
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Int. J. Commun. Syst. (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/dac.767

A study on a receiver-based management scheme of access link
resources for QoS-controllable TCP connections

Kazuhiro Azuman,y, Go Hasegawa and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University, 1-3 Machikaneyama,

Toyonaka, Osaka 560-8531, Japan

SUMMARY

Although the bandwidth of access networks is rapidly increasing with the latest techniques such as DSL
and FTTH, the access link bandwidth remains a bottleneck, especially when users activate multiple
network applications simultaneously. Furthermore, since the throughput of a standard TCP connection is
dependent on various network parameters, including round-trip time and packet loss ratio, the access link
bandwidth is not shared among the network applications according to the user’s demands. In this thesis, we
present a new management scheme of access link resources for effective utilization of the access link
bandwidth and control of the TCP connection’s throughput. Our proposed scheme adjusts the total
amount of the receive socket buffer assigned to TCP connections to avoid congestion at the access network,
and assigns it to each TCP connection according to characteristics in consideration of QoS. The control
objectives of our scheme are (1) to protect short-lived TCP connections from the bandwidth occupation by
long-lived TCP connections, and (2) to differentiate the throughput of the long-lived TCP connections
according to the upper-layer application’s demands. One of the results obtained from the simulation
experiments is that our proposed scheme can reduce the delay of short-lived document transfer perceived
by the receiver host by up to about 90%, while a high utilization of access link bandwidth is maintained.
Copyright # 2006 John Wiley & Sons, Ltd.

KEYWORDS: TCP (transmission control protocol); access network; socket buffer; QoS (quality of service);
resource management

1. INTRODUCTION

The rapid increase in Internet users has been the impetus for the performance of backbone
networks in solving network congestion posed by increasing network traffic. However, little
work has been done in the area of improving the performance of Internet servers despite the
projected shift in the performance bottleneck from backbone networks to endhosts or access
networks. For example, busy web servers must have many simultaneous HTTP sessions, and
server throughput degrades when effective resource management is not considered, even with

Received 1 March 2004
Revised 1 June 2005
Accepted 1 July 2005Copyright # 2006 John Wiley & Sons, Ltd.

yE-mail: k-azuma@nal.ics.es.osaka-u.ac.jp

nCorrespondence to: Kazuhiro Azuma, Graduate School of Information Science and Technology, Osaka University,
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.



large network capacity. Furthermore, web proxy servers [1] must also accommodate a large
number of TCP connections, since they are usually prepared by Internet Service Providers
(ISPs) for their customers. In our previous work, therefore, we have proposed a TCP connection
resource management scheme at endhosts to solve those problems and confirmed its
effectiveness through simulation and implementation experiments [2].

On the other hand, the bandwidth of access networks is also increasing rapidly with the
latest techniques, such as Digital Subscriber Line (DSL) and Fiber to the Home (FTTH).
However, the access link bandwidth remains a performance bottleneck, especially when
users activate multiple network applications simultaneously, as shown in Figure 1. In this
figure, six TCP connections are established between a user host which becomes a TCP receiver
host, and the hosts, A;B;C;D;E and F, which correspond to TCP sender hosts. Each of those
connections corresponds to upper-layer applications such as P2P and FTP. For example,
when the access link bandwidth is 4 Mbps; which is the typical value on the current Internet in
Japan [3], 667 kbps is assigned to each TCP connection when the access link bandwidth is
fairly shared. However, since the throughput of the standard TCP connections is affected by
various network parameters, including round-trip time (RTT) and packet loss ratio, the access
link bandwidth is not shared equally among the network applications. For the same reason, we
cannot expect a differentiated throughput for all TCP connections according to the user’s
demands and the application characteristics. For example, in Figure 1, we cannot intentionally
increase the throughput of the TCP connection for P2P and FTP data transmission,
and restrict that for the cache synchronization operation which should be done in the
background.

Another problem we focus on in this thesis is the performance unfairness between short-lived
and long-lived TCP connections. When the access network link is congested and some incoming
packets are discarded, the performance of the short-lived connections degrades seriously,
compared with that of the long-lived connections [4, 5]. This problem significantly affects the
user’s perceived performance such as web document transfer delay when they activate long-lived
network applications simultaneously.

Figure 1. Bottleneck at access network.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



Therefore, in this thesis, we present a new access link resources management scheme for the
effective utilization of the access link bandwidth and the control of the performance of TCP
connections. Our proposed scheme virtually adjusts the amount of the receive socket buffer for
all TCP connections in order to avoid congestion at the access link [6, 7], and assigns it to each
TCP connection according to its characteristics and the user’s demands for the applications. All
TCP connections at the endhost are categorized into two types, which are short-lived
connections and long-lived connections. As mentioned above, since the data transfer time in
short-lived connections increases greatly when a packet loss occurs, it is necessary to prioritize
the short-lived connections, that is, to try not to discard the short-lived connection’s packets at
the access link. For long-lived connections, on the other hand, it is important to assign the
access link resources according to the applications’ characteristics and the user’s demands, as
mentioned above. Thus, the objective of our proposed scheme is to prioritize short-lived TCP
connections and differentiate the throughput of long-lived TCP connections, while keeping the
utilization of the access link.

The access link resource management scheme proposed in this thesis is implemented in a TCP
receiver host, which corresponds to the user host in Figure 1. There are two major reasons for
this choice. One is that in the congestion control mechanism of standard TCP [8, 9], a sender
host cannot exactly estimate the congestion level of the access link near a receiver host because
of the congestion control being performed by the sender host. Another reason is that we cannot
control the behaviour of TCP sender hosts to differentiate their throughputs because each TCP
connection lives independently of the other connections. That is, the best way is for the receiver
host to control the utilization of the access network resources. We also note that our proposed
scheme does not modify the congestion control mechanism of TCP, and network protocol
structures.

