
Congestion control mechanism of TCP for achieving predictable throughput

Kana Yamanegi Go Hasegawa Masayuki Murata

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{k-yamanegi, hasegawa, murata}@ist.osaka-u.ac.jp

Abstract

The demand of Internet users for diversified services has
increased due to the rapid development of the Internet, and
applications requiring QoS guarantee, such as real-time
media delivery services, have become popular. Our re-
search group has proposed transport-layer approaches to
provide such high-level quality of network services. In the
present paper, we propose a congestion control mechanism
of TCP for achieving predictable throughput. It does not
mean we can guarantee the throughput, while we can pro-
vide the throughput required by an upper-layer application
at high probability when network congestion level is not so
high. We herein present the evaluation results for the pro-
posed mechanism obtained in simulation experiments and
confirm that the proposed mechanism can assure a TCP
throughput if the required bandwidth is not so high com-
pared to the physical bandwidth, even when other ordinary
TCP (e.g., TCP Reno) connections occupy the link.

1 Introduction

The demand by Internet users for network quality has
increased due to services becoming increasingly diversi-
fied and sophisticated because the remarkable degree to
which the Internet has grown, which is due in part to ac-
cess/backbone network technologies. Applications involv-
ing real-time media delivery services, such as VoIP, video
streaming and TV meeting system, which require large and
stable amounts of network resources in order to maintain
Quality of Services (QoS), have experienced a dramatic
level of development. For example, the quality of real-
time streaming delivery applications is highly dependent on
propagation delay and delay jitter. The available bandwidth
on the end-to-end network path is also an important factor
in order for rich contents, including voice and video, to be
provided smoothly.

Some video streaming applications use User Datagram
Protocol (UDP) as a transport-layer protocol, and control
the data transmission rate by the application program, ac-
cording to the network condition. However, these mech-
anisms have a large cost when modifying the application
program for achieving the application-specific QoS require-
ments, and the parameter settings are very sensitive to var-
ious network factors. Furthermore, when such applications
co-exist in the network and share the network bottleneck
resources, we can not estimate the performance of the net-
work or that of the applications, because the control mech-
anisms of such applications are designed and implemented
independently, without considering the effect of interactions
with other applications.

In our research group, we proposed transport-layer ap-
proaches for achieving QoS for such applications. Since
TCP controls the data transmission rate according to the
network condition (congestion level), we believe that the
transport-layer approach is ideal for providing high-quality
data transmission services. Furthermore, by implement-
ing the mechanism into TCP, rather than introducing a new
transport-layer protocol or modifying UDP, we can accom-
modate several existing TCP-based applications transpar-
ently , and we can minimize the degree of modification to
provide predictable throughput.

In the present paper, we focus on achieving predictable
throughput by TCP connections. Essentially, TCP cannot
obtain guaranteed throughput because its throughput is de-
pendent on, for example, the Round Trip Time (RTT) and
the packet loss ratio of the network path and the number
of co-existing flows [1]. Therefore, we intend to increase
the probability at which a TCP connection achieves the
throughput required by an upper-layer application, while
preserving the fundamental mechanisms of congestion con-
trol in TCP. In other words, bypredictable throughput, we
mean the throughput required by an upper-layer application
which can be provided at high probability when network
congestion level is not so high. In the present paper, we pro-
pose the congestion control mechanism of TCP for achiev-
ing the required throughput in high probability, regardless
of the network congestion level. We modify the degree of
increase of the congestion window size of a TCP connection
in the congestion avoidance phase, by using the information
on the available bandwidth of the network path obtained
by Inline Measurement TCP (ImTCP) [2], which has been
proposed by our research group. The application examples
of the proposed mechanism include TCP-based video/voice
delivery services, such as Windows Media Player [3], and
Skype [4]. We also show that we can control the sum of the
throughput of multiple TCP connections, by extending the
mechanism for one TCP connection. This mechanism may
be used in the situation in which a stable throughput should
be provided for the network traffic between two local area
networks interconnected by IP-VPN.

