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Abstract

In recent years, the demand for the grid computing technology is arising, and it has been

researched widely. In the existing grid computing environment, TCP/IP is usually used for com-

munication between computing nodes. However, the packet processing of TCP/IP degrades net-

work throughput and computing performance. Thus, we have proposed a new architecture called

the λ computing environment, that has wavelength paths between computing nodes and optical

switches, and provides these paths as a realization method to achieve high-speed and high-reliable

communication in the grid computing environment.

In this thesis, we established λ computing environment using the AWG-STAR system, and we

design and implement OpenMP application programming interface for the AWG-STAR system.

The AWG-STAR system is an information sharing network system based on WDM technology

which is developed by NTT Photonics Laboratory. We provide the OpenMP compiler designed for

the AWG-STAR system. Our OpenMP compiler is based on the existing OpenMP Compiler called

OMPi, and we modify OMPi and its runtime library to enable parallel computing on the AWG-

STAR system. Our OpenMP compiler utilize the shared memory system provided by the AWG-

STAR system for data sharing, and our runtime library controls parallel execution on computing

nodes connected with the AWG-STAR system.

Next, we evaluate the performance of our implementation for the AWG-STAR system by

executing the benchmark programs. However, as a result, current AWG-STAR system is not able

to achieve comparable performance to existing parallel computing environment. On the AWG-

STAR system, we must access the shared memory via the PCI bus from the CPU. Since the access

speed of the PCI bus is much lower than local memory, the insufficient access speed of the shared

memory degrades the performance of computing.
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Currently, NTT Photonics Laboratory is developing the next version of the AWG-STAR sys-

tem which targets the improvement of the memory access performance. We estimate the effec-

tiveness of the improvement on the next version of the AWG-STAR system in this thesis. Our

estimation shows that the improvement on the next AWG-STAR system will be significantly ef-

fective.
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Distributed Parallel Computing
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1 Introduction

In recent years, the demand for the grid computing technology is arising, and it has been researched

widely. In the grid computing environment, we can utilize CPUs and storages of computing nodes

interconnected by the network as a single virtual computer. Today, various applications of this

technology are being studied. For example, they are the gene information analysis, image pro-

cessing and the global environment simulation, and so on.

In the existing grid computing environment, TCP/IP is usually used for communication such

as control messages and data exchanges between computing nodes. However, TCP/IP has some

harmful effects in such environment. For example, some packets may be lost on the route from

the source node to the destination node because of traffic congestion caused by own volume data

transmission on the network. The retransmission of lost packets cause degradation of network

throughput and computing performance on the grid. So, it is difficult to achieve high-performance

in application of large-scale computing that treats large-scale data.

Thus, our research group proposes a new architecture called the λ computing environment

[1–4], that has wavelength paths between computing nodes and optical switches, and provides

these paths as a realization method to achieve high-speed and high-reliable communication in the

grid computing environment. In λ computing environment, we can realize high-speed and high-

reliable data exchanging or data sharing, because computing nodes utilize established wavelength

paths as exclusive communication channel instead of conventional TCP/IP network.

Our research group recently focuses the study of the architecture of the shared memory sys-

tem on the λ computing environment [1–4]. In [2], they propose the shared memory system

utilizing the virtual optical ring and the cache coherency protocol for it. In [4], they analyze how

the network topology and the coherency protocols influence the performance, by simulation and

modeling using semi-Markov process.

To enable parallel computing on the λ computing environment, we require the programming

environment. In this thesis, we establish the programming environment for the λ computing envi-

ronment. In other words, we provide the programming interface for the parallel computing on the

λ computing environment.

Today, the de-facto standard of the application programming interface (API) for parallel com-

puting is the message passing interface (MPI). MPI is the specification of the library interface
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which provides routines to send and receive messages and to synchronize processors. MPI is usu-

ally used on the distributed memory environment like clusters or the grid computing environment,

but, MPI is also supported on the shared memory and the non-uniform memory access (NUMA)

architectures.

We already have implementation of MPI for the λ computing environment [5]. However, de-

velopment of the parallel programs using MPI is difficult. Usually, the implementation of MPI is

provided as the low-level communication library. Programmers must code the detail behaviour of

the parallel programs like explicit message exchanging by themselves. In addition, the program-

ming model of MPI assumes the environment which has no shared memories. It is possible to

use MPI on the λ computing environment, but programming with MPI cannot take advantage of

our shared memory system. So, we choose another programming model which is suitable for our

computing environment.

