanisms for efficient and
effective cooperation among P2P networks of file-sharing
applications. In a P2P network, hosts called peers directly
communicate with each other and exchange information
without the mediation of servers. According to user’s in-
tention, peers behave on its own decision as an individual
does in a group or society. One typical example of P2P
applications is a file-sharing system. Napster and WinMX

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

2320
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

are categorized as hybrid P2P networks where there are so-
called meta-servers to maintain meta-information, e.g., list
of file holders to help peers to find files. In the case of the co-
operation among hybrid P2P networks, it is an architectural
problem that meta-servers must deal with a large amount of
messages since peers always try to obtain meta-information
from meta-servers. We proposed a mechanism for coopera-
tion among hybrid P2P networks and investigated the influ-
ence of system conditions such as the number of peers and
the number of meta-information in [9]. On the other hand,
Gnutella and Winny are pure P2P networks without a server
for searching files. Thus, a peer has to find the desired file by
itself by emitting a query message into the network. Other
peers in the network response to the query with a response
message and relay the query to their neighbor peers (Fig. 1).

The cooperation among pure P2P networks is accom-
plished by exchanges of search and response messages
among them through logical connections established among
so-called cooperative peers [10]. With such cooperation, we
can expect that search messages are disseminated more ef-
fectively and a peer finds file more efficiently. Since a peer
receives more response messages for a file, it can choose a
more appropriate peer, i.e., faster and more reliable, among
many candidate peers, leading to a higher application-level
QoS. Even if P2P networks share different types or cate-
gories of files, employ different protocols, or have differ-
ent architectures, there are benefits in cooperation. For ex-
ample, as in [3], [4], cooperation in routing messages pro-
vides faster and more reliable transmission of messages over
P2P networks. Furthermore, when a P2P network is dis-
connected by failures or disappearance of peers, search and
response messages can propagate among separated parts of
the P2P networks through cooperative P2P networks. There-
fore, the robustness and the resilience of P2P network are
improved by cooperation as verified in [8].

However, to accomplish the efficient and effective co-
operation without introducing much load on logical and
physical networks, some careful considerations must be
made. For example, if a cooperative peer is located at the
edge of a P2P network, it has to set a large TTL (Time to
Live) value for search messages to spread over the network.

Fig. 1 Flooding over a pure P2P file-sharing network.

As a result, the number of rejected duplicated search mes-
sages over P2P networks increases. They waste network
bandwidth and causes network congestions. Therefore, in
[10], we proposed an algorithm to choose appropriate coop-
erative peers. We also gave some considerations on incen-
tives that a selfish peer began cooperation. Through simula-
tion experiments, we found that the average load on peers to
accomplish some degree of reachability, which is defined as
the ratio of the number of peers that flooded search messages
reach to the total number of peers in a network, became
lower than the case without the cooperation. However, it
was also shown that the load on the highest-degree coopera-
tive peers became considerably high. In this paper, for more
efficient and effective cooperation, we propose a mechanism
for cooperation of pure P2P networks with a caching mech-
anism at cooperative peers.

The rest of this paper is organized as follows. In Sect. 2,
we propose a mechanism for cooperation among pure P2P
networks of file-sharing applications. In Sect. 3, we evalu-
ate our mechanism through several simulation experiments
from the viewpoint of the number of found file holders, the
search latency, and the load on peers. Finally, we conclude
the paper and describe future works in Sect. 4.

2. Cooperation Mechanism for Pure P2P File-Sharing
Networks

In this section, we propose a mechanism for pure P2P net-
works of file-sharing applications to cooperate with each
other in an efficient and effective way. In the cooperation
of pure P2P networks, a logical link is first established be-
tween designated peers, called cooperative peers, which are
selected among candidate peers in each P2P network. Can-
didate peers are those which are willing to play the role for
cooperation to enhance and improve their own QoS. And
then search and response messages are transmitted through
the logical link between cooperative peers (Fig. 2).

Our proposed mechanism consists of the following
steps. First, a peer in a P2P network is promoted to a can-
didate peer by running a cooperative program. It joins to
a candidate network constituting by candidate peers to ex-

Fig. 2 Cooperation of pure P2P file-sharing networks.