The proposed mechanism is evaluated by simulation ex-
periments using ns-2 [5]. We confirm that the proposed
mechanism can achieve a TCP throughput of 10%-20% of
the bottleneck link capacity even when the link is highly
congested and there is little available bandwidth.

2 Proposed Mechanisms

Figure 1 shows an overview of the proposed mechanism.
We assume that an upper-layer application sendsbw (pack-
ets/sec) andt (sec) to the proposed mechanism, which is
located at transport-layer. This means that the application
requires average throughputbw at every interval oft sec in

TCP data transmission, and the proposed mechanism tries
to achieve this demand. Note that by implementing the pro-
posed mechanism, we also need to modify the socket in-
terface to pass the value of required throughput from the
upper-layer application to TCP. Here,bw is the required
throughputand the time interval is referred to as theevalu-
ation slot, as shown in Figure 1. We change the degree of
increase of the congestion window size of a TCP connec-
tion to achieve a throughput ofbw every t sec. Note that
in the slow start phase, we use a mechanism that is identi-
cal to the original TCP Reno, i.e., the proposed mechanism
changes the behavior of TCP only in the congestion avoid-
ance phase. By minimizing the degree of modification of
TCP source code, we expect that the original property of
the congestion control mechanism can be preserved. We
can also reduce the introduction of implementation bugs by
basing on the existing TCP source code.

Also, we do not change the degree of decrease of the
congestion window size from the original TCP (=0.5) and
we describe in 2.2.2 that the proposed mechanism sets the
degree of increase of the congestion window size to 1 when
the network is not congested. Thus, the proposed mecha-
nism can perform fairly with the original TCP connection
when the network has sufficient residual bandwidth.

Since the proposed mechanism changes its behavior in
units of the Round Trip Time (RTT) of the connection, we
introduce a variablee ast = e · rtt, wherertt is the RTT
value of the TCP connection.

In what follows, we first introduce the calculation
method of target throughput in each evaluation slot in Sub-
section 2.1 and propose an algorithm to achieve the required
throughput in Subsection 2.2.

2.1 Calculating target throughput

We split an evaluation slot into multiple sub-slots, called
control slots, to control the TCP behavior in a finer-grained
time period. The length of the control slot iss (RTT),
wheres is 2 ≤ s ≤ e. We set the throughput value we
intend to achieve in a control slot, which is referred to as
thetarget throughputof the control slot. We change the tar-
get throughput in every control slot and regulate the packet
transmission speed in order to achieve the target through-
put. The final goal is to make the average throughput in
the evaluation slot larger than or equal tobw, the required
throughput.

We use the smoothed RTT (sRTT) value of the TCP con-
nection to determine the lengths of the evaluation slot and
the control slot. That is, we set the length of thei-th con-
trol slot to s · srtti, wheresrtti is the sRTT value at the
beginning of thei-th control slot. At the end of each control
slot, we calculate the achieved throughput of the TCP con-
nection by dividing the number of successfully transmitted
packets in the control slot by the length of the control slot.
We then set the target throughput of thei-th control slot,gi
(packets/sec), as follows:

{
gi = bw + (gi−1 − tputi−1)
g0 = bw

wheretputi (packets/sec) is the average throughput of thei-
th control slot. This equation means that the target through-
put of thei-th control slot is determined according to the
difference between the target throughput and the achieved
throughput in the(i− 1)-th control slot.

2.2 Achieving the target throughput by
changing the congestion window size

Although it may seem that one simple method by which
to achieve the target throughput by TCP would be to fix the
congestion window size to the product of the target through-
put and RTT and to keep the window size even when packet
losses occur in the network, such a straightforward method
would introduce several problems in the network conges-
tion that could not be resolved. In addition, such a method
would result in severe unfairness with respect to co-existing
connections using the original TCP Reno. Therefore, in the
proposed mechanism, the degree of modification of the TCP
congestion control mechanism is minimal in order to main-
tain the original properties of TCP. This means that the de-
gree of the congestion window size is increased only in the
congestion avoidance phase of a TCP connection. This does
not modify the TCP behavior in the slow start phase or when
a TCP connection experiences packet loss(es).