OpenMP [6] is the alternate standard of the API, which targets the parallel computing on the

shared memory environment. OpenMP is defined as the extension to the existing programming

language. Currently, OpenMP is supported in many commercial and non-commercial compil-

ers. OpenMP provides the higher-level API which abstracts underlying computing environment

and provides the support for typical parallelizations. So, programmers can develop their parallel

programs more easily than MPI.

In this thesis, as an instance of the λ computing environment, we utilize the AWG-STAR sys-

tem developed by NTT Photonics Laboratory. The AWG-STAR system is an information sharing

network system based on WDM technology. On the AWG-STAR system, the data is transmitted

via the array waveguide grating (AWG) router, which processes wavelength routing. The AWG-

STAR system provides the shared memory system, that is implemented as the shared memory

board (SMB) which has shared memory on it. The SMB on each node is connected to the AWG

router, and the shared data is automatically synchronized among the computing nodes.

In this thesis, we aim to establish the programming environment using OpenMP on the λ

computing environment. We design and implement OpenMP for the AWG-STAR system, and we

evaluate the performance of our implementation by executing the benchmark applications.

The rest of the thesis organized as follows. First, in Section 2, we describe the AWG-STAR

system which we utilize in this study and OpenMP which we implement on it. We design our

implementation of OpenMP in Section 3, and the detail of that implementation is described in
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Section 4. Our implementation is evaluated in Section 5. In Section 6, we introduce the next

version of the AWG-STAR system and discuss the effectiveness of the improvement on it. Last,

we conclude this study in Section 7.
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2 Distributed Parallel Computing using AWG-STAR System

2.1 AWG-STAR System

The AWG-STAR system which we utilize in this study is the information sharing network platform

[7,8]. It is realized by data transmission with the WDM technology and wavelength routing using

the AWG router. By using the AWG router, we can establish a high-speed data transmission

network, because it processes optical signals without optical/electrical conversion.

Each computing node connected with the AWG-STAR system is equipped with a shared mem-

ory board (SMB). The SMBs are directly interconnected via the wavelength path, and configure a

ring topology in logical. The SMB has a shared memory and it is connected with the computing

node via PCI bus. In the AWG-STAR system, the contents of this shared memory are automat-

ically kept identical all over the nodes. No explicit instruction is required to transmit or receive

data. We can exchange the data in real-time via an optical ring network by using this shared

memory. This shared memory is mapped to the normal memory space. So, we can access to the

memory without distinction between the shared memory of the AWG-STAR system and the local

memory which the computing node originally has.

Figure 1 summarizes data sharing scheme using the AWG-STAR system. In the AWG-STAR

system, the computing node can share the data with the other nodes by writing the data to the

shared memory. On the optical ring, one control token is circulating. The data written to the shared

memory is automatically sent to the optical ring network by attaching the data to the control token.

When the computing node writes some data to the shared memory, the SMB updates own shared

memory and waits for the arrival of the control token. When the SMB receives the control token,

if the control token has the update data from the other computing nodes, each SMB updates own

shared memory. Next, the SMB attach written data to the control token if it has written data, and

the SMB passes the control token to the next node. As updating is performed in background by

hardware, we can share the data at high speed. By reading values from own SMB, each computing

node can get the shared data updated by other nodes.

2.2 OpenMP

OpenMP is one of application programming interface (API) standards for shared-memory parallel

programming, which supports multi-platform in C/C++ and Fortran language. It consists of a
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set of compiler directives, library routines, and environmental variables that influence run-time

behavior.

The implementation of OpenMP is usually provided as the compiler called OpenMP com-

piler. In OpenMP, programmers develop a parallel program by inserting compiler directives called

OpenMP directive into the source code. OpenMP directive is the instruction to express paral-

lelism and data sharing. Via OpenMP directives, programmers tell the compiler to parallelize the

specified part of the program. So, programmers need not write the detail behavior of the parallel

program in the source code.

Figure 2 shows a simple example of the OpenMP source code. The statement “pragma” at

the 2nd line is OpenMP directive. In this example, the loop part from the 3rd line is executed in

parallel. All other parts without any directives are executed sequentially.

The generation of the executable object of the parallel program by the OpenMP compiler

consists of approximately 2 stages (see Fig. 3). The 1st stage is transformation of source code.

The OpenMP compiler interprets the OpenMP directive in the input source code, and generates

the intermediate code based on the information provided from directives. The intermediate code is

that specific code required for parallel processing is inserted. For example, library function-calls

for communication and synchronization are inserted. The 2nd stage is source code compilation.