KONISHI et al.: DESIGN AND EVALUATION OF A COOPERATIVE MECHANISM FOR PURE P2P FILE-SHARING NETWORKS
2321

change information for the selection of cooperative peers.
Next, a tentative cooperative peer is selected in candidate
peers, and then it confirms whether it is appropriate as a
cooperative peer or not. After the confirmation, a tentative
cooperative peer is promoted to a cooperative peer. Then,
a cooperative peer finds a cooperative peer in another over-
lay network and establishes a logical link to it. If the link
is accepted by the counterpart cooperative peer, a cooper-
ative peer finally begins to exchange search and response
messages with the cooperative peer at the other end of the
logical link. We describe in the following the selection of
cooperative peers, the preparation before the cooperation of
P2P networks, and the behavior of peers in cooperative P2P
networks in detail.

2.1 Joining a Candidate Network

When a peer is not satisfied with an application-level QoS
received from a P2P network of file-sharing application, it
considers to enhance and improve its application-level QoS
by its own decision. For example, when a peer cannot find
a desired file at all, when a peer cannot find enough number
of files, or when a peer cannot tolerate the delay in retriev-
ing a file from a provider peer, a peer, i.e., a user should
have some frustrations. The peer will consider that it can re-
ceive the higher QoS by connecting to another P2P network
which provides it with the higher probability of successful
search, the larger number of provider peers, and the smaller
delay in file retrieval. In such a case, intending to enhance
and improve its application-level QoS, the peer introduces
the cooperation program independently of others. It implies
that the peer does not care whether the other peers in the
same P2P network will benefit from the cooperation or not.
Then, it becomes a candidate peer, i.e., a candidate for co-
operative peers. As illustrated in Fig. 2, candidate peers in a
P2P network construct a candidate network to communicate
with each other to select cooperative peers.

A new candidate peer first finds another candidate peer
in the same P2P network by flooding a special message over
the P2P network or using the i3 network [5]. In the lat-
ter case, a new candidate peer registers itself to an i3 ser-
vice repository by sending a trigger message containing a
service identifier and its address. On the other hand, can-
didate peers in a candidate network send packet messages
containing a service identifier and its address to the i3 net-
work periodically. A new candidate peer receives one of
their packet messages and establishes a logical link to the
candidate peer. After that, the new candidate peer deletes its
trigger message from the i3 service repository. For details
of the mechanism, please refer to the paper [10].

2.2 Selecting Cooperative Peers

Cooperative peers are selected among the candidate peers on
receiving a cooperation request. A new cooperation request
is generated by a newly joined candidate peer, generated by
a candidate peer on its own decision, or sent from other P2P

network.
Cooperative peers must be carefully selected to effec-

tively disseminate search messages in P2P networks and dis-
tribute the load among peers and networks. It is shown in
recent studies, e.g., [11] that the Internet and many overlay
networks have a power-law topology whose degree distribu-
tion follows p(k) ∝ k−α. In [12], it is shown that peers can
find files effectively through high-degree peers. It means
that by choosing peers with a large number of neighbor
peers as cooperative peers, we can expect effective query
dissemination. However, high-degree peers are closely con-
nected with each other and thus such selection leads to the
concentration of load and causes congestions.

For the efficient and effective message dissemination,
we select cooperative peers that have higher degree and
are apart from each other. Details of a proposed selection
method of cooperative peers are as follows. First, every can-
didate peer advertises its degree, i.e., the number of neigh-
bor peers, by flooding a message over a candidate network.
Based on obtained information about other candidate peers,
each peer ranks candidate peers in descending order of de-
gree. Then, a candidate peer which ranks itself highest ad-
vertises a candidacy message to all other candidate peers
over a candidate network to become a tentative cooperative
peer. On receiving a candidacy message, other candidate
peers check the rank of the tentative cooperative peer in their
ranking list. If it is not on the first in the list, a candidate
peer sends a conflict message to the tentative cooperative
peer. A tentative cooperative peer gives up its candidacy and
removes itself from the list on receiving more conflict mes-
sages than a predetermined threshold T . The threshold T is
introduced to consider the case that a candidate peer, who
accidentally missed an advertisement of a tentative cooper-
ative peer, will send a conflict message. Otherwise, a ten-
tative cooperative peer floods a confirmation message with
a TTL k in a P2P network. If any cooperative peer already
exists within the range, it sends a reject message to the tenta-
tive cooperative peer. On receiving a reject message, a ten-
tative cooperative peer gives up its candidacy and advertises
its cancellation to the other candidate peers. The tentative
cooperative peer is removed from the list and another se-
lection is conducted again. By this mechanism, cooperative
peers are kept apart from each other by more than k+1 hops.
When a tentative cooperative peer does not receive any re-
ject message in a given time, it finally becomes a cooperative
peer. To select two or more cooperative peers, each candi-
date peer removes a new cooperative peer from the list and
repeats the same procedures.