We also consider the situation where a bottleneck exists not at the access network link, but at
the endhost resources. We therefore combine in this thesis the access link resource management
scheme, and the endhost resource management scheme we have previously proposed [2] into an
integrated system. We can apply the integrated system to the various kinds of networks
including P2P networks [10–12], where performance bottlenecks exist at various points because
of its network dynamics.

The rest of this thesis is organized as follows: In Section 2, we mention some related works on
access link resource management and fairness issues between short-lived and long-lived
connections. In Section 3, we propose a new access link resource management scheme and
confirm its effectiveness by detailing the results we obtained in the simulation experiments in
Section 4. Finally, we present our concluding remarks in Section 5.

2. RELATED WORK

2.1. Receiver-based approaches for access link resource management

There is some research on the management of the access link resources in the previous work
[13–15]. The objectives of Reference [13] are to improve the response time of interactive network
applications and to keep a high throughput of bulk data transfer. The authors in Reference [13]
realize that by assigning a receive socket buffer to each TCP connection in consideration of the
bandwidth delay product of the access link and the size of the output buffer of the last-hop

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



router, which is connected with the access link (see Figure 1). However, since the receive socket
buffer for the long-lived connections are limited to only one packet when short-lived
connections exist in the network, the throughput of the long-lived connections may be
dramatically reduced. Another shortcoming of Reference [13] is that it requires exact knowledge
of the available buffer size and bandwidth of the access link from the last-hop router to the
endhost.

The authors of Reference [14] propose another sharing method of the access link bandwidth.
They consider the packet receiving rate at the user host as the access link bandwidth, and set the
receive socket buffer size for TCP connections to differentiate their throughput values by using
pre-defined parameters such as priority, minimal rate and weight. Since the main objective of
Reference [14] is to improve the performance of long-lived TCP connections providing
streaming services over TCP, they do not make any consideration to short-lived TCP
connections. This may bring about waste of the access link resources because the long-lived and
short-lived connections are equally treated at the TCP receiver and they are assigned the same
amount of receive socket buffer.

The authors of Reference [15] proposed delaying TCP ACK packets at the receiver hosts in
order to reduce the queuing delay at the last-hop router. However, because of the problems such
as the precision of a kernel timer, the mechanism is considered difficult to be implemented.

In Section 4, we compare the performance of the schemes in References [13, 14] with our
proposed schemes, and confirm the above-mentioned characteristics.

2.2. RTT-based approaches for congestion management

Our schemes include RTT-based approach for the congestion detection. Therefore, we
introduce the work [16] as one of the RTT-based approaches for the congestion management.
The authors of Reference [16] proposed the RTT-based approach for the congestion
management, which is named TCP Vegas. TCP Vegas dynamically increases or decreases its
congestion window size according to observed RTTs of sending packets, whereas TCP Reno
only increases its congestion window size until packet loss is detected. That is, TCP Vegas is
implemented in sender hosts. Consequently this shows that TCP Vegas is not suitable for our
purpose. Moreover, TCP Vegas only performs the congestion control of one TCP connection
and cannot take consideration of all the TCP connections managed by a certain host. This also
shows that TCP Vegas is not suitable for our purpose.

2.3. Performance improvement of short-lived TCP connections

The approaches that improve the performance of short-lived TCP connections to improve the
fairness against long-lived connections can be found in References [4, 17–19]. These schemes
generally prioritize short-lived TCP connections by additional mechanisms at the network
routers. These kinds of approaches have essential difficulties, especially in implementation
issues. One is that most of these mechanisms require the cooperation between edge routers and
core routers in the network. Another problem is that these mechanisms assume the availability
of Active Queue Management (AQM) mechanisms such as Random Early Detection (RED) [20]
and Class-Based Queuing (CBQ) [21], which cannot always be used in the current Internet. Also,
there are some problems about not the implementation but the algorithm of these mechanisms.
One is that it is essentially difficult to set up optimally some parameters of these mechanisms.
For example, in Reference [19], the discussions about the optimal value for some parameters are

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



not made. Another is that there is no AQM mechanism which realizes the fairness between the
short-lived TCP connections and the long-lived TCP connections with the realistic cost.

2.4. Endhost resource management scheme

In Reference [2], we have proposed the endhost resource management scheme. The proposed
scheme has the following two mechanisms: control of send/receive socket buffers, and control of
persistent TCP connections. As mentioned in Section 1, the objective of this scheme is to
improve the performance of an endhost such as a busy web/web proxy server. However, since
access link resources may become a bottleneck in the current Internet, the endhost resource
management scheme may not be enough to improve the Quality of Service (QoS) perceived by
the receiver host. Consequently, we need the additional scheme to manage the access link
resources, which is the focus of this thesis.

Therefore, in this thesis, we propose a new scheme for access link resource management that
solves the problems in the above approaches. Our proposed scheme prioritizes short-lived
connections and differentiates the throughput of long-lived connections in consideration of the
network applications’ QoS, without degrading the utilization of the access link bandwidth.

3. OUR APPROACH AND ALGORITHM

Our proposed scheme can be divided into two mechanisms: adjusting the amount of the receive
socket buffer for all TCP connections and assigning it to each TCP connection.

