
Is tampered-TCP really effective for getting higher throughput in the Internet?

Junichi Maruyama Go Hasegawa Masayuki Murata

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka Suita, Osaka 565-0871, Japan

{j-maruyama, hasegawa, murata}@ist.osaka-u.ac.jp

Abstract

This paper examines the effectiveness of tampered-TCP
whose congestion control mechanism has been modified by
malicious users for higher than the normal TCP through-
put. In this paper, We focus on a tampered-TCP in which
the increase and decrease ratio of the congestion window
size were changed during the congestion avoidance phase.
The performance of the tampered-TCP was examined based
on a mathematical analysis and simulation given the co-
existing of tampered-TCP and TCP Reno connections in
the network. The following characteristics of the tampered-
TCP were found: (1) when the increase ratio is larger than
2 packets per RTT, the throughput is significantly degraded
due to many timeouts; (2) lowering the decrease ratio is
effective for the throughput improvement; and (3) the effec-
tiveness of lowering the decrease ratio is less than the ill-
effects encountered when the increase ratio is augmented.
We conclude that the tampered-TCP would self-destruct in
many parameter regions, and there is few situation where
the tampered-TCP obtains much higher throughput.

1. Introduction

Currently, most Internet traffic is carried via the Trans-
mission Control Protocol (TCP) [1]. The congestion con-
trol mechanism of TCP allows the Internet to provide fair
and unstoppable services without any collapse due to an ex-
treme increase in traffic. The congestion control mechanism
of TCP is defined by RFC [2], and its implementation in
operating systems is based on this document. Therefore, if
two users, with different operating systems, should share a
bottleneck link in the network, each user can obtain a fair
throughput despite the minor implementation differences of
the protocol in the two operating systems. However, since
TCP works at the end hosts, it is easy for users to modify
its behavior, especially for those with open source operat-
ing systems. Thus, it is likely that there exists many kind
of TCP variants, created by malicious users for higher than
normal throughput [3–5]. In this paper, we will refer to such
modified TCPs astampered-TCPs.

Generally, when modifications to TCP congestion con-
trol mechanisms are proposed, the effects of those modifi-
cations are compared with the original TCP Reno and are
evaluated based on the performance where both the origi-
nal and modified TCPs co-exist on the same network [6–
10]. However, malicious users can selfishly modify TCP
behavior, focusing only on increasing their own through-
put. When the population of tampered-TCPs increases in
a network, these tampered-TCP connections may unfairly
monopolize network bandwidth, causing the normal TCPs
to suffer from low throughput.

On the other hand, such tampered-TCPs may not work
well in the actual Internet environment. For example, by
augmenting the increase ratio of the congestion window
size, the number of packets that are simultaneously injected
into the network increases rapidly. This results in increased
packet loss due to congestion within the network, which
leads to degraded throughput. Thus, a tampered-TCPself-
destructs, when its behavior causes it to send data packets
more aggressively than normal TCP Reno connections.

In this paper, the effects of a tampered-TCP on a network
shared with normal TCP Reno connections were sought to
determine if the tampered-TCP exhibits self-destructive be-
havior under various situations. In addition, proofs showing
that the low cost modification of TCPs does not work are
presented by considering a tampered-TCP, which changes
the increase and decrease ratio of the congestion window
size during the congestion avoidance phase, and we call
such TCP variant just tampered-TCP. There are two reasons
for choosing such a tampered-TCP. Firstly, for malicious
users, it is comparatively easy to modify the increase and
decrease ratio of the congestion window size in the TCP
source code. Secondly, it is possible for researchers to in-
vestigate the behavior of the modified TCP by mathematical
analysis [11, 12].

In this paper, we employed mathematical analysis and
simulation experiments to evaluate tampered-TCP charac-
teristics. For the mathematical analysis, the analysis pre-
sented in [11] was used to derive the average throughput of
the tampered-TCP and TCP Reno connections when they
share a bottleneck link, and, hence, explain how the parame-
ters of the tampered-TCP affect its performance and fairness
compared to normal TCP Reno connections. The accuracy
of the mathematical analysis was confirmed using simula-
tion experiments. Based on the results of the simulation
experiments, the following characteristics of the tampered-
TCP were identified: (1) when the increase ratio is larger
than two packets per Round Trip Time (RTT), the through-
put degraded significantly due to many timeouts, (2) lower-
ing the decrease ratio is effective for throughput improve-
ment, (3) the effectiveness of lowering the decrease ratio is
less than ill-effects encountered when the increase ratio is
augmented. The discussion section shows that little region
exists where the tampered-TCP can improve the throughput.