2.3 Finding Other P2P Networks

A newly chosen cooperative peer first finds a candidate peer
in other P2P networks by using the i3 network, which me-
diates communications among overlay networks. A coop-
erative peer sends a trigger message containing a service
identifier and its address to the i3 network. The last bits of
the service identifier, which are used as an identifier of a

2322
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

P2P network and a candidate peer, are generated at random
to find arbitrary P2P network registered in the i3 network.
When a cooperative peer receives a packet message which
matches the trigger message by inexact matching where the
packet message has a service identifier matching the longest
pattern of bits with the trigger message, it sends a cooper-
ation request to the candidate peer, i.e., the sender of the
packet message, in another P2P network. Next, the selec-
tion of a cooperative peer is initiated by the candidate peer
in a newly found P2P network. Then, the cooperation re-
quest is forwarded from the candidate peer to a new coop-
erative peer. Finally, a logical link is established between
those cooperative peers.

2.4 Decision of Starting Cooperation

The decision to start cooperation is made taking into ac-
count some criteria, such as the compatibility between P2P
file-sharing protocols, the size of P2P networks such as the
number of peers and files, and the type of files shared in P2P
networks.

When application protocols are different, cooperative
peers must convert one protocol into the other. Therefore, it
is desirable that protocols are the same or compatible to re-
duce the load on cooperative peers. When P2P networks are
different in their size, peers in a larger P2P network cannot
expect the benefit from the cooperation very much. How-
ever, the newly introduced load from a smaller cooperative
P2P network is considered not much. On the other hand,
peers in a smaller P2P network can share and find more files
by the cooperation, but they receive a considerable amount
of search messages from a larger P2P network. Therefore,
cooperative peers must consider the trade-off between the
benefit in the application-level QoS and the cost in the in-
creased load by the cooperation. When the type and cate-
gory of files shared in P2P networks are different, the ef-
fect of cooperation is rather small from the viewpoint of
the application-level QoS. Therefore, it is desirable that P2P
networks sharing similar files such as movies, music, and
documents cooperate with each other. However, as men-
tioned in Sect. 1, it is worth cooperating with a different P2P
network from a system-oriented viewpoint.

A cooperative peer obtains that information and defines
priorities to each of them. When the weighted sum is beyond
a threshold for both cooperative peers, the cooperation is
started. We should note that weight values and the threshold
are determined by an application and details of its strategy
and policy are left as one of future research topics.

2.5 Relaying Messages and Retrieving Files

In the following, we call a P2P network where a search mes-
sage is originated a guest network, and another P2P network
a host network. In Fig. 2, P2P network 1 is a guest network
served by a host network, i.e., P2P network 2. A search
message sent from a peer is disseminated over a guest net-
work by a flooding scheme. When a search message reaches

a cooperative peer, it looks up its local cache. Only if a de-
sired file is not found in the cache, the search message is
forwarded to a cooperative peer in a host network, after pro-
tocol conversion is applied if needed. At this time, the TTL
value of the search message is decremented by one as in
normal forwarding. A cooperative peer in a host network
disseminates the search message over the host network by
flooding. When there are two or more pairs of cooperative
peers among guest and host networks, the same search mes-
sage would be relayed to a host network. To eliminate the
duplication, search messages have the same identifier inde-
pendently of cooperative peers they traverse even if they are
applied protocol conversion. Peers in a host network silently
discard duplicated search messages with the same identifier.