The intermediate code is converted to the program object of machine language.

As remarked above, programmers can develop their programs to parallel easily because the

compiler converts instead of them according to their directive comments. In addition, there are

no codes which depends on the specific computing environment in the source code of the parallel

program. However, because the intermediate code depends on specific computing environment

including the hardware, OS, and the communication library, the OpenMP compiler must be im-

plemented dedicatedly for each computing environment.
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Optical Ring
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1. Attach Data to Control Token
2. Update Shared Memory 

on Other Nodes

Figure 1: Data Sharing using AWG-STAR System

double pi = 0.0;
#pragma omp parallel for reduction(+:pi)
for (i = 0; i < N; i++) {

double x = (i + 0.5) * w;
pi += 4.0 / (1.0 + x * x);

}

Figure 2: Example of OpenMP Source Code

OpenMP Compiler

1st Stage

2nd Stage

Intermediate Code

OpenMP Source Code

Executable Object

Transformation

Compilation to machine code

Figure 3: Overview of OpenMP Compiler
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3 Design of OpenMP Compiler for AWG-STAR System

We have to design an OpenMP compiler generating an intermediate code for the AWG-STAR

system to implement OpenMP in the λ computing environment. OpenMP is originally designed

for a shared memory system such as that in a symmetric multiple processor (SMP), which shares

a single memory with multiple processors in a computer. However, the AWG-STAR system has

different scheme for shared memory. That is, as multiple-computing nodes are interconnected via

a network and the memory of each computing node is independent in the AWG-STAR system,

their memories are treated as a single memory with specific functions.

We utilize distributed shared memory (DSM) technology that enables all or part of the memory

in each computing nodes to shared to construct a shared-memory system in a distributed system

in which computing nodes are generally connected via a network. Most existing DSM technology

uses a software distributed shared memory (SDSM) that controls memories in all computing nodes

as a single shared memory through the software. The AWG-STAR system used in our study, on the

other hand, has a DSM system that maintains the consistency of memories through the hardware.

On the AWG-STAR system, we use two kinds of memory for distributed parallel computing.

One is a local memory in each computing node originally and the other is a shared memory which

is provided by a shared memory board (SMB) of the AWG-STAR system. This configuration

is similar to an SDSM system sharing part of the local memory of computing nodes. A related

study on the implementation of OpenMP using an SDSM [9] is therefore useful for our own

implementation method of OpenMP on the AWG-STAR system.

When we implement OpenMP on the AWG-STAR system, we need to establish:

(1) The execution mechanism for the parallel-execution section,

(2) The data-sharing scheme, and

(3) The lock function and barrier synchronization function including dynamic memory alloca-

tion

The methods we used to accomplish all three on the AWG-STAR system will be described in

the sections that follow.
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3.1 Execution Mechanism for Parallel Execution Section

It is necessary to achieve parallel processing utilizing multiple-computing nodes to use OpenMP

on the AWG-STAR system.

There are sequential-execution sections and parallel-execution sections in OpenMP programs.

The implementation methods of OpenMP on the distributed parallel computing environment are

roughly classified into two types in terms of the treatment of the sequential execution sections.

One executes the sequential execution section with 1 computing node, and the other method does

with all computing nodes. The former method clearly distinguishes the computing node called

the master, which executes the sequential execution section from other computing nodes called

worker. Workers receiving the request from the master, and execute the parallel execution section.

Therefore, only the master always executes computation. In contrast, in the latter method always

all computing nodes execute computation.

The latter method [10] is proposed in order to reduce the overhead which occurs on the be-

ginning request of the parallel execution section in the former method. However, because the

computing nodes are connected via the wavelength pass with low delay on the AWG-STAR sys-

tem, this overhead does not cause a significant problem. Therefore we adopt the former method in

our research.

In our method, both the master and workers in our method execute an identical executable

object. However, as soon as the program is executed, the workers immediately go on standby,

and wait while the master completes executing a sequential-execution section. When the master

has finished executing the sequential-execution section, it requests the workers to start executing

the parallel-execution section by utilizing barrier synchronization. Computing is accomplished in

parallel with multiple-computing nodes. After the parallel-execution section has been executed,

barrier synchronization is again conducted, and the workers again return to standby; the master

then executes the sequential-execution section (see Fig. 4).