3.1. Adjusting the amount of receive socket buffer for all TCP connections

As mentioned in Section 1, this mechanism is for controlling the arrival rate of packets at the
access link and avoiding congestion there. Since the network congestion level changes
dynamically, we adjust the amount of the receive socket buffer for all TCP connections at
regular intervals. In detail, our proposed scheme periodically measures the RTTs of all TCP
connections at the receiver host, and adjusts the amount of the receive socket buffer for all TCP
connections according to the measured results as follows and shown in Figure 2:

* When the RTTs of all TCP connections do not increase, we determine that the access link
resources are still sufficient and increase the amount of the receive socket buffer for all TCP
connections.

* When the RTTs of all TCP connections increase, we decrease the amount of the receive
socket buffer for all TCP connections, since it is likely that the congestion occurs at the
access link.

* Otherwise, we do not change the amount of the receive socket buffer for all TCP
connections.

Also, our proposed scheme estimates the bottleneck link by this approach. That is to say, our
proposed scheme can determine whether a bottleneck is the access link or if it is elsewhere for
the following reason: When the RTTs of a few TCP connections increase as mentioned in the
first case, we can consider that these connections are affected by the congestion at the link
through which only these connections pass. That is to say, this congestion is considered to occur
at the link other than the access link. Therefore, if the RTTs of a few TCP connections at the

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



receiver host increase, our proposed scheme determines that the bandwidth of the link other
than the access link is a bottleneck. On the other hand, when the RTT of most TCP connections
increases, we can consider that these connections are affected by the congestion occurring at the
identical link, which corresponds to the access link in this case. Consequently, if the RTTs of all
TCP connections increase, our proposed scheme determines the access link bandwidth is a
bottleneck.

It is important that the amount of the receive socket buffer for all TCP connections be limited
to the value determined above, even when the system has sufficient memory capacity and larger
memory space can be assigned for the receive socket buffer. This is because if the receive socket
buffer size for each TCP connection is too large, the packet transmission rate of the connection
unnecessarily increases, which causes the congestion of the access link.

We also note that the meaning of virtually adjusting the amount of the receive socket buffer
for all TCP connections is to adjust the advertised window size, which reports the current
available size of the receive socket buffer to the TCP sender [8], instead of increasing/decreasing
the actual size of the receive socket buffer.

3.2. Assigning receive socket buffer to TCP connections

Before we assign a receive socket buffer to each TCP connection, we categorize all TCP
connections into short-lived or long-lived. This is because the objectives of our scheme are to
prioritize short-lived TCP connections, to differentiate the throughput of long-lived TCP
connections in consideration of the applications’ QoS, and to keep the utilization of the access
link. However, the TCP receiver cannot know whether a TCP connection is short-lived or long-
lived, since the data size transferred by the TCP connection is not informed in advance.
Therefore, in our proposed scheme, we use a threshold-based approach. That is, we use a

Figure 2. Adjustment of the amount of the receive socket buffer.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



threshold value for the receive socket buffer of each TCP connection and categorize the
connection by whether the assigned receive buffer size exceeds the threshold value or not. Since
all TCP connections are initially categorized as short-lived in this approach, these states are
expressed as ‘initial state’ instead of ‘short-lived’ and as ‘persistent state’ instead of ‘long-lived’
in our scheme. The threshold value is set to the receive socket buffer size, in case we consider all
of the TCP connections currently at the receiver host to be in a persistent state.

Then, the receive socket buffer size assigned to each TCP connection is determined as shown
in Figure 3. We first assign the receive socket buffer to initial connections preferentially, and
then to persistent connections.

(1) For initial TCP connections
We assign the receive socket buffer for initial connections to improve the arrival packet rate

from the initial connections at the receiver host. At the same time, our proposed scheme tries not
to unnecessarily reduce the throughput of persistent connections when prioritizing initial
connections. Therefore, the receive socket buffer size assigned to each initial connection is
determined in consideration of the increase algorithm of the congestion window size in TCP’s
slow start phase.

(1a) When the amount of the receive socket buffer for all TCP connections is sufficient: In this
case, the receive socket buffer required by all initial connections can be assigned. Since an initial
connection is likely to be in the slow start phase, we focus on the increase algorithm of the
congestion window size in the slow start phase to avoid degrading the throughput of persistent
connections. That is, the assigned size to the initial connection i is determined according to the
number of RTTs from the beginning of the connection, which is described as ti: Consequently,
the receive socket buffer size required by connection i in this case becomes 2 � 2ti packets.

(1b) When the amount of the receive socket buffer for all TCP connections is insufficient: In this
case, the receive socket buffer required by all initial connections cannot be assigned. Therefore,
the receive socket buffer is distributed to all initial connections proportionally to the difference

Figure 3. Assignment of receive socket buffer.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



between 2 � 2ti and the threshold value mentioned above. This is originated by the consideration
that it is necessary to prioritize TCP connections just after beginning their data transmission,
since they are likely to have small window sizes.

Here, we define the amount of the receive socket buffer for all TCP connections as B; the
number of initial connections as Nis; and the threshold value as thresholdi: Then, the receive
buffer size assigned to initial connection i; Ri; can be described by the following equations:

Ri ¼

2 � 2ti

B �
ðthresholdi � 2 � 2ti ÞPNis

j ðthresholdj � 2 � 2tj Þ

8>><
>>:

ð1a;bÞ

(2) For persistent TCP connections
It is important to consider each network application’s characteristic and user’s demands for

persistent connections to effectively utilize the access link resources. We assume that each
persistent TCP connection has a priority value pre-defined according to the user’s demands and
the application characteristics.