If a file is found in a host network, a response mes-
sage is generated by a provider peer and it reaches a co-
operative peer in a host network along a reverse path of
the corresponding search message. A cooperative peer in
a host network transmits the response message to a coopera-
tive peer in a guest network via a logical link, after protocol
conversion if needed. In the case that a different protocol
is used for file retrieval, a cooperative peer in a guest net-
work caches a response message and replaces the address of
a provider peer with its own address in the response mes-
sage. A response message reaches the source peer of the
search message along a reverse path of the search message
over a guest network. The searching peer establishes a con-
nection to a provider peer and obtains a file. In the case
that a protocol for file retrieval is different, the peer regards
a cooperative peer as a provider peer. Then, the coopera-
tive peer retrieves the file from the original provider peer on
behalf of the searching peer. Finally, the file is sent to the
searching peer. Therefore, peers do not need to recognize
such cooperation to receive the benefit of the cooperation.

2.6 Caching Mechanism in Cooperative Peer

When P2P networks cooperate with each other, the load on
peers increases because of the increased number of search
messages injected by a guest network and that of response
messages generated in a host network to answer them. More
harmfully, those tremendous amounts of messages concen-
trate on cooperative peers and a logical link established
among them. They cause congestion and make coopera-
tive peers and logical links overloaded. In this paper, we
introduce a caching mechanism as one of functions of a co-
operation program.

There are benefits in caching meta-information of files
available in a host network at a cooperative peer of a guest
network. First, the load on a host network is decreased, since
it does not need to receive and respond search messages that
it has already answered. Second, the load on a logical link
is also decreased, since search messages which hit a local
cache at a cooperative peer of a guest network do not tra-
verse the link and cache-hits further suppress the generation
of response messages. Third, the load on cooperative peers
is also decreased. For one search message forwarded to a

KONISHI et al.: DESIGN AND EVALUATION OF A COOPERATIVE MECHANISM FOR PURE P2P FILE-SHARING NETWORKS
2323

host network, they would receive a large number of response
messages, if the search is for a popular file. Fourth, the re-
sponse time of search is decreased, since a peer does not
need to explore a host network for a file.

A peer has a local cache of the limited capacity. In
usual P2P file-sharing systems, each of peers that have a de-
sired file generates a response message to answer the search
message. Therefore, a search message for a popular file
brings a large number of response messages to a coopera-
tion peer. Consequently, when the whole of the cache is
used to deposit meta-information using a LRU algorithm,
it will easily be occupied by meta-information of popular
files. However, popular files are easily found in a guest P2P
itself. Therefore, to avoid occupation of a cache with meta-
information of popular files, we consider to put a limit on
the number of meta-information for each file.

A cache has Q entries. Each entry consists of a file-ID,
a time stamp of the entry (file-TS) and a list of P file holders.
Each file holder also has a time stamp (holder-TS) as shown
Fig. 3. Therefore the size of the whole cache amounts to
Q × P meta-information. For easier discussions and experi-
ments, we only consider a set of a file-ID and holder-IDs as a
meta-information, but our scheme can easily extended to the
case with other form of meta-information such as attributes
and keywords.

When a response message reaches a cooperative peer at
time T , the cooperative peer obtains a file-ID and a holder-
ID from the message. If there is no entry of the same file-ID
in a cache, a new entry is made for the meta-information.
When there are already Q entries in a cache, the entry with
the oldest file-TS is replaced with the new entry. A file-TS
of the new entry of a file-ID and a holder-TS of a holder-
ID of the entry are set at T . If the meta-information of the
same file-ID is in the cache, the file-TS is renewed with T .
Then, a list of file holders is investigated to see whether there
already is the same holder-ID or not. If there is, a holder-
TS of the holder-ID is set at T . Otherwise, the holder-ID is
added to the list with a new holder-TS, or the holder-ID with
the oldest holder-TS is replaced with the new holder-ID in a
full list.

On receiving a search message from peers in the same
P2P network, a cooperation peer first examines its local
cache. If there is a match in the cache, it generates a re-

Fig. 3 Construction of a cache mechanism.

sponse message constituting a list of file holders and sends
it back to the requesting peer via the reversed path that the
request message traversed. At the same time, the timestamp
of the entry of the file-ID is updated with the current time.
Otherwise, the search message is forwarded to a host net-
work.