A request for execution of the parallel execution section is informed from the master to the

workers by using the barrier synchronization on the AWG-STAR system. So, we do not need

additional network with TCP/IP or other protocols. Barrier synchronization is a mechanism that

synchronizes more than two computing nodes at the same time. Each computing node temporary

suspends processing at the provided point of the program and waits until all computing nodes
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arrives at the same point of the program.

The summary of the mechanism of the parallel execution request is as follows.

(1) Initially, all workers are standby with the barrier synchronization function called.

(2) The master writes a memory address of the program code which workers should execute to

the shared memory.

(3) The master calls the barrier function, and releases the standby state of workers.

(4) Workers start execution with specified address.

Parallel computation with multiple computing nodes is enabled by such a technique.

3.2 Data-sharing Scheme

The data sharing in OpenMP means the values of variables in the program is shared. In other

words, it is possible to read from and write to variables between computing nodes executing par-

allel computing. In OpenMP, all variables declared at the outside of the parallel execution region

are implicitly shared. For example, the code in the Figure 2 shares variable pi between computing

nodes while parallel processing is executed.

A variable is shared with the SMB which the AWG-STAR system offers. In other words, it is

achieved by allocating the memory area of variables to the shared memory on the SMB. Variable

content is therefore automatically shared between computing nodes due to the features of the

AWG-STAR system. The compiler replaces all references to the variables in the source code with

the references of pointer variables, and sets the address of the memory area allocated on the shared

memory to that of the pointer. Figure 5 shows an example of transformed variable references. The

memory areas for the shared global variables are statically allocated at the start of the program.

However, the memory areas for the shared local variables are dynamically allocated before the

parallel-execution region has started execution, and released after execution has finished.

The OpenMP specifications has not only the shared variable but also the non-shared variable

called the private variable. The private variables are explicitly declared in the parameter of the

OpenMP directive by programmers. Our compiler does not modify the references of the private

variables, and keeps it on the local memory. This is because there is no need to share values of

these variables, and the access speed of the local memory is faster than the shared memory.
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3.3 Lock and Barrier Synchronization

In the parallel program, shared data which is read and written by multiple computing nodes during

parallel processing must be access controlled by the lock function to prevent inconsistency. And

also, to guarantee the execution order of the processing, the barrier synchronization function is

required. In order to execute the parallel program in OpenMP, it is necessary to provide these

functions.

Therefore we originally made a synchronization primitives [11] for the shared memory and

the signaling mechanism which we utilize the function offered by the AWG-STAR system. The

synchronization between computing nodes in the OpenMP program is achieved by calling our

synchronization primitives from the intermediate code which the compiler generates.
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Parallel Execution Request

Barrier Synchronization

Computing Nodes

Sequential Execution

Section

Sequential Execution

Section

Parallel Execution
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Figure 4: Execution Model of OpenMP

Local Variables
double x; −→ double (*x);
int y[10]; −→ int (*y)[10];

Global Variables
double x; −→ double (* G x);
int y[10]; −→ int (* G y)[10];

Figure 5: Example of Variable Reference Transformation by OpenMP compiler
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4 Implementation of OpenMP Compiler for AWG-STAR System

Our OpenMP compiler is implemented based on OMPi [12]. OMPi is the research OpenMP

compiler for C language which is developed by University of Ioannina, and it supports the SMP

environment with the POSIX threads library.

OMPi consists of 2 programs and the runtime library. omipcc is the front-end program of

OMPi and the special linker for OpenMP programs. ompi is a C-to-C translator which generates

the intermediate code of C language from input OpenMP source code. libompi runtime library

coordinates parallel processing and manages the thread pool via the POSIX threads API.

The compilation sequence of the OpenMP source code using OMPi is shown in Figure 6. First,

ompi transforms input OpenMP source code to the intermediate code. Second, the intermediate

code is compiled to the object file by the back-end compiler. The back-end compiler is standard

C compiler, and cc is used as the back-end compiler defaultly. Last, ompicc links object files

with the runtime library, and creates an executable object. At the same time, ompicc generates

initialization codes for shared global variables and links generated codes with object files and the

runtime library.

We modify original OMPi to use computing nodes instead of threads for parallel execution.

We implement the runtime library of OMPi to support the AWG-STAR system and modify the

translator to allocate the memory areas of the shared variables on the shared memory of the AWG-

STAR.

Our OpenMP compiler for the AWG-STAR system currently supports subsets of OpenMP

features. Most of important OpenMP features are already implemented, but ordered directive,

copyprivate clause, and some features are not implemented yet. The implementation status

of OpenMP directives and clauses is summarized in Table 1.