2. Mathematical analysis

2.1 Network model and evaluation metric

Figure 1 depicts the network model that was used for
the mathematical analysis and simulation experiments. The
network model consists of sender and receiver hosts us-
ing TCP Reno connections, sender and receiver hosts using

Figure 1. Network model

tampered-TCP connections, two routers (RA andRB) with
a droptail buffer, and links interconnecting the hosts and
routers. The bandwidth of the link between the routerRA
and the routerRB isµ Mbps, the buffer size at the routerRA
is B packets, the propagation delay between the sender and
receiver hosts isτ sec, the bandwidth of the links between
the tampered-TCP hosts and routers isµt Mbps, and that
between the TCP Reno hosts and the routers isµR Mbps.
There arent tampered-TCP connections andnR TCP Reno
connections. We assume that the sender hosts have an in-
finite amount of data to send and continue transmitting as
much data as is allowed by their congestion window sizes.

To evaluate the effectiveness of the tampered-TCP, the
throughput ratio was introduced as an evaluation metric. It
is defined as:

Throughput ratio = (Throughput of tampered-TCP)
(Throughput of TCP Reno) (1)

When this value is greater than 1, the tampered-TCP is said
to work effectively.

2.2 Behavior of TCP Reno and tampered-
TCP

When triggered by a packet loss event, TCP Reno will
change its congestion window size [11, 12]. Figure 2 shows
a typical case in a network where both TCP Reno and
tampered-TCP connections co-exist. Here, we define the
interval from the (i-1)-th packet loss event to thei-th packet
loss event as thei-th cycle. We further divide thei-th cy-
cle into RTTs and consider the congestion window size for
each RTT. The congestion window size of TCP Reno at the
j-th RTT of thei-th cycle is defined asWR(i, j).

The congestion control mechanism of the TCP Reno
consists of two phases: the slow start phase and the con-
gestion avoidance phase. For each phase, TCP Reno uses
a different algorithm for increasing the congestion window
size. In the slow start phase, TCP Reno increases its win-
dow size by one packet on receiving an ACK packet. On the
other hand, in the congestion avoidance phase, TCP Reno
increases its window sizeWR(i, j) by 1/WR(i, j) packets
when it receives an ACK packet. Focusing on the change of
the congestion window size in every RTT,WR(i, j) can be
derived as follows:

WR(i,j)=

(

2WR(i, j − 1), if WR(i, j − 1) < SR(i)
WR(i, j − 1) + 1, if WR(i, j − 1) ≥ SR(i) (2)

whereSR(i) is an ssthresh value in thei-th cycle at which
TCP Reno changes its phase from the slow start phase to
the congestion avoidance phase.

When packet losses occur in the network, TCP Reno de-
tects them either by a retransmission timeout or by receiving
triple duplicate ACK packets (three or more ACK packets

Figure 2. The change in the congestion win-
dow size during the i-th cycle

with the same sequence number) and retransmitting them.
If the packet losses are detected by the retransmission time-
out, TCP Reno sets its congestion window size to 1 packet
and change its phase to the slow start phase. On the other
hand, if packet losses are detected by the duplicate ACK
packets route, then TCP Reno sets its congestion window
size to half of that just before the packet loss. In both cases,
TCP Reno setsSR(i) to half of the congestion window size
just before the detection of the packet losses.

The behavior of the tampered-TCP is almost identical to
that of TCP Reno. However, in the congestion avoidance
phase, the increase speed of the congestion window size is
different than that in a TCP Reno. The congestion window
size of a tampered-TCP at thej-th RTT of thei-th cycle was
defined asWt(i, j). Then, when a tampered-TCP receives
an ACK packet, it increases its congestion window size by
α · 1/Wt(i, j), that isα times faster than TCP Reno. This
behavior can be described as follows:

Wt(i,j)=

(

2Wt(i, j − 1), if Wt(i, j − 1) < St(i)
Wt(i, j − 1) + α, if Wt(i, j − 1) ≥ St(i)

(3)

whereSt(i) is an ssthresh value of the tampered-TCP in
the i-th cycle. When packet losses occur in the network,
the tampered-TCP detects and retransmits them in the same
way as a TCP Reno. However, when packet losses are de-
tected by duplicate ACK packets, the tampered-TCP sets its
congestion window size toβ (0.5 ≤ β ≤ 1) times of that
just before the packet loss. In both cases, the tampered-TCP
setsSt(i) to β times of the congestion window size just be-
fore the detection of the packet losses.