In the proposed mechanism, the sender TCP updates its
congestion window sizecwnd in the congestion avoidance
phase according to the following equation when it receives
an ACK packet from the receiver TCP:

cwnd ← cwnd +
k

cwnd
(1)

wherek is the control parameter. From the above equa-
tion, we expect that the congestion window size increases
by k packets in every RTT. The main function of the pro-
posed mechanism is to regulatek dynamically and adap-
tively, whereas the original TCP Reno uses a fixed value
of k = 1. In the rest of this subsection, we explain how to
changek according to the network condition and the current
throughput of the TCP connection.

2.2.1 Increasing the degree of the congestion window
size

Here, we derivekbw
j , which is an ideal value for the de-

gree of increase of the congestion window size when the
j-th ACK packet is received from the beginning of thei-th
control slot, so that the TCP connection achievesgi of the
average throughput. For achieving the average throughput
gi in thei-th control slot, we need to transmit(gi · srtti · s)
packets in (s · srtti) sec. However, since it takes one RTT
to receive the ACK packet corresponding to the transmitted
packet, and since it takes at least one RTT to detect packet
loss and retransmit the lost packet, we intend to transmit
(gi · s · srtti) packets in ((s− 2) · srtti) sec.

We assume that the sender TCP receives thej-th ACK
packet at thenj-th RTT from the beginning of the control
slot, and the congestion window size at that time iscwndnj .
Since the congestion window size increases byk packets
every RTT, we can calculatepsnd, the number of packets
that would be transmitted if we usekbw

j for k in Equation (1)
in the rest of the control slot, the length of which is (s−2−
nj) · srtti sec:

psnd = (s− nj − 1)cwndnj +
kbw

j

2
(s− nj − 1)(s− nj)

On the other hand,pneed, i.e., the number of packets that
should be transmitted in order to obtaingi, is calculated as
follows:

pneed = gi · srtti · s− aj

whereaj is the number of transmitted packets from the be-
ginning of the control slot to whenj-th ACK packet is re-
ceived. Then, we can calculatekbw

j by solving the equation
psnd = pneed for kbw

j ;

kbw
j =

2{gi · srtti · s− aj − (s− nj − 1)cwndnj
}

(s− nj − 1)(s− nj)
(2)

In the proposed mechanism, we use the above equation to
updatek for Equation (1) when the sender TCP receives a
new ACK packet.

2.2.2 Limitation of k based on the available bandwidth

By using Equation (2) for determiningk, the degree of in-
crease of the congestion window size becomes too large
when the current throughput of a TCP connection is far be-
low the target throughput. Values ofk that are too large
would cause bursty packet losses in the network, resulting
in a performance degradation due to retransmission time-
outs. On the other hand, when the network has sufficient
residual bandwidth, the degree of increase of the conges-
tion window size in Equation (2) becomes smaller than 1.
This results in a lower throughput increase than TCP Reno.
Therefore, we limit the maximum and minimum values for
k, which are denoted bykmax andkmin, respectively. We
simply setkmin = 1 to preserve the basic characteristics
of TCP Reno. On the other hand, we should setkmax such
that bursty packet losses are not invoked, whereas the tar-
get throughput should be obtained. Thus, we decidekmax
according to the following considerations.