4.1 Runtime Library

libompi runtime library is a set of functions which is called from the intermediate code gener-

ated by ompi. Figure 7 shows a common form of the intermediate code. The functions prefixed

by omp are runtime library functions.

libompi controls execution of the parallel execution section. ompi translator extracts the

parallel execution section in the OpenMP source code as the function like main parallel 0
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Executable Object

Intermediate Code

OpenMP Source Code

Transformation

Compilation by Back-end Compiler

Object File

Link with Runtime Library

ompi

ompicc

Runtime Librarylibompi

OMPi
OpenMP Compiler

Figure 6: Compilation Sequence of OMPi

Table 1: Implementation Status of OpenMP Directives and Clauses
OpenMP Directive OpenMP Clause

parallel
√

if
√

for
√

num threads
√

sections
√

schedule
√

section
√

ordered
parallel for

√
nowait

√
parallel sections

√
default

√
single

√
shared

√
master

√
private

√
critical

√
firstprivate

√
barrier

√
lastprivate

atomic
√

copyin
flush

√
copyprivate

orderd reduction
√

threadprivate
√
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Original
int main(int argc, char **argv)
{
#pragma omp parallel
{

/* Parallel Excecution Section */
}

}

Intermediate Code
int main (int argc, char **argv)
{
_omp_initialize ();
{

_OMP_PARALLEL_DECL_VARSTRUCT (main_parallel_0);
_omp_create_team ((-1), _OMP_THREAD, main_parallel_0,

(void *) &main_parallel_0_var);
_omp_destroy_team (_OMP_THREAD->parent);

}
}

void *main_parallel_0 (void *_omp_thread_data)
{
int _omp_dummy = _omp_assign_key (_omp_thread_data);
{

/* Parallel Excecution Section */
}
return 0;

}

Figure 7: Basic Code Transformation by OMPi
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in Figure 7. And, ompi inserts runtime library function-call omp create team instead of it.

omp create team is a function to request worker threads to execute specified function.

Our runtime library has the same interface as original libompi, but uses computing nodes

instead of threads for execution of parallel sections. Each computing node has the identification

number called node ID. The computing node which has node ID 0 behaves as the master. The

other computing nodes behave as workers.

The function omp initialize in original libompi initializes worker thread-pool. Our

implementation of its function initializes the AWG-STAR system and the library of lock and bar-

rier synchronization. And then, workers start infinite loop for waiting parallel execution request

from master (see Fig. 8). The master exits this function and starts execution of the sequential

execution section.

The function omp create team is the implementation of the parallel execution request for

the master. Figure 9 shows the overview of this mechanism. This function inform the address

of the function to workers, which workers should execute. We reserve the memory area to in-

form the function address on the shared memory. We call this area execution information area

(EIA). In function omp create team, the master writes the address to EIA and calls barrier

synchronization. Workers read the function address from EIA, and execute that function.

The function omp destroy team is used to wait for workers. The master returns to exe-

cution of the sequential execution section after calling this function.

4.2 Code Transformation

Figure 10 is a code transformation example of shared variables. Local variables referred in

the parallel execution section are declared inside function main parallel 0. The private vari-

able is simply declared as a local variable like variable y. The shared variable like variable x

is declared as a pointer variable and is accessed through the pointer. The memory addresses

of shared variables are shared by workers using an address table. In this example, structure

func parallel 0 vars is used to share the addresses of shared variables. We call it shared

variable table (SVT).

These transformations are supported in original ompi. However, original ompi allocates

shared variables to the local memory. So, we modified ompi to use the shared memory.

We use two functions for management of the shared memory area. ompiawg malloc is

20
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Barrier Synchronization

Initialization of AWG-STAR System

Initialization of Synchronization Libraries

Execution of Parallel Execution Section

Figure 8: Behaviour of Function omp initialize on Worker

_omp_create_team

_omp_destroy_team

-Write Function Address to EIA

-Call Barrier Synchronization

-Execute Parallel Execution Section

-Call Barrier Synchronization

-Call Barrier Synchronization

-Read Function Address from EIA

-Execute Parallel Execution Section

-Call Barrier Synchronization

Master Worker

Figure 9: Behaviour of Function omp create team and omp destroy team
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Original
int g;

void func()
{
int x, y;

#pragma omp parallel private(y)
{

y = x + g;
}

}

Intermediate Code
typedef struct
{
int (*x);