(2a) When the amount of the receive socket buffer for all TCP connections is sufficient: Since
the amount of the receive socket buffer for all TCP connections is larger than that required by
all initial connections, the remainder is assigned to the persistent connections according to their
priority values and RTTs.

(2b) When the amount of the receive socket buffer for all TCP connections is insufficient: In this
case, we cannot assign enough size of the receive socket buffer for the persistent connections.
However, it is necessary to assign at least the receive socket buffer of 1 mss for each connection
to avoid the TCP’s silly window syndrome [22, 23].

Here, we define the amount of the receive socket buffer for all initial connections as Tis; the
number of persistent connections as Nps; the RTT of TCP connection i as rtti; and the priority
value of each TCP connection as pi: Then, the receive socket buffer size assigned to each
persistent connection i; Ri; is described by the following equations:

Ri ¼
ðB� TisÞ �

pi � rttiPNps

j ðpj � rttjÞ

1 mssi

8><
>:

ð2a;bÞ

Also, these equations show our definition of the fairness among the long-lived TCP
connections. We consider that what a user cares is not the network applications’ RTT but the
network applications’ response time. Therefore, we define the fairness in this thesis as the access
link bandwidth shared equally by the long-lived TCP connections regardless these RTT.

4. SIMULATION EXPERIMENTS

In this section, we compare our proposed scheme with TCP Reno version, the scheme proposed
in Reference [13] and the scheme proposed in Reference [14] through simulation experiments
with ns-2 [24] and evaluate the effectiveness of our proposed scheme. In this section, we denote
the scheme proposed in Reference [13] Spring and that in Reference [14] Mehra. We enhance the
TCP Reno version and realize our proposed scheme. However, since our proposed scheme

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



controls the receive socket buffer in one receiver host, our proposed scheme is effective with all
TCP variants.

4.1. Simulation scenarios

We consider four scenarios in the simulation experiments, in which we change the network
parameters and traffic pattern. In this subsection, we explain the details of each scenario and its
objectives.

We explain each scenario’s objectives and each situation which we assumed as follows:

* Scenario-1 (The Ideal Case) assumes the most general case. Today, Internet users connect
via ADSL whose up/down link bandwidth is about 500 kbps=4 Mbps: Moreover, while
they enjoy perusing some web sites, they make use of some bulk file transfer services as
network update without realizing them. Since we consider the situation where the
bottleneck exists at the access network link, we set up the backbone network parameters so
that they may not become the bottleneck.

* Scenario-2 (Large Differences in RTTs and Small Buffers) assumes the case that the
receiver host utilizes a very busy ISP and the buffer size assigned to the receiver host’s
access link at the last-hop router is very small. Also, in this case, when the receiver host
accesses the very popular contents server provided by the ISP, we assume the delay
between the receiver host and the server will be very large. In this scenario, we evaluate the
characteristics of our proposed scheme in a situation where a bottleneck is not the access
link bandwidth but the buffer size at the last-hop router. That is, if we focus only on the
router buffer size in the control mechanism, the under-utilization of the access link may
occur especially when the TCP connections have large RTTs. On the other hand, if we
focus primarily on the RTTs of the TCP connections, the buffer at the last-hop router may
overflow.

* Scenario-3 (A Large Number of Long-Lived Connections) assumes that P2P application
simultaneously downloads a large file from multiple nodes. That is, in this scenario,
although many long-lived TCP connections are established between a receiver host and
many P2P nodes, a user enjoys perusing a web site. We want to confirm the effect of the
number of long-lived connections. Generally, it affects the congestion level of the access
link and the frequency of buffer overflow.

* Scenario-4 (Existence of UDP Streaming at the Access Link) assumes UDP streaming
services, for example Voice over IP (VoIP), which utilizes UDP packets to transport voice.
In this scenario, we confirm the changes of the bandwidth available for TCP connections at
the receiver host as this UDP traffic may affect the performance of the proposed scheme,
Spring and Mehra. The rate of this UDP traffic is changed as follows: 1 Mbps in 50–150 s
and 500–600 s; 2 Mbps in 150–250 s and 600–700 s; and 3 Mbps in 250–350 s and
700–800 s:

* Scenario-5 (Difference of Long-Lived Connections) assumes the download of some files
from two or more servers for the network update. We consider that it is possible to
perform the network update efficiently, if the priority according to the order of updating
each file is set to the download of one from each server. In this scenario, we confirm the
effectiveness of differentiating the throughput of the long-lived TCP connections according
to the upper-layer application’s demands. In this scenario, we do not evaluate the

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



effectiveness of Spring, because Spring is not a scheme in the consideration of the priority
of network applications according to the user’s demands.

In Scenario-1, Scenario-2, Scenario-3 and Scenario-4, our proposed scheme (and Spring and
Mehra for comparison) is implemented at the receiver host. The flow of these simulations is as
follows. The bulk data transfers are performed from the sender hosts A–C (or F in Scenario-3)
to the receiver host (long-lived connections) so that the access link bandwidth be fully utilized.
At the same time, 100 short-lived connections, each of which transfers 30 KBytes data, start
being activated from the sender host D (or G in Scenario-3) at 100 s with random intervals (5 s
average). Also, in Scenario-5, our proposed scheme (and Mehra for comparison) is implemented
at the receiver host. The three bulk data transfers are performed from the sender host A to the
receiver host (long-lived connections). At the same time, 2 long-lived connections, each of which
transfer the bulk data for 30 s; start being activated from the sender host B at 25 and 45 s: The
interval to check RTTs of TCP connections in our proposed scheme is 5 s and we set the
parameters as in Spring and Mehra as summarized in Table II, except that the parameters of
Mehra (priority, minimal rate and weight) is not set. Note that the parameters in Table II are
the values recommended in the papers [13, 14] and there is almost no difference in parameter
selection caused by the changes in network topology and/or simulation.