2.3 Analysis

In the analysis, the cyclic changes in the congestion win-
dow size for tampered-TCP and TCP Reno connections
were modeled as being triggered by packet loss events (Fig-
ure 2). Thus, the average throughput values can be cal-
culated. It was assumed thatnR TCP Reno connections
behave identically, and thatnt tampered-TCP connections
also behave identically. Note that this assumption is reason-
able when a droptail buffer is used at the bottleneck link.

The congestion window sizes at the beginning of thei-
th cycle, corresponding toWR(i, 1) andWt(i, 1), are equal

to those at the end of the (i-1)-th cycle. The congestion
window sizes of both connections grow according to Equa-
tions (2) and (3). When the sum of the congestion window
sizes becomes larger than the bandwidth-delay product of
the network (2τµ here), then the excess packets begin to
accumulate at the router buffer. Finally, packet losses occur
when the buffer is fully utilized. Assuming that the packet
losses occur at theL(i)-th RTT of thei-th cycle, the follow-
ing equations are satisfied:

nRWR(i, L(i) − 1) + ntWt(i, L(i) − 1) ≤ 2τµ + B

nRWR(i, L(i)) + ntWt(i, L(i)) > 2τµ + B (4)

Then,L(i) is given by:

L(i) =
(2τµ + B) − nRWR(i, 1) + ntWt(i, 1)

ntα + nR
(5)

SinceD(i) denotes the number of dropped packets due to
buffer overflow at the end of thei-th cycle, thenD(i) is
given by:

D(i) = nRWR(i, L(i)) + ntWt(i, L(i)) − (2τµ + B)

Furthermore, the number of dropped packets in each
TCP Reno connection is denoted byDR(i) and in each
tampered-TCP connection byDt(i). By assuming that the
ratio of DR(i) andDt(i) is equal to the ratio of their con-
gestion window sizes at the packet loss events, the following
equations can be derived:

DR(i) =
WR(i, L(i))

nRWR(i, L(i)) + ntWt(i, L(i))
D(i)

Dt(i) =
Wt(i, L(i))

nRWR(i, L(i)) + ntWt(i, L(i))
D(i)

Next, the congestion window size of each connection
just after the packet losses was derived. In this analysis,
since it can be assumed that droptail routers are used, the
packets are dropped due to buffer overflow at the routerRA
in a bursty fashion. Thus, we assume D(i) > 1. When
three or more packets are dropped within a TCP connec-
tion window, the first two packets are transmitted by the
fast retransmit algorithm, followed by a timeout and then
the retransmission of the remaining packets [13]. Since
the tampered-TCP behaves the same as TCP Reno during
a packet loss event, the congestion window sizes of TCP
Reno and tampered-TCP connections after the first packet
retransmission are determined by:

WR(i, L(i) + 1) = WR(i,L(i))
2 ,Wt(i, L(i) + 1) = βWt(i, L(i))

Similarly, the congestion window sizes after the second re-
transmission are determined by:

WR(i, L(i) + 2) = WR(i,L(i)+1)
2 ,Wt(i, L(i) + 2) = βWt(i, L(i) + 1)

After the second retransmission, the retransmission timeout
occurs, each connection sets its congestion window size to
1, and the values of ssthresh are updated as follows:

SR(i + 1) = WR(i,L(i)+2)
2 , St(i + 1) = βWt(i, L(i) + 2) (6)

Let us now consider the congestion window size of the
tampered-TCP during a packet loss event. From empir-
ical results, the average number of dropped packets in a
tampered-TCP connection at the end of thei-th cycle is
approximated asDt(i) = α. This equation means that
for a tampered-TCP connection, timeout never occurs when
α < 3, while timeout occurs wheneverα ≥ 3. Thus,
we derive the evolution of the congestion window size of
a tampered-TCP in thei-th cycle for the two cases where
the (i − 1)-th cycle ends with and without a retransmission
timeout.