} func_parallel_0_vars;

int (*__G_g);

void func ()
{
int x, y;
{

func_parallel_0_vars *func_parallel_0_var;
func_parallel_0_var =

_ompiawg_malloc (sizeof (func_parallel_0_vars));
func_parallel_0_var->x = _ompiawg_malloc (sizeof (x));
memcpy ((func_parallel_0_var->x), &(x), sizeof (x));

_omp_create_team((-1), _OMP_THREAD, func_parallel_0,
(void *) func_parallel_0_var);

_omp_destroy_team(_OMP_THREAD->parent);

memcpy (&(x), (func_parallel_0_var->x), sizeof (x));
_ompiawg_free (func_parallel_0_var->x);
_ompiawg_free (func_parallel_0_var);

}
}

void *func_parallel_0 (void *_omp_thread_data)
{
int _omp_dummy = _omp_assign_key (_omp_thread_data);
int (*x) = &(*((func_parallel_0_vars *)

(_OMP_THREAD->sdn->shared_data))->x);
int y;
{

y = (*(x)) + (*(__G_g));
}
return 0;

}

Figure 10: Code Transformation for Shared Variables
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used to allocate memory, and ompiawg free is to release memory. Only the master has a

responsibility to memory management of the shared memory. The master allocates the memory

areas for the shared variables, and inform the addresses of shared variables to workers. We also

allocate SVT on the shared memory of the AWG-STAR system, and inform its address. An address

of SVT is passed to workers by using the function omp create team.

In the case of global variables, they are also accessed through the pointer and allocated on the

shared memory like variable g in Figure 10. However, memory areas of the shared global variables

are not allocated at compile-time. We allocate shared memory for them at run-time, because we

must get the address of the shared memory from the device driver of the AWG-STAR system.

ompicc generates the initialization code for the shared global variables, and the master executes

it in the function omp initialize.
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5 Performance Evaluation

We evaluate the performance of our OpenMP implementation in λ computing environment by

executing benchmark programs. We uses cluster middleware called SCore [13] for comparison,

which can accomplish parallel computing with OpenMP in the Ethernet environment. SCore offers

an SDSM system called SCASH achieving a shared memory virtually in the distributed memory

environment, and a dedicated OpenMP compiler called Omni/SCASH [9].

5.1 Environment for Evaluation

Table 2 and 3 list the specification of experimental system and specification of the AWG-STAR

system. The computing nodes which are used for experiment are 4 nodes and all same specifica-

tions. In addition, in this experiment, assuming number of node computers as N , the length of

optical ring network of the AWG-STAR system becomes 10Nm.

We select BT and EP benchmarks from the NAS Parallel Benchmarks (NPB) 2.3 [14] and the

Himeno benchmark [15] for our evaluation. We use the OpenMP C version of NPB 2.3 [16] which

is ported by RWCP. The size of the problem is XS (128× 64× 64) on the Himeno benchmark and

Class W (BT: 24 × 24 × 24，EP: 225) on the NPB 2.3. The frequency with which NPB 2.3 EP

accesses the shared data is low, but the Himeno benchmark and NPB 2.3 BT access it relatively

frequently.

5.2 Benchmark Results and Discussion

Table 4 and Figure 11 show the results for BT and EP of the NPB 2.3 and Table 5 shows the result

for the Himeno benchmark. Table 4 and Figure 11 show the execution time for the benchmark

program, and Table 5 lists the performance in MFLOPS. SCore outperforms the AWG-STAR

system, which does not achieve sufficiently high performance in these tables and figure. However,

there is a tendency for performance to improve as the number of the computing nodes increases.

The problem with access to the shared memory may be why the AWG-STAR system performed

poorly.

SCASH as an SDSM system attained a shared memory virtually by exchanging the content

of local memory between computing nodes via the network. SCASH acquires the latest data by

communicating with computing nodes and copies these to the local memory if the data has been
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updated by other computing nodes when they accessed data on shared memory. SCASH maintains

the consistency of its data between computing nodes in this way. Although it takes a long time to

acquire data, access to data that has already been acquired is fast.

On the other hand, the hardware keeps the data written in the shared memory of the AWG-

STAR system the same. However, as we have to access this shared memory via the PCI bus from

the CPU, we cannot read or write sufficiently fast with the current AWG-STAR system. Although

access from the CPU to the local memory is possible at about 2GB/s, the maximum access speed

to the shared memory is only about 80MB/s. All accesses to the shared data is slow since all

shared data are read and written against the memory on the SMB.