First, when the proposed mechanism has obtained the
target throughput in all of the control slots in the present
evaluation slot, we determine that the available bandwidth
of the network path would be sufficient to obtain the target
throughput of the next control slot. Therefore, we calculate
kmax so as to avoid packet losses by using the information
of the available bandwidth of the network path. Here, the
information about the available bandwidth of the network
path is estimated by ImTCP [2], which is the mechanism
of inline network measurement. ImTCP measures the avail-
able bandwidth of the network path between sender and re-
ceiver hosts. In TCP data transfer, the sender host trans-
fers a data packet and the receiver host replies to the data
packet with an ACK packet. ImTCP measures the available
bandwidth using this mechanism, that is, ImTCP adjusts the
sending interval of data packets according to the measure-
ment algorithm and then calculates the available bandwidth
by observing the change of ACK arrival intervals. Because
ImTCP estimates the available bandwidth of the network
path from data and ACK packets transmitted by an active
TCP connection in an inline fashion, ImTCP does not inject
extra traffic into the network. ImTCP is described in detail
in [2].

Next, when the proposed mechanism has not obtained
the target throughput in the previous control slot, the pro-
posed mechanism will not obtain the target throughput in
the following control slots. We then setkmax so as to obtain
a larger throughput than the available bandwidth of the net-
work path. This means that the proposed mechanism would
steal bandwidth from competing flows in the network in or-
der to achieve the required bandwidth by the upper-layer
application.

In summary, the proposed mechanism updateskmax by
using the following equation when the sender TCP receives

a new ACK packet:

kmax =





A · srtti − cwnd
(∀x{(1 ≤ x < i) ∨ (tputx < gx)}) (3)

min(A + (gi − avgAi−1), P) · srtti − cwnd
(∃x{(1 ≤ x < i) ∧ (tputx < gx)}) (4)

whereA andP (packets/sec) are the current values for the
available bandwidth and physical capacity as measured by
ImTCP,avgAi is the average available bandwidth in thei-th
control slot.

2.3 Length of the control slot

In general, the length of the control slot (s) controls
the trade-off relationship between the granularity of the
throughput control and the influence on the competing traf-
fic. For example, if we use a small value fors, it becomes
easier to obtain the required throughput because we update
the target throughputgi more frequently. On the other hand,
the smaller value ofs means that the congestion window
size is changed so drastically that we achieve the average
throughput in smaller control slot, which results in a larger
effect on other competing traffic. Therefore, we should set
s to be as large as possible, while maintaining the required
throughput, adoptively to network condition.

The algorithm is based on the following considerations.
First, when the proposed mechanism has not obtained the
target throughput although we setkmax by using Equa-
tion (4), we halves in order to achieve the target through-
put. Second, when the proposed mechanism has achieved
the target throughput withkmax calculated by Equation (3)
and the congestion window size is satisfied withcwnd ≥
bw·srtti, we can expect that the proposed mechanism could
achieve the target throughput even when we increase the
length of the control slot. Therefore, we doubles in the
next evaluation slot.

2.4 Maintaining multiple connections

In this subsection, we depict the mechanism that controls
the sum of the throughput of multiple TCP connections,
by extending the mechanism in Subsections 2.2 and 2.3.
In this mechanism, we assume that multiple TCP connec-
tions are maintained at transport-layer proxy nodes such as
TCP proxy [6], and the throughput is controlled at the proxy
nodes (Figure 2). The proposed mechanism is intended to
achieve the required throughput,bw, of the sum of multiple
TCP connections at everyt sec interval, and the multiple
TCP connections use the same values for the length of the
evaluation and control slots, which are set based on the min-
imum sRTT measured by the sender-side proxy node. Here,
the sender-side proxy node can identify the number of active
TCP connections. This assumption is natural when we use
explicit proxy mechanisms such as TCP proxy and SOCKS
[7].