In case of no timeout (α < 3) In this case, thei-th cycle
begins with a congestion avoidance phase. At the (i-1)-th
cycle, since the number of dropped packets in the tampered-
TCP connection isDt(i − 1) = α, the tampered-TCP re-
transmitsα packets. Thus, the congestion window size at
the beginning of thei-th cycle,Wt(i, j), is given by:

Wt(i, 1) = βαWt(i − 1, L(i − 1))

From Equation (3),Wt(i, j) is derived as follows:

Wt(i, j) = βαWt(i − 1, L(i − 1)) + αj (7)

In case of timeout (α ≥ 3) In this case, since timeout
occurred at the end of the (i-1)-th cycle, thei-th cycle begins
with a slow start phase. Since the number of the dropped
packets in a tampered-TCP connection at the end of the (i-
1)-th cycle isDt(i−1) = α, the tampered-TCP retransmits
the first 2 packets by detecting duplicate ACKs. Thus, the
ssthresh value is given by Equation (6), and the congestion
window size at the beginning of thei-th cycle is 1.

By assuming that the slow start phase of thei-th cycle
ends at thess(i)-th RTT, the congestion window size at the
j-th RTT of thei-th cycle,Wt(i, j), is derived as follows:

Wt(i, j) =
{

2j , if j < ss(i)
2ss(i) + α(j − ss(i)), if j ≥ ss(i) (8)

Here,ss(i) can be calculated from Equation (3) as follows:

ss(i) = ⌊log2(β
2Wt(i − 1, L(i − 1)))⌋ (9)

From Equations (7)-(9),Wt(i, j) can be determined as fol-
lows:

Wt(i, j) =
{

βαWt(i − 1, L(i − 1)) + αj, if α < 3
β2Wt(i − 1, L(i − 1)) + α[j − ss(i)], if α ≥ 3

(10)

Finally, the average throughput for TCP Reno and
tampered-TCP connections based on the congestion win-
dow size evolutions was derived. In order to determine this,
the queuing delay at the bottleneck link buffer is needed to
obtain the precise value of RTTs in the TCP connections.
Since the number of stored packets in the buffer at thej-
th RTT of thei-th cycle is given bymax((nRWR(i, j) +
ntWt(i, j)−2τµ), 0), the queuing delay,Q(i, j), is derived
as follows:

Q(i, j) =
max((nRWR(i, j) + ntWt(i, j) − 2τµ), 0)

µ

Therefore, the average throughput of TCP RenoρR and
tampered-TCPρt is:

ρR =
P∞

i=1
PL(i)

j=1 WR(i,j)
P∞

i=1
PL(i)

j=1 (Q(i,j)+2τ)
, ρt =

P∞
i=1

PL(i)
j=1 Wt(i,j)

P∞
i=1

PL(i)
j=1 (Q(i,j)+2τ)

 0
 1
 2
 3
 4
 5
 6

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) analysis

 0
 1
 2
 3
 4
 5
 6

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) simulation

Figure 3. Analysis and simulation results for
throughput ratio (nR = 1, nt = 1, µ = 10Mbps)

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(a) analysis

 0
 1
 2
 3
 4
 5
 6
 7

 5 10 15 20

α

 0.5

 0.6

 0.7

 0.8

 0.9

 1

β

(b) simulation

Figure 4. Analysis and simulation results for
throughput ratio (nR = 10,nt = 1, µ = 50Mbps)

3 Simulation experiments and discussions

In this section, first, simulation experiments are pre-
sented that confirm the accuracy of the mathematical anal-
ysis developed in the previous section and, then, the char-
acteristics of the tampered-TCP based on the mathematical
analysis and the simulation results are discussed. In the sim-
ulation experiments, the network model shown in Figure 1,
whereµR = µt = 100 Mbps，the propagation delays of
the links between the sender/receiver hosts and routers are
all set to 5 msec, the propagation delay of the link between
the routers is 10 msec, the packet size is 1500 Bytes, and
the buffer size of the bottleneck link is twice the bandwidth-
delay product between the sender and receiver hosts.α, the
increase ratio of the congestion window size of tampered-
TCP, was varied between 1 and 20, whileβ, the decrease
ratio of the congestion window size of the tampered-TCP,
was varied between 0.5 and 1. The simulation time was
60 seconds. We used a ns-2 [14] for the simulation experi-
ments.