Figures 4–8 show the simulation models of these scenarios. And, Table I shows some
parameters in these simulation models. The fundamental structure of these simulation models
consist of some sender hosts and one receiver host. And, some parameters between the sender
hosts and the receiver host are shown in Table I.

We use this scenario to evaluate the fundamental characteristics of the proposed scheme,
Spring, and Mehra. Note that in the simulation in this section, all of the schemes try to provide
equal throughput for long-lived TCP connections.

4.2. Simulation results

4.2.1. Scenario-1: The ideal case. Figures 9 and 10 show the cumulative relative frequencies
(CDFs) of connection establishment time and data transfer time for short-lived connections, the

Figure 4. Simulation topology of Scenario-1.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



change of utilization of the access link during 500 s simulation time, and the change of the
average queue length of the router buffer. In these figures, our proposed scheme is shown by
the solid line and labelled as ‘proposed,’ the scheme of Reference [13] by the one point broken
line and as ‘Spring,’ the scheme of Reference [14] by two point broken line and as ‘Mehra,’ and
TCP Reno by the one point chain line and as ‘traditional.’ From Figures 9(a) and (b), we can

Figure 5. Simulation topology of Scenario-2.

Figure 6. Simulation topology of Scenario-3.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



observe that the traditional scheme, which has no special control, shows the longest connection
establishment and data transfer times for short-lived connections. This is because the traditional
scheme cannot exactly estimate the access link resources, and many packet losses occur at the
buffer of the last-hop router due to congestion at the access link. Although the traditional
scheme shows a high enough utilization of the access link as shown in Figure 10(a), most of the
bandwidth of the access link is occupied by the long-lived connections, while that of the short-
lived connections is very low.

From Figures 9(a) and (b), Mehra shows the shortest connection establishment and data
transfer times for short-lived connections, but the lowest utilization of the access link from
Figure 10(a). Since Mehra tries to assign the same bandwidth for short-lived and long-lived
connections, meaning that the access link bandwidth ð4 MbpsÞ is equally shared among three

Figure 7. Simulation topology of Scenario-4.

Figure 8. Simulation topology of Scenario-5.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



long-lived connections and one short-lived connection in this case. Consequently, the access link
bandwidth becomes under-utilized, since the bandwidth assigned to the short-lived connections
cannot be fully utilized. The near-zero average queue length of Mehra in Figure 10(b) also
confirms the under-utilization of the access link.

From Figure 10(b), Spring shows that the average queue length at the last-hop router is
relatively long. This is because Spring assigns a receive socket buffer to each TCP connection so
that half of the router buffer is utilized. This results in an increase in the connection
establishment and data transfer times for short-lived connections, as shown in Figures 9(a) and
(b). Note that since the access link bandwidth is not so large, the queuing delay at the last-hop
router cannot be ignored. On the other hand, our proposed scheme shows that the average

Table I. Parameters in simulation models.

Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

Last-hop router’s buffer size 128 KB 32 KB 128 KB 128 KB 128 KB
Propagation delay A 35 ms 35 ms 35 ms 35 ms 35 ms
Propagation delay B 45 ms 45 ms 45 ms 45 ms 45 ms
Propagation delay C 55 ms 55 ms 55 ms 55 ms
Propagation delay D 10 ms 255 ms 65 ms 10 ms
Propagation delay E 75 ms
Propagation delay F 85 ms
Propagation delay G 10 ms
Access link bandwidth (down) 4 Mbps
Access link bandwidth (up) 500 kbps
Packet size 1500 bytes
Priority of Connection A 0 0 0 0 5
Priority of Connection B 0 0 0 0 10
Priority of Connection C 0 0 0 0 20
Priority of Connection D 0 0 0 0 100
Priority of Connection E 0 0 0 0 200

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

F

time [s]

proposed

Neil

Puneet

traditional

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

C
D

F

time [s]

proposed

Spring

Mehra

traditional

(a) (b)

Figure 9. Simulation results of Scenario-1 (1-1): (a) short-lived connections establishment time;
and (b) data transfer time of short-lived connections.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



queue length at the last-hop router is small and the connection establishment and data transfer
times for short-lived connections are also small, while a high utilization of the access link
bandwidth is maintained.

Figures 11 and 12 show the change of the throughput of the long-lived connections in
the simulation time. In this figure, we label the throughput of the connection from the sender
host A as ‘flow A,’ that from the sender host B as ‘flow B,’ and that from the sender host C as
‘flow C,’ respectively. The label of ‘best’ represents the throughput value when the access
link bandwidth is shared most fairly and effectively. From these figures, our proposed scheme,
Spring and Mehra show positive fairness among the long-lived connections, compared with
the traditional scheme. However, Mehra shows the lowest throughput and the largest
fluctuation of the throughput. This is because Mehra repeats the adjustment to make all
TCP connections share the access link bandwidth equally. On the other hand, as we can see
from Figures 11(a) and (b), our proposed scheme and Spring show almost the same throughputs
as the ‘best’ case.