To determinek in Equation (1) for each connection, we
can simply extend Equation (2) to multiple TCP connec-
tions as follows:

kbw
j =

2{(gi · srtti · s− asum
j)/Npm − (s− nj − 1)cwnd

nj

i }
(s− nj − 1)(s− nj)

whereasum
j is the sum of packets that TCP senders have

sent when receiving thej-th ACK, andNpm is the number
of the active TCP connections. We use this equation for all

� ���
�����	�

����

������������������ �!�"�#��$%�'&�(!)+*-,�&%�.*/�
�0�#��1���(�243-�"�#�
57698;:=<?>#�0�@�4�'(!�+6-�BA�5C�/��5D)+6
E 5F�'&G�.(@)H��)��"��>IAJ�#�0&-�+6�5C�BA

K
L-M

N�OQP�R7STP U"VXW"Y[Z-R\W�U

] ^ V`_ba

^dc0e WfShg c0i STU

jHkmlon

K

p] q%]K
L-M

N�OQP�R7STP U"VXW"Y[Z-R\W�U

] ^ V`_ba

^dc0e WfShg c0i STU

jHkmlon

K

p] q%]

r9sut�vwsyx
z|{~}��

� s���sb����syx
z|{~}��

Figure 1. Overview of the pro-
posed mechanism

�����
���	��

�

����� ���������

�

���

 "!$#&%('$#*),+.-,/�01%2-
)

3 4 +65�78:9
; <
=

>?A@<
9 B
?6C 9
> D
EFG

�

4IHKJMLON -
PRQ 4IHKJML,N -SPTQ

UWV�X
Y[Z*\]Z,^`_]ZaYcb

UWV�X
b$Z�d$e,Z*Yfb

Figure 2. Mechanism for multi-
ple TCP connections

���������	��
���

� ����������

�����	������

�"!# %$& &'(�*)+���,�
-/.10324��576�68���%9;: 5768��<

= �>68?��>@A��B
-A.DC EGFIHJ6�5"?�����<

KL�����>: M"�>@���B
-A.DC ENF;HJ6�5O?�����<

= �>68?��>@3� KL�����>: M"�>@3�

�P�RQP��
���

BTS � ���U������

VXWZYIY;[>\�]8^�^`_Iacb�dfe �U��QP��
���

BTS � �g�P������

Figure 3. Network model for
simulation experiments

TCP connections. This equation means that the degree of
the increase of the congestion window size is calculated by
distributing the number of packets needed for achieving the
target slot to the active TCP connections,

3 Simulation Results and Discussions

In this section, we evaluate the proposed mechanism by
simulation experiments using ns-2. Figure 3 shows the net-
work model. This model consists of sender/receiver hosts,
two routers, and links between the hosts and router. We
set the packet size to 1,000 Bytes. The bandwidth of the
bottleneck link is set to 100 Mbps (which corresponds to
12,500 packets/sec), and the propagation delay is 5 msec.
A DropTail discipline is deployed at the router buffer and
the buffer size is set to 100 packets. The number of TCP
connections using the proposed mechanism isNpm, and the
number of TCP Reno connections, for creating background
traffic, is Nreno. The bandwidth of the access links is set
to 1 Gbps, and the propagation delay is 2.5 msec. For the
proposed mechanism, we sett = 32· RTT (e = 32) for the
length of evaluation slot. Here, 32 RTT corresponds to ap-
proximately 1 sec in this network model. In addition,s, the
length of control slot, is initialized to16.

3.1 Case of one connection

We first evaluate the performance of the proposed mech-
anism for one TCP connection. In this simulation, we set
Npm = 1, andbw is 2,500 (packets/sec), which is equal
to 20% of the bottleneck link capacity. To change the con-
gestion level of the network, we changeNreno to 1, 10, 40
every 5 seconds. Figure 4 shows the changes in the conges-
tion window size, the average throughput, and the length of
the control slot of the TCP connection with the proposed
mechanism. In this figure, the vertical grid represents the
boundaries of the evaluation slots.

The results for 0-5 seconds shown in Figure 4(a) show
that when one TCP Reno connection co-exists with a TCP
connection of the proposed mechanism, the proposed mech-
anism can obtain the required throughput while performing
almost equivalently to TCP Reno. In this period, the avail-
able bandwidth is sufficiently large to obtain the required
throughput, because there are only two connections in the
network that have capacities of 100 Mbps. Thus, the pro-
posed mechanism setsk = kmin (=1), resulting in the fair-
ness with the TCP Reno connection being maintained.