2.7 Decision of Finishing Cooperation

Cooperation of P2P networks is terminated by disconnec-
tion of all logical links established between all pairs of co-
operative peers. A logical link is maintained by the soft-
state principle. When no message is transmitted through
a logical link for a predetermined duration of time S , it is
disconnected. In addition, a peer intentionally disconnects
a logical link when it considers that it pays too much for
the cooperation. As a consequent of the cooperation, which
was initiated by a peer itself, the peer helps peers in a co-
operating network in finding files by relaying search and re-
sponse messages. Taking into account the trade-off between
the benefit and the cost of the cooperation, a peer decides
whether it maintains the link or not. For example, a coop-
erative peer monitors the number of outgoing messages and
that of incoming messages, then compare their ratio to the
threshold R, which is determined by an application or a user.
We should note here that details of criteria are left as one of
future research topics.

3. Simulation Evaluation

In this section, we conduct several preliminary simulation
experiments to evaluate our proposed mechanism. To see
what happens when two P2P networks cooperate with each
other, we consider two cooperative and static P2P networks
of the same size.

3.1 Simulation Environments

We generate two scale-free networks of 10,000 peers based
on BA model [13]. We assume that logical links among
peers have infinite capacity and zero latency. We consider
static and stable networks where there is no change in their
topologies due to joins and leaves of peers. There are 5,000
kinds of files in both P2P networks. Their popularity is de-
termined by Zipf distribution of α = 1.0. The number of
files also follows Zipf distribution of α = 1.0, where the
number of the least popular file is 1. For example, in a P2P
network of 10,000 peers, there are 5,000 kinds of 43,376
files and the number of the most popular file is 5,000. Fig-
ure 4 illustrates the cumulative distribution of the number
of files against the popularity. Files are placed on randomly
chosen peers. A search message is generated at a randomly
chosen peer for a file determined in accordance with the
popularity. It is disseminated by flooding within the range
limited by TTL of 7, the default value of Gnutella. To keep
the distribution of files to follow Zipf, a peer does not re-
trieve a file in our evaluation. In all cases, 20,000 search

2324
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

Fig. 4 CDF of the number of files against the popularity.

messages are generated in P2P networks.
The number of cooperative peers is set at 10. There-

fore, there are ten logical links among P2P networks. Co-
operative peers are chosen among all peers, that is, all peers
are candidate peers in our simulation experiments. A cache
of a cooperative peer has the capacity of Q = 50 entries
of file-IDs, each of which maintains a list of up to P = 10
holder-IDs. For comparison purposes, we conducted sim-
ulation experiments for different mechanisms. “Descend-
ing Order of Degree” in the following figures corresponds
to the degree-dependent selection where cooperative peers
are chosen in a descending order of degree. In “random,”
cooperative peers are chosen at random. “Uncooperative”
indicates the result of the case where there is no coopera-
tion. “Proposal (distance ≥ j)” shows performance of our
proposal where cooperative peers are chosen in descending
order of degree and they are apart from each other by at least
j hops. In this case, a TTL value of a confirmation message
is set at j − 1. Metrics of our evaluation are the number of
found file holders, the search latency, and the load on peers.
The number of found file holders is defined as the average
number of file holders found in P2P networks per search
message. The search latency corresponds to the number of
hops between a searching peer and the nearest file holder
in P2P networks. The load on peers is the average number
of times that a peer sends and receives search and response
messages.

3.2 Evaluation of Number of Found File Holders

Figure 5 illustrates the relationship between the number of
found file holders and the file popularity. It is shown that by
connecting two networks by the degree-dependent selection
or our proposal, a peer can find twice the number of uncoop-
erative networks. In addition, it can be seen that the number
of found file holders of “Random” is almost the same as
that of “Uncooperative.” It means that the cooperation of
P2P networks by randomly-chosen cooperative peers does
not improve the application-level QoS very much. Since
the majority is low-degree peers in a power-law network, a
random selection algorithm often chooses low-degree peers
as cooperative peers which cannot effectively disseminate

Fig. 5 Relationship between the number of found file holders and the file
popularity.

search messages over a host P2P network. The reason of
step-shaped lines in Fig. 5 is that the number of files, which
follows Zipf distribution, takes integer values based on the
popularity.