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400 450 500

A
cc

es
s 

L
in

k 
U

til
iz

at
io

n 
[M

bp
s]

time [s]

proposed
Spring

Mehra

traditional

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h 
[p

ac
ke

ts
]

time [s]

proposed

Spring

Mehra

traditional

(a) (b)

Figure 10. Simulation results of Scenario-1 (1-2): (a) access link utilization; and (b) average queue length.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

M
bp

s]

time [s]

flow A 

flow Bflow C best

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

M
bp

s]

time [s]

flow A flow B

flow C best

(a) (b)

Figure 11. Simulation results of Scenario-1 (2-1): (a) proposed scheme; and (b) spring.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



4.2.2. Scenario-2: Large differences in RTTs and small buffers. Figures 13 and 14 show the
simulation results of Scenario-2, as shown in Figures 9 and 10 for Scenario-1. From Figure
14(a), Spring shows a decrease in the utilization of the access link. This is because Spring limits
the receive socket buffer for the long-lived connections to only one packet when short-lived
connections exist in the network. That is to say, in this scenario, since the propagation delays of
short-lived connections becomes larger than Scenario-1, the short-lived connections occupy the
receive socket buffer for a longer time. Consequently, the period in which Spring limits
the receive socket buffer for the long-lived connections also becomes long, which results in the
degradation of the access link utilization. On the other hand, our proposed scheme shows
the higher utilization of the access link than that of Spring and Mehra, while maintaining the
small connection establishment and data transfer times for short-lived connection. This is
because our scheme determines the receive socket buffer size for each short-lived connection in
consideration of the increase algorithm of the congestion window size in the TCP’s slow start
phase. From Figure 13(b), we observe that the difference between the data transfer time
for short-lived connections of our proposed scheme and that of Spring is less than that in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

M
bp

s]

time [s]

flow A 

flow B

flow C 

best

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t [

M
bp

s]

time [s]

flow A 
flow B

flow C 

best

(a) (b)

Figure 12. Simulation results of Scenario-1 (2-2): (a) Mehra; and (b) traditional scheme.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

F

time [s]

proposed

Spring

Mehra

traditional

0

0.2

0.4

0.6

0.8

1

2 2.5 3 3.5 4 4.5 5

C
D

F

time [s]

proposed

Spring

traditional

Mehra

(a) (b)

Figure 13. Simulation results of Scenario-2(1): (a) short-lived connections establishment time; and (b) data
transfer time of short-lived connections.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



Scenario-1. This is because the queuing delays at the last-hop router are much shorter than the
propagation delays for the short-lived connections, and the data transfer time for short-lived
connections is less affected by the queuing delay.

4.2.3. Scenario-3: A large number of long-lived connections. Figures 15 and 16 show the CDFs
of the connection establishment and data transfer times for short-lived connections, the fairness
index [25] among the throughput of the six long-lived connections, and the change of the

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

A
cc

es
s 

L
in

k 
U

til
iz

at
io

n 
[M

bp
s]

time [s]

Mehra

proposed

Spring

traditional

0

5

10

15

20

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h 
[p

ac
ke

ts
]

time [s]

proposed

traditional

Spring

Mehra

(a)

(b)

Figure 14. Simulation results of Scenario-2(2): (a) access link utilization; and (b) average queue length.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



average queue length of the router buffer. The value of this fairness index is always between
0 and 1. The closer the value is to 1, the fairer the throughput of each long-lived connection
becomes. The other way around, the values closer to 0 are less fair. That is to say, we define the
fairness between long-lived connections as the access link available bandwidth being equally
shared by all long-lived connections. As an example, if the fairness index is 0.20, it means that
the access link bandwidth equally shared by each long-lived connection is fair for 20% of all
long-lived connections.

In this scenario, since the congestion occurs more frequently at the access link, Mehra shows
the larger average queue length than that in Scenario-1, as shown in Figure 16(b). This brings
the increase of the data transfer times for short-lived connections in Mehra as presented in
Figure 15(b). Moreover, from Figure 16(a), Mehra shows lower fairness than the others. This is
because Mehra adjusts the receive socket buffer according to the throughput of each TCP
connection, and this adjustment approach enlarges the fluctuation of the throughput itself,
especially when the access link is highly congested. On the other hand, our proposed scheme
shows the high fairness among the throughput of the six long-lived connections, while
maintaining a small connection establishment and data transfer times for short-lived
connections. This shows the effectiveness of our proposed scheme in being independent of the
congestion level of the access network link.

4.2.4. Scenario-4: Existence of UDP streaming at the access link. Figures 17 and 18 show
the CDFs of the connection establishment and data transfer times for short-lived connections,
the change of the utilization of the access link bandwidth and the packet loss rate during the
simulation.

In Figure 18(b), Spring shows a high packet dropping rate. This is because the change of the
access link bandwidth which TCP connections can use is not considered. That is to say, even if
the available access link bandwidth for TCP connections changes caused by the UDP flow in
this scenario, Spring cannot deal with the change since it controls the throughput of TCP
connections only according to the parameters shown in Table II. On the other hand, Mehra also
shows the high packet loss rate. Since Mehra shows the lowest utilization of the access link after

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
D

F

time [s]

proposed Spring

Mehra

traditional

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F

time [s]

proposed

Spring

traditional

Mehra

(a) (b)

Figure 15. Simulation results of Scenario-3(1): (a) short-lived connections establishment time; and (b) data
transfer time of short-lived connections.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



400 s as shown in Figure 18(a), these packet losses are considered to occur only when long-lived
connections are active from 0 to 400 s: The main reason is that Mehra focuses on the
throughput of TCP connections in its control mechanism. That is, although the available access
link bandwidth for TCP connections changes due to the UDP packets, Mehra tries to fully
utilize the available access link bandwidth estimated from the throughput of TCP connections.