The results for 5-10 seconds, in which case there are 10
TCP Reno connections, we observe that the proposed mech-
anism has a faster increase in the congestion window size

compared to that of TCP Reno connections. This is be-
cause, in this case, it is impossible to obtain the required
throughput with the identical behavior to TCP Reno, due
to the increase in the amount of competing traffic. Conse-
quently, the proposed mechanism changes the degree of in-
crease of the congestion window size (k) in order to achieve
the required throughput.

Furthermore, the results after 10 seconds with 40 TCP
Reno connections show that the congestion window size of
the proposed mechanism increases faster than that of previ-
ous cases, and that the length of control slot,s, is changed
to a smaller value. This result indicates that the proposed
mechanism controls its congestion window size with a
smaller length of the control slot to obtain required through-
put because sufficient throughput cannot be achieved by
merely changing the degree of increase of the congestion
window size. As a result, the proposed mechanism can ob-
tain the required throughput even when there are 40 com-
peting TCP Reno connections. Thus, we have confirmed
that the proposed mechanism can effectively obtain the re-
quired throughput by changing the degree of increase of the
congestion window size and the length of the control slot
according to the network congestion level.

We next show the relationship between the performance
of the proposed mechanism and the number of co-existing
TCP Reno connections in greater detail. We setNpm = 1,
andbw is 10% (1,250 packets/sec) and 20% (2,500 pack-
ets/sec) of the bottleneck link capacity. Figure 5 shows the
ratio of the number of evaluation slots in which the pro-
posed mechanism obtains the required throughput to the to-
tal number of evaluation slots in the simulation time. In
this simulation experiment, the simulation time is 60 sec-
onds. For the sake of comparison with the proposed mech-
anism, we also show the simulation results obtained using
TCP Reno (labeled as “Reno”) and modified TCP (labeled
as “constant”), which uses a constant congestion window
size ofbw · srttmin (packets) even when packet drops oc-
cur. Here,srttmin is the minimum sRTT value for the TCP
connection.

Figure 5 indicates that the original TCP Reno can obtain
the required throughput for 100% of evaluation slots when a
few background connections co-exist, because the original
TCP Reno fairly shares the bottleneck link bandwidth with
all of the connections. However, when the number of co-
existing connections (Nreno) increases, TCP Reno cannot
obtain the required throughput because it shares the band-
width with numerous connections. We can also observe that
the TCP with constant window size cannot achieve the re-
quired throughput whenNreno is larger than 10. In this sit-
uation, the network congestion cannot be resolved because
the congestion window size is not decreased even when

 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

C
on

ge
st

io
n

w
in

do
w

 s
iz

e
[p

kt
s]

T
hr

ou
gh

pu
t r

at
io

 [%
]

(a) Changes in throughput and window size

cwnd of proposed mechanism
cwnd of tcp reno

av-throughput
bw

32

16
8
0

 0 2 4 6 8 10 12 14 16

[R
T

T
]

Time [sec]
(b) Changes in control slot length

Figure 4. Changes in con-
gestion window size, aver-
age throughput and length
of control slot

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

 th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

Number of co-existing TCP Reno connections

Reno:10%
Reno:20%

constant TCP:10%
constant TCP:20%

proposed:10%
proposed:20%

Figure 5. Percentage of evalu-
ation slot required throughput
achieved

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 e

va
lu

at
io

n
sl

ot
s

th
at

 a
ch

ie
ve

d
th

e
re

qu
ire

d
th

ro
ug

hp
ut

 [%
]

Number of co-existing TCP Reno connections

Reno:10 connections
For one:10 connections

For multi: 5 connections
For multi:10 connections

Figure 6. Performance compari-
son for multiple connections

packet losses occur in the network. Compared to the above
mechanisms, the proposed mechanism can obtain the re-
quired throughput with high probability even when several
connections co-exist in the network. This means that the
proposed mechanism can control the trade-off relationship
between the aggressiveness of the proposed mechanism and
the degree of influences on competing traffic.