3.3 Evaluation of Search Latency

Figure 6(a) illustrates the relationship between the number
of hops to the nearest file holder and the file popularity. It
is shown that the number of hops is almost the same among
mechanisms. Especially, we should notice that caching at a
cooperative peer does not contribute to faster search in com-
parison with results of no-cache cases shown in Fig. 6(a).
This is because that the average rate of cache hit at a coop-
erative peer is about 40% in simulation experiments. When
we increase the capacity from 50 entries to 500 entries, the
search latency to receive the first response message is re-
duced for popular files as shown in Fig. 6(c). In this case,
the average hit rate is about 70%.

However, the cache capacity of 500 entries is 10%
of 5,000 kinds of files available in the P2P networks. In
reality, about 10,000,000 to 100,000,000 are shared in a
P2P network [14] and maintaining a cache of 1,000,000
to 10,000,000 entries costs too much against the improve-
ment of one-hop delay. Therefore, we conclude that caching
meta-information at cooperative peers does not provide
peers with a higher application-level QoS in term of the
search latency. Next, we evaluate the effect of caching from
a system-level point of view.

3.4 Evaluation of Load on Peers

Figure 7 illustrates the distribution of the number of times
that a peer receives duplicated search messages. The dupli-
cated search messages are redundant and lead to the waste
of physical network resources and the processing power of
peers. In comparison with “Descending Order of Degree,”
our proposal can reduce the number of duplicated messages
especially at high-degree peers. In P2P networks used in
simulation experiments, most of high-degree peers are con-
nected with each other and form the core of a P2P network.
In “Descending Order of Degree,” since cooperative peers

KONISHI et al.: DESIGN AND EVALUATION OF A COOPERATIVE MECHANISM FOR PURE P2P FILE-SHARING NETWORKS
2325

(a) Q = 50

(b) no cache

(c) Q = 500

Fig. 6 Relationship between the number of hops and the file popularity.

are selected purely based on their degree, they quickly flood
the core of a P2P network with copied and duplicated search
messages. On the other hand, in our proposal, cooperative
peers are apart from each other. Then, concentration of the
load on high-degree peers are avoided at the sacrifice of
slight increase of the load on medium-degree peers which
are chosen as cooperative peers.

On the other hand, Fig. 8 illustrates the distribution of
the number of times that a peer sends and receives search
and response messages including duplicated messages. As
Fig. 8 shows, the load on high-degree peers, which are cho-
sen as cooperative peers, is high and increases as the number
of hops between cooperative peers increases in our proposed
methods. However, the load on lower-degree peers becomes
lower than that of “Descending Order of Degree.” Although
not shown in a figure, since peers with lower degree are the

Fig. 7 Distribution of the number of duplicated search messages.

Fig. 8 Distribution of the load on peers with caching.

Fig. 9 Distribution of the load on peers without caching.

majority in P2P networks, the total and average load on a
P2P network is much lower with our proposal than “De-
scending Order of Degree” by about 8.9%. In comparison
with results of the case without cache in Fig. 9, it is obvious
that our caching mechanism considerably reduces the load
on peers as we intended. Especially, the load on the high-
degree peers becomes about the half. The most of messages
that a cooperative peer handles is response messages. By
introducing a cache, a cooperative peer can avoid receiving
a large number of response messages from a host network.

2326
IEICE TRANS. COMMUN., VOL.E89–B, NO.9 SEPTEMBER 2006

4. Conclusion

In this paper, in a context of the overlay network symbiosis,
we proposed a mechanism for pure P2P networks of file-
sharing applications to cooperate with each other. Through
simulation experiments, it was shown that application-level
QoS in term of the number of found file holders was im-
proved by selecting high-degree peers as cooperative peers.
Furthermore, it was shown that by keeping cooperative peers
apart from each other, the redundant load on the P2P net-
work was reduced. A caching mechanism of cooperative
peer was shown to be effective in reducing, the load on co-
operative peers, but it did not contribute to faster search.