3.1 Confirmation of analysis results

Figure 3 shows the change in the throughput ratio, de-
fined by Equation (1), as a function ofα and β, where
nR = nt = 1 and µ = 10 Mbps. Both the analytical
and simulation results were plotted. This figure confirms
that the mathematical analysis presented in the previous sec-
tion gives a precise throughput ratio estimation. As well, it
can be seen that the tampered-TCP fails to obtain a large
throughput compared with the normal TCP Reno for almost

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

th
ro

u
g
h
p
u
t

(M
b
p
s)

α

tampered-TCP (sim)
tampered-TCP (ana)

TCP Reno (sim)
TCP Reno (ana)

(a)β = 0.5

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

th
ro

u
g
h
p
u
t

(M
b
p
s)

α

tampered-TCP (sim)
tampered-TCP (ana)

TCP Reno (sim)
TCP Reno (ana)

(b) β = 0.9

Figure 5. Throughput change of TCP Reno
and tampered-TCP with various α and β

all of the parameter region (α, β), except for the case when
α is smaller than 3 andβ is around 0.9.

Figure 4 shows the results whennR is increased to 10
andµ is increased to 50 Mbps. This setting is more realis-
tic since it assumes that there are many normal TCP Reno
connections and relatively few tampered-TCP connections.
Once more, the analytical results are almost the same as the
simulation results. As before, the tampered-TCP does not
work for most of the (α, β) parameter region. The next sub-
section based on the analytical and simulation results ex-
plains the behavior of the tampered-TCP in more detail and
reveals why the tampered-TCP is so ineffective.

3.2 Characteristics of tampered-TCP

This section helps to explain the ineffectiveness of the
tampered-TCP by presenting the relevant analytical results,
which were confirmed by simulations. Furthermore, the as-
sumptions of the mathematical analysis were validated.

3.2.1 Sensitivity toα and β

In this subsection, a single TCP Reno connection co-exists
with a single tampered-TCP connection (nR = nt = 1),
and the bottleneck link bandwidthµ is set to 10 Mbps.

Figure 5(a) plots the change of the average throughput of
the TCP Reno and the tampered-TCP connection for both
the analytic and simulation cases as a function of the value
of α whenβ is set to 0.5. We show both of simulation and
analysis results in this figure. A sharp decrease in through-
put occurs for the tampered-TCP whenα is larger than 2.
Furthermore, further increases inα cause the throughput of
the tampered-TCP connection to gradually degrade, due to
an increase in the number of dropped packets asα increases.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
h
ro

u
g
h
p
u
t

ra
io

The ratio of tampered-TCP connections

10Mbps 11connections
50Mbps 110connections

Figure 6. Throughput ratio as a function of
the ratio of tampered-TCP connections

Figure 5(b) shows the results whenβ is increased to 0.9,
which means that the tampered-TCP decreases the window
size by only 10% when a packet loss occurs. This figure
shows that forα smaller than 3, the tampered-TCP achieves
larger throughput than the TCP Reno connection. However,
asα increases above 3, a situation with a cause similar to
that seen when inβ = 0.5 occurs. Thus, the results suggest
that increasingβ is effective in increasing the performance
of tampered-TCP. However, anyα greater than 3 cancels the
effectiveness that may have been gained from an increase in
β.

By comparing Figures 3 and 4, the parameter region
where the tampered-TCP is effective does not become so
larger when the link bandwidth becomes larger. This sug-
gest that TCP variants for high-speed and long-distance net-
work such as HSTCP [15] may not work well in such net-
works. Furthermore, with parameter sets in the effective re-
gion, it is obvious that original TCP Reno flows suffer from
low throughput when co-existing such high-speed TCP vari-
ants. Therefore, we need to consider fairness property of
such TCP variants and original TCP Reno when we deploy
high-speed TCP variants in the actual networks.

3.2.2 Effect on the throughput ratio for tampered-TCP
connections

It has been shown that a tampered-TCP is not effective in
most of the parameter region (α, β). However, the results
from the previous subsections suggest that whenα is around
2 andβ is increased to about 0.9, higher throughput is ob-
tained by the tampered-TCP. This subsection considers the
situation where suchwell-configuredtampered-TCPs pro-
liferate in a network, and thus diminish its effectiveness.