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

Fa
ir

ne
ss

 I
nd

ex

time [s]

proposed Spring

Mehra

traditional

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h 
[p

ac
ke

ts
]

time [s]

proposed

Spring

Mehra
traditional

(a)

(b)

Figure 16. Simulation results of Scenario-3(2): (a) fairness among long-lived connections;
and (b) average queue length.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



As a result, Mehra over-estimates the available access link bandwidth for the TCP connections
and the packet losses occur.

On the other hand, our proposed scheme shows no packet loss during the simulation. This is
because our proposed scheme observes the congestion level at the access link. That is, even if the

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

C
D

F

time [s]

proposed

Spring

Mehra

traditional

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F

time [s]

proposed

Spring

Mehra

traditional

(a) (b)

Figure 17. Simulation results of Scenario-4(1): (a) short-lived connections establishment time; and (b) data
transfer time of short-lived connections.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800

A
cc

es
s 

L
in

k 
U

til
iz

at
io

n 
[M

bp
s]

time [s]

proposed

Spring

Mehra

traditional

0.5

0.4

0.2

0

Pa
ck

et
 L

os
s 

R
at

e 
[%

]

0.1

0.3

0.6

proposed Spring Mehra traditional
(a) (b)

Figure 18. Simulation results of Scenario-4(2): (a) access link utilization; and (b) packet loss rate.

Table II. Parameters in Spring and Mehra ([13, 14]).

Spring ([13]) Mehra ([14])

Xputlink 4 Mbps Priority 0
QLengthLoss 64 KBytes Minimal rate 0
QLengthDelay 5 KBytes Weight 0 (except Scenario-5)
Rcvshort 2 KBytes Weight of Connection A (in Scenario-5) 5
Rcvlong Weight of Connection B (in Scenario-5) 10

Weight of Connection C (in Scenario-5) 20
Weight of Connection D (in Scenario-5) 100
Weight of Connection E (in Scenario-5) 200

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



available access link bandwidth for TCP connections changes, our proposed scheme can
estimate congestion at the access link from the changes of the RTTs of the TCP connections,
and adjust the amount of the receive socket buffer for all TCP connections to avoid congestion.

However, we observe that our proposed scheme indicates an under-utilization of the available
bandwidth from 350 to 500 s; as shown in Figure 18(a). This is because our proposed scheme
slowly increases its utilization of the access link bandwidth when there is an unused bandwidth.
Consequently, when the available access link bandwidth suddenly increases, our proposed
scheme cannot catch up with the change immediately. Although it is one of our future works to
solve this problem, we consider it a key idea to employ a mechanism to accurately estimate the
available bandwidth of the access link.

4.2.5. Scenario-5: Difference of long-lived connections. Figure 19 shows the change of the
throughput of each connection during the simulation. Figure 19(a) shows the result of our
proposed scheme and Figure 19(b) shows Mehra.

From Figure 19(b), Mehra shows the lower throughput of Connection D than Connection C.
This is because Mehra over-/under-estimates the receive socket buffer size till Mehra measures
precisely RTT. That is, this means that Mehra may assign the receive socket buffer to a TCP
connection too much or less, if the RTT of this connection is not measured precisely, since
Mehra controls the receive socket buffer in the consideration of the receiving packet rate at the
receiver host.

On the other hand, from Figure 19(a), our proposed scheme shows the high throughput of
Connection D in proportion to the priority. This is because our proposed scheme can assign
properly the receive socket buffer in the consideration of the initial TCP connection. That is, our
proposed scheme is not effected easily, even if our proposed scheme cannot measure precisely
RTT of a TCP connection in slow start phase.

Moreover, from Figure 19(a), our proposed scheme shows that the throughput of Connection
A is equal that of Connection B and Connection C for 70 s from 40 s: This is because our
proposed scheme assigns the receive socket buffer of 1 mss for each connection to avoid the
TCP’s silly window syndrome.

5. CONCLUDING REMARKS

In this thesis, we have proposed a receiver-based access link resource management scheme at the
receiver host. Our proposed scheme virtually adjusts the amount of the receive socket buffer for
all TCP connections at the user hosts in order to avoid congestion at the access link, and assigns
it to each TCP connection so that for a short-lived connection, the packets are treated with high
priority, and for a long-lived connection, the upper-layer application’s QoS and the user’s
demands are reflected. We have evaluated the performance of our proposed scheme through
extensive simulation experiments, and confirmed that it can effectively utilize the access link
resources; that is, it can improve the performance of short-lived TCP connections, and maintain
the throughput of long-lived connections as expected, while keeping the utilization of the access
link bandwidth. Moreover, we have compared our proposed scheme with the schemes in
References [13, 14] and confirmed the advantages of our proposed scheme.

Furthermore, we have confirmed that our proposed scheme becomes more effective by
integrating with the endhost resource management scheme, by presenting simulation results that

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



Figure 19. Simulation results of Scenario-5: (a) proposed scheme; and (b) Mehra.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS



the integrated system can deal well with situations where a performance bottleneck exists not at
the access link, but at the other links or at the endhost resource. Therefore, we consider that our
proposed scheme is effective even in networks where the bottleneck point changes dynamically,
such as P2P networks.

As for future work, we plan to implement the proposed scheme in the actual receiver host,
and to evaluate it through experiments using the actual network. We consider this
implementation will be straightforward since we can estimate from past experience that we
can realize our proposed scheme by adding about 1000 codes to the source code of the kernel
system. We will have to solve a problem in realizing our proposed scheme. This is the
granularity of the timer in the kernel system is too rough. This causes our proposed scheme to
measure incorrectly the RTT of TCP connection. On the other hand, we have the outstanding
point in order that it is straightforward to implement. The point is to virtually adjust the amount
of the receive socket buffer for all TCP connections. It is unnecessary for us to perform the
socket buffer management, which is the memory management in a kernel system.