Therefore, memory is a bottleneck in the AWG-STAR system and may affect general comput-

ing. The difference in performance in the experimental results with SCore is about 20-fold with

four nodes in the NPB 2.3 EP, but it is about 40-fold in the NPB 2.3 BT. The difference in perfor-

mance with SCore in the benchmark with high-access frequency to the shared data is greater than

the difference in the benchmark with low-access frequency. The difference in performance with

the Himeno benchmark is smaller than the others because of its wide range of memory access.

Parallel programs on SDSM without data locality generally perform poorly because of frequent

node-to-node communications.
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Table 2: Specifications of Computing Nodes
CPU Xeon 3.06 GHz
Main memory 512MB
L1 cache 20KB
L2 cache 512KB
NIC Intel PRO/1000
PCI bus 64 bit/66MHz
PCI transfer rate 533MB/s
OS Redhat Linux 7.3
Compiler GCC 2.96

Table 3: Specification of Shared Memory Board of AWG-STAR system
Transmission rate of optical ring 2.152Gbps
Transfer data length 1KB
Frame processing delay 500ns
Maximum Writing speed of shared memory 64MB/s
Maximum Reading speed of shared memory 80MB/s
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Table 4: Execution Time for NPB 2.3 BT Class W
Environment Number of Nodes Execution Time (s) Speed-up Ratio

1 47930 1.00
AWG-STAR 2 27322 1.75

4 17172 2.79
1 25 1.00

SCore 2 357 0.07
4 430 0.06
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Figure 11: Execution Time for NPB 2.3 EP Class W

Table 5: Results for Himeno Benchmark
Environment Number of Nodes MFLOPS Speed-up Ratio

1 0.1074 1.000
AWG-STAR 2 0.2073 1.930

4 0.3760 3.501
1 393.9016 1.000

SCore 2 5.8346 0.015
4 4.0228 0.010
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6 Improvement on Next Version of AWG-STAR System

On the performance evaluation in Section 5, the current version of the AWG-STAR system does

not achieve high performance enough. The major reason is that the access speed of the shared

memory is low. To improve performance of the parallel computation on the AWG-STAR system,

NTT Photonics Laboratory is developing the next version of the AWG-STAR system. On the next

version, improvement of the memory access speed is mainly focused.

In this section, we introduce the overview of the next version of the AWG-STAR system and

discuss effectiveness of the improvement on the next AWG-STAR system.

6.1 Overview of Next AWG-STAR System

The basic idea of the data sharing mechanism of the next AWG-STAR system is the same as

the current version. The data written to the shared memory is automatically broadcasted via the

optical ring network, and the shared memories of all nodes are updated. But, on the next ver-

sion, the physical location of the shared memory is significantly different. And, the broadcasting

mechanism using a control token is also improved.

On the current AWG-STAR system, the shared memory exists on the SMB connected with the

PCI bus. As described above sections, the largest bottleneck is the access speed to the PCI bus. On

the current version, all shared memory accesses are performed via the PCI bus. However the PCI

bus is much lower bandwidth compared to the local memory, and is shared with the other devices.

Therefore, the PCI bus degrades the performance of the shared memory in the case of both of read

and write. But on the next version, we utilize a part of the local memory as the shared memory.

And also, the configuration of the hardware is different. Figure 12 and Figure 13 shows dif-

ferences. The next version of the AWG-STAR system targets AMD64 platform. The computing

nodes are equipped with the AWG-STAR interface board (AWG-STAR IF) which is connected

to the computing node with HyperTransport. HyperTransport is the high-bandwidth, low-latency

point-to-point link technology. The AWG-STAR IF is directly connected to the local memory

via HyperTransport and a crossbar switch. On the current AWG-STAR system, the SMB is con-

nected with PCI bus, but the AWG-STAR IF is connected with the higher bandwidth link. And,

the current version of the SMB has the shared memory on it, but the AWG-STAR IF has no shared

memory.
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On the next version, the read performance of the shared memory is significantly improved.

We can read from the shared memory at the same speed as the local memory, because the shared

memory is the local memory in physical.

The write performance is also improved on the next AWG-STAR system. When the data is

written to the memory area reserved as the shared memory, the device driver detects writing and

sends written data to the AWG-STAR IF similarly to the current AWG-STAR system. However,

written data is transmitted via HyperTransport instead of the PCI bus. So, the transmission time of

written data is shortened. Additionally, the transmission time of the written data to the optical ring

is shortened. On the current AWG-STAR system, to send the data via the optical ring, we must

wait for the arrival of a control token. However, the next AWG-STAR system utilize multiple

tokens. The master node of the next AWG-STAR system creates multiple tokens at some intervals

continuously. When the AWG-STAR IF has the data which should be transmitted, it catches the

free token and can transmit the data to the optical network immediately.