Figure 6 shows the change in the throughput ratio when
there is an increase in the ratio of the number of tampered-
TCP connections to the total number of TCP connections
in the network. The results are plotted for the following 2
cases: (1) The total number of connections is 11 andµ = 10
Mbps, and (2) The total number of connections is 110 and
µ = 50 Mbps.α = 2 andβ = 0.9 were used for tampered-
TCP connections, which are the best values determined in
the previous subsections. This figure shows that as the num-
ber of tampered-TCP connections increases, the effective-
ness sharply diminishes. In the case of 110 connections,
the throughput ratio decrease below 1.0, which implies that
using a tampered-TCP leads to self-destruction in its perfor-
mance.

4 Conclusion and future works
In this paper, the performance of the tampered-TCP,

which change the increase and decrease ratio of the conges-
tion window size, was evaluated. It was shown that when

the increase ratio is larger than 2 packets per RTT, TCP re-
transmission timeouts occur frequently, and the throughput
diminishes sharply. It was also established that lowering
the decrease ratio is beneficial whenever the increase ratio is
smaller than 3. However, it was demonstrated that the effec-
tiveness rapidly decreases if there are too many tampered-
TCP connections, which even use the well-configured pa-
rameters.

One possible way to increase the throughput of the
tampered-TCP is to enable the TCP’s SACK option [16].
Thus, we are now evaluating the effectiveness of the SACK
option. Preliminary results show that it can effectively in-
crease the performance of the tampered-TCP. Therefore,
network mechanisms, and not endhost mechanisms, need
to be introduced in order to maintain the fairness property
currently found on the Internet. The search for this mecha-
nism will form the basis of our future work. We also plan to
investigate the performance of tampered-TCP in the actual
Internet environment.

References

[1] M. Fomenkov, K. Keys, D. Moore, and K. Claffy, “Longitudinal
study of Internet traffic from 1998-2003,” inProceedings of Winter
International Symposium on Information and Communication Tech-
nologies (WISICT 2004), Jan. 2004.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”
RFC2581, Apr. 1999.

[3] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP con-
gestion control with a misbehaving receiver,”ACM Computer Com-
munications Review, 29(5):71-78, Oct. 1999.

[4] S. Floyd and K. Fall, “Router mechanisms to support end-to-end con-
gestion control,” tech. rep., Network Research Group at LBNL, Feb.
1997.

[5] M. Baldi, Y. Ofek, and M. Yung, “Idiosyncratic signatures for au-
thenticated execution of management code,” inProceedings of 14th
IFIP/IEEE International Workshop on Distributed Systems: Opera-
tions and Management (DSOM 2003), Heidelberg, Germany, Oct.
2003.

[6] Y. R. Yang and S. S. Lam, “General AIMD congestion control,” in
Proceedings of the IEEE International Conference on Network Pro-
tocols, Nov. 2000.

[7] L. Mamatas and V. Tsaoussidis, “Protocol behavior : More effort,
more gains?,” inProceedings of Personal, Indoor and Mobile Ra-
dio Communications, 2004. PIMRC 2004. 15th IEEE International
Symposium, 125- 129 Vol.1, Sept. 2004.

[8] L.S.Brakmo, S.W.O’Malley, and L.L.Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” inProceedings
of ACM SIGCOMM ’94, 1994.

[9] T. Kelly, “Scalable TCP: Improving performance in. highspeed wide
area networks,” inProceedings of PFLDnet, 2003.

[10] Z. Zhang, G. Hasegawa, and M. Murata, “Analysis and improve-
ment of HighSpeed TCP with TailDrop/RED routers,” inProceed-
ings of IEEE/ACM International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MAS-
COTS), Oct. 2004.

[11] K. Tokuda, G. Hasegawa, and M. Murata, “Performance analysis of
HighSpeed TCP and its improvement for high throughput and fair-
ness against TCP Reno connections,” inProceedings of IEEE High
Speed Network Workshop 2003 (HSN ’03), (San Francisco), Mar.
2003.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A Simple Model and it Empirical Validation,” inPro-
ceedings of ACM SIGCOMM ’98, Vancouver, B.C., Sept. 1998.

[13] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe,
Reno, and SACK TCP,”Computre Communication Review, vol. 26,
pp. 5-21, July 1996.

[14] “NS simulator.” available athttp://www.isi.edu/nsnam/
ns/ .

[15] S. Floyd, “HighSpeed TCP for large congestion windows,”RFC
3649, Dec. 2003.

[16] E. Blanton, M. Allman, K. Fall, and L. Wang, “A conservative se-
lective acknowledgment (SACK)-based loss recovery algorithm for
TCP,” RFC3517, Apr. 2003.