REFERENCES

1. Proxy Survey, available at http://www.delegate.org/survey/proxy.cgi
2. Okamoto T, Terai T, Hasegawa G, Murata M. A resource/connection management scheme for HTTP proxy servers.

Proceedings of Second International IFIP-TC6 Networking Conference, May 2002; 252–263.
3. Broadband networking report in Japanese, available at http://www.musen-lan.com/speed/htmldata/
4. Guo L, Matta I. The war between mice and elephants. Proceedings of the 9th IEEE International Conference on

Network Protocols, no. 2001-005, November 2001.
5. W3C Recommendations Reduce ‘World Wide Wait’, available at http://www.w3.org/Protocols/NL-PrefNote.html
6. Balakrishnan H, Rahul HS, Seshan S. An integrated congestion management architecture for Internet hosts.

SIGCOMM 1999, September 1999; 175–187.
7. Touch J. TCP control block interdependence. Request for Comments (RFC) 2140, April 1997.
8. Postel J. Transmission control protocol (TCP). Request for Comments (RFC) 793, September 1981.
9. Stevens WR. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley: Reading, MA, 1994.
10. Milojicic D, Kalogeraki V, Lukose R, Nagaraja K, Pruyne J, Richard B, Rollins S, Xu Z. Peer-to-peer computing.

Technical Report HPL-2002-57, HP Laboratories, March 2002.
11. Gnutella, available at http://www.gnutella.com/
12. KaZaA, available at http://www.kazaa.com/
13. Spring NT, Chesire M, Berryman M, Sahasranaman V, Anderson T, Bershad BN. Receiver based management of

low bandwidth access links. Proceedings of IEEE INFOCOM 2000, 2000; 245–254.
14. Mehra P, Zakhor A, Vleeschouwer CD. Receiver-driven bandwidth sharing for TCP. Proceedings of IEEE

INFOCOM 2003, March 2003.
15. Hsiao P-H, Kung H, Tan K-S. Active delay control for TCP. Proceedings of IEEE Globecon ’01, September

2001.
16. Brakmo LS, Peterson LL. TCP Vegas: end to end congestion avoidance on a global Internet. IEEE Journal on

Selected Areas in Communications 1995; 13:1465–1480.
17. Hartling M, Claypool M, Kinicki R. Active queue management for Web traffic. Technical Report WPI-CS-TR-02-

20, Computer Science Department, Worcester Polytechnic Institute, May 2002.
18. Karandikar S, Kalyanaraman S, Bagal P, Packer B. TCP rate control. ACM Computer Communications Review

2000; 30:45–58.
19. Altman E. A stateless approach for improving TCP performance using Diffserv, Submitted.
20. Floyd S, Jacobson V. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on

Networking 1993; 1:397–413.
21. Floyd S, Jacobson V. Link-sharing and resource management models for packet networks. IEEE/ACM Transactions

on Networking 1995; 3:365–386.
22. Clark DD. Window and acknowledgement strategy in TCP. Request for Comments (RFC) 813, July 1982.
23. Wright GR, Stevens WR. TCP/IP Illustrated, Volume 2: The Implementation. Addison-Wesley: Reading, MA,

1995.
24. The VINT Project. UCB/LBNL/VINT network simulator - ns (version 2), available at http://www.isi.edu/nsnam/ns/
25. Jain R, Durresi A, Babic G. Throughput fairness index: an explanation. ATM Forum Contribution: AF/99-0045,

February 1999.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

K. AZUMA, G. HASEGAWA AND M. MURATA



AUTHORS’ BIOGRAPHIES

Kazuhiro Azuma received the ME degree in Information and Computer Sciences from
Osaka University, Osaka, Japan, in 2004. In April 2004, he moved to Oki Electric
Industry Co. Ltd. His research work is in the area of resource management
architecture for future Internet servers.

Go Hasegawa received the ME and DE degrees in Information and Computer
Sciences from Osaka University, Osaka, Japan, in 1997 and 2000, respectively. From
July 1997 to June 2000, he was a Research Assistant of Graduate School of
Economics, Osaka University. He is now an Associate Professor of Cybermedia
Center, Osaka University. His research work is in the area of transport architecture
for future high-speed networks. He is a member of the Internet Society and IEICE.

Masayuki Murata received the ME and DE degrees in Information and Computer
Sciences from Osaka University, Japan, in 1984 and 1988, respectively. In April
1984, he joined Tokyo Research Laboratory, IBM Japan, as a Researcher. From
September 1987 to January 1989, he was an Assistant Professor with Computation
Center, Osaka University. In February 1989, he moved to the Department of
Information and Computer Sciences, Faculty of Engineering Science, Osaka
University. From 1992 to 1999, he was an Associate Professor in the Graduate
School of Engineering Science, Osaka University, and from April 1999, he has been a
Professor of Osaka University. He moved to Advanced Networked Environment
Division, Cybermedia Center, Osaka University in April 2000, and he is now a
Professor of Graduate School of Information Science and Technology, Osaka
University. He has more than two hundred papers of international and domestic

journals and conferences. His research interests include computer communication networks, performance
modelling and evaluation. He is a member of IEEE, ACM, The Internet Society, IEICE and IPSJ.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (in press)

ACCESS LINK RESOURCES FOR QoS-CONTROLLABLE TCP CONNECTIONS