3.2 Case of multiple connections

Next, we demonstrate the performance of the proposed
mechanism for multiple TCP connections described in Sub-
section 2.4. In the simulation, we establish multiple TCP
connections between Sender 1 and Receiver 1 in Figure
3, and the proposed mechanism at Sender 1 controls the
throughput of the connections. We setbw = 2, 500 (pack-
ets/sec),Npm= 5 and 10. This setting means that a total
throughput of 2,500 (packets/sec) would be achieved for the
5 or 10 TCP connections. The maximum value of the con-
gestion window size of co-existing TCP Reno connections
is 100 packets. Here, we assume that the TCP sender host
knows the current information on the available bandwidth
and physical capacity of the network path. This assumption
is necessary in order to focus on evaluating the algorithm
described in Subsection 2.4.

Figure 6 shows the percentage of the number of evalua-
tion slots in which the proposed mechanism can obtain the
required throughput to the total number of evaluation slots
in the simulation time. This figure shows the results when
we use 10 connections without the proposed mechanism (la-
beled as “Reno”), those when we use the proposed mech-
anism for each of 10 connections, wherebw=250 (pack-
ets/sec) (labeled as “For one”), and those when the pro-
posed mechanism for multiple connections is used (labeled
as “For multi”). This figure shows that the original TCP
Reno without the proposed mechanism cannot obtain the re-
quired throughput when the number of the co-existing con-
nections becomes larger than 30. When we use the proposed
mechanism for each of 10 connections, the performance is
not so good when the number of competing connections
exceeds 40. This is because bursty packet losses occur in
this case because the multiple connections simultaneously
inject several packets into the network based on the avail-
able bandwidth information estimated by each connection.
On the other hand, the proposed mechanism for multiple
connections can obtain the required throughput with high

probability even when the number of the co-existing TCP
Reno connections increases. This is because the problem
of the proposed mechanism for one connection is solved by
sharingkmax with the multiple connections, as described in
Subsection 2.4. In addition, the performance forNpm = 10
is better than that forNpm = 5 to achieve the required
throughput. This is because the effect of sharingkmax be-
comes larger when a larger number of connections is ac-
commodated.

4 Conclusion

In the present paper, we focused on upper-layer applica-
tions requiring constant throughput, and proposed the TCP
congestion control mechanism for achieving the required
throughput with a high probability. Through simulation
evaluations, we demonstrated that the proposed mechanism
for one connection can achieve the required throughput with
a high probability, even when there is almost no residual
bandwidth of the network path, and that the extended mech-
anism performs effectively to provide the required through-
put for multiple TCP connections.

In future studies, the proposed mechanism will be im-
plemented on actual systems and its performance will be
evaluated in an actual network environment which is more
complicated than a simulation environment.

References

[1] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” inProceed-
ings of ACM SIGCOMM’98, Sept. 1998.

[2] L. T. M. Cao, G. Hasegawa, and M. Murata, “An Inline measurement
method for capacity of end-to-end network path,” inProceedings of
IM’2005 E2EMON Workshop 2005, May 2005.

[3] Microsoft Corporation, “Microsoft Windows Media - Your Digital En-
tertainment Resource,” available fromhttp://www.microsoft.
com/windows/windowsmedia/default.mspx .

[4] Skype Technologies Corporation, “Skype -The whole world can talk
for free.,” available fromhttp://www.skype.com/ .

[5] T. V. Project, “UCB/LBNL/VINT network simulator - ns (version 2),”
available fromhttp://www.isi.edu/nsnam/ns/.

[6] I. Maki, G. Hasegawa, M. Murata, and T. Murase, “Throughput anal-
ysis of TCP proxy mechanism,” inProceedins of ATNAC 2004, Dec.
2004.

[7] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones,
“SOCKS Protocol Version 5,”RFC 1928, Apr. 1996.