As future research works, we first propose an algorithm
to decide to start and finish the cooperation among P2P net-
works. We also investigate behaviors of cooperation among
dynamic P2P networks, which change their topology as con-
sequences of cooperation. Furthermore, we should evaluate
influences of cooperation to a physical network.

Acknowledgements

This research was supported in part by “New Information
Technologies for Building a Networked Symbiosis Environ-
ment” in The 21st Century Center of Excellence Program
of the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

[1] L. Qiu, Y.R. Yang, Y. Zhang, and S. Shenker, “On selfish routing
in Internet-like environments,” Proc. ACM SIGCOMM Conference
2003, pp.151–162, Aug. 2003.

[2] M. Seshadri and R.H. Katz, “Dynamics of simultaneous overlay net-
work routing,” Technical Report of Electrical Engineering and Com-
puter Sciences (EECS), University of California Berkeley (UCB),
UCB/CSD-03-1291, Nov. 2003.

[3] M. Kwon and S. Fahmy, “Toward cooperative inter-overlay net-
working,” 11th IEEE International Conference on Network Proto-
cols (ICNP), poster, Nov. 2003.

[4] M. Kwon and S. Fahmy, “Synergy: An overlay Internetworking ar-
chitecture and its implementation,” Proc. 14th IEEE International
Conference on Computer Communications and Networks (ICCCN),
pp.401–406, Oct. 2005.

[5] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Inter-
net indirection infrastructure,” Proc. ACM SIGCOMM Conference
2002, pp.73–88, Aug. 2002.

[6] A. Nakao, L. Peterson, and A. Bavier, “A routing underlay for over-
lay networks,” Proc. ACM SIGCOMM Conference 2003, pp.11–18,
Aug. 2003.

[7] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Re-
silient overlay networks,” Proc. 18th ACM Symposium on Operat-
ing Systems Principles (SOSP), pp.131–145, Oct. 2001.

[8] N. Wakamiya and M. Murata, “Toward overlay network symbiosis,”
Proc. Fifth IEEE International Conference on Peer-to-Peer Comput-
ing (P2P2005), pp.154–155, Aug. 2005.

[9] H. Fu, N. Wakamiya, and M. Murata, “Proposal and evaluation of a
cooperative mechanism for hybrid P2P file sharing networks,” Proc.
4th IASTED International Conference on Communications, Inter-
net, and Information Technology, pp.7–13, Oct. 2005.

[10] J. Konishi, N. Wakamiya, and M. Murata, “Proposal and evaluation
of a cooperative mechanism for pure P2P file sharing networks,” 2nd
International Workshop on Biologically Inspired Approaches to Ad-
vanced Information Technology (Bio-ADIT), pp.33–47, Jan. 2006.

[11] M.E.J. Newman, “The structure and function of complex networks,”
SIAM Review, vol.45, no.2, pp.167–256, 2003.

[12] L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman,
“Search in power-law networks,” Phys. Rev. E, vol.64, 046135, Sept.
2001.

[13] A.L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol.286, pp.509–512, Oct. 1999.

[14] C.H. Wu, “Peer-to-peer systems: Macro-computing with micro-
computers,” 3rd International Conference on Open Source, July
2003.

Junjiro Konishi received the M.E. degree
in the Information and Computer Sciences from
Osaka University, Osaka, Japan, in 2006. He
studies information networking and his research
work is in the area of overlay networks.

Naoki Wakamiya received the M.E. and
Ph.D. degrees from Osaka University in 1994
and 1996, respectively. He was a Research
Associate of Graduate School of Engineering
Science, Osaka University from April 1996 to
March 1997, a Research Associate of Educa-
tional Center for Information Processing from
April 1997 to March 1999, an Assistant Profes-
sor of Graduate School of Engineering Science
from April 1999 to March 2002. Since April
2002, he is an Associate Professor of Graduate

School of Information Science and Technology, Osaka University. His re-
search interests include overlay networks, mobile ad-hoc networks, and
wireless sensor networks. He is a member of IPSJ, ACM, and IEEE.

Masayuki Murata See this issue, p.2280.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