6.2 Performance Estimation

In this section, we discuss effectiveness of the improvement on the next version of the AWG-

STAR system. At first, we estimate the total shared memory access time included the execution

time of the benchmark program which we used in Section 5. Next, from estimated access time and

expected performance of the next AWG-STAR system, we estimate how much the improvement

on the next AWG-STAR system will affect the execution time. We choose NPB 2.3 EP as the

target of our estimation. A result of this benchmark is shown in Figure 11.

To estimate the total shared memory access time, we require an access time of the shared mem-

ory of the current AWG-STAR system and the number of shared memory access in the benchmark

program. So, we measure the average time which is needed to read or write single value on the

share memory in the real application program. For measurement, we create a program which con-

tains only the shared memory access code. Access times that we measure with the program are

shown in Table 6. And, we count the number of the shared memory access in the intermediate

code of NPB 2.3 EP, which is generated by our OpenMP compiler. At this time, we focus only

the memory access of the master, because the execution time of the benchmark is measured on the

master. Memory accesses performed by workers are not counted. Results are shown in Table 7.

From these results described above, we estimate the total shared memory access time. The
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total shared memory access time is defined as the product of the shared memory access time and

the number of shared memory access. Table 8 shows the estimated total shared memory access

time. Estimated results are almost equal to the execution time of the benchmark program. That

means the execution time consists mostly of the shared memory access time. Especially, almost

of them are reading from the shared memory. So, we found that the improvement of the read

performance of the shared memory have a large impact on the computation performance.

As remarked in Section 6.1, the read performance of the shared memory is significantly im-

proved on the next version of the AWG-STAR system. The read performance of the shared mem-

ory is same as the local memory. If a computing node has the local memory which can read at

2GB/s, we can also read the shared memory at 2GB/s. It is over 25 times the maximum reading

speed of the shared memory of the current AWG-STAR system. Therefore, on the next AWG-

STAR system, the execution time will be reduced about 25 times. So, it is thought that the im-

provement on the next AWG-STAR system will be significantly effective.
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Table 6: Shared Memory Access Time of Current AWG-STAR System
Number of Nodes Read (ms) Write (ms)

1 0.005154996 0.001071544
2 0.005154996 0.001297516
4 0.005154996 0.002595032

Table 7: Number of Shared Memory Accesses in NPB 2.3 EP
Number of Nodes Read Write

1 67109910 29
2 33554966 29
4 16777494 29

Table 8: Total Shared Memory Access Time in NPB 2.3 EP
Number of Nodes Read (ms) Write(ms)

1 345951.3381 0.031074781
2 172975.7257 0.037627966
4 86487.91958 0.075255932
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7 Conclusion

In this thesis, we established λ computing environment using the AWG-STAR system and, we

design and implement OpenMP application programming interface for the AWG-STAR system.

We develop our OpenMP implementation based on the existing OpenMP compiler, OMPi. We

modify OMPi and its runtime library to enable parallel computing on the AWG-STAR system.

Our OpenMP implementation utilizes the shared memory system provided by the AWG-STAR

system for data sharing.

Next, we evaluate the performance of our implementation for the AWG-STAR system by

executing the benchmark programs. However, as a result, current AWG-STAR system is not

able to achieve comparable performance to existing parallel computing environment , because of

insufficient access speed of the shared memory. Our estimation shows that the execution time

of the OpenMP application consists mostly of the shared memory access time, and the largest

bottleneck is the read performance of the shared memory. It is thought that the cause of low access

performance of the shared memory is the PCI bus, because all accesses to the shared memory are

performed via the PCI bus.

NTT Photonics Laboratory is currently developing the next version of the AWG-STAR system,

and the performance of the memory access will be improved in that version. Therefore, we also

estimate the effectiveness of the improvement on the next version of the AWG-STAR system in

this thesis. Our estimation shows that the improvement on the next AWG-STAR system will be

significantly effective.

As a future work, the performance evaluation of our OpenMP implementation on the next

AWG-STAR system is required. Moreover, because our implementation currently does not imple-

ment all features of OpenMP, implementation of fully compliant OpenMP is also a future work.
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