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Abstract—In this paper we propose MARAS, a biologically- travel. The selection of the next hop is performed with the

inspired method for routing in a mobile ad-hoc/sensor network pjologically inspiredadaptive response by attractor selection
environment. We assume that all nodes have no explicit knowl- (ARAS) concept [4]

edge of the network topology, except for their coordinates and Th ind f thi . ized foll |
the neighboring nodes within an RF transmission range. MARAS .e remain e_r 0 . IS paper 1S organized as _0 OWS' n
then selects the next hop for forwarding a packet towards Section Il we briefly introduce related work on routing in ad-

a destination node which is best suited depending on somehoc networks, especially with focus on randomized methods.
measured metric values. The benefit of our proposed method This is followed in Section Ill by a description of the propds
is its ability to operate entirely in a self-adaptlve.manner and biologically-inspired approach and we elaborate on how to
that it can easily compensate for sudden changes in the topology . . - o
of the network. apply it for self-adaptively determining the next hop intiag.
The proposal is evaluated in Section IV by simulation result
l. INTRODUCTION and future extensions are discussed in Section V.

Routing in mobile ad-hoc networks has recently attracted
many researchers due to the flexibility in controlling thedis
ogy. Unlike conventional Internet routing which is consteal While many proposals for ad-hoc routing have been pub-
by the underlying OSPF routing functionality, ad-hoc neteo lished, we are mainly interested in a robust and flexible
and sensor networks use wireless links and can be configueethcept that can self-adaptively react to sudden changég in
in a highly dynamic way. While we consider in this papenetwork topology. A possible approach to enforce resikenc
ad-hoc and sensor networks in the same fundamental wigyto deviate from deterministic routing algorithms and to
their actual requirements differ significantly. Ad-hoc esd perform the selection of the next hop in a probabilistic mann
may be mobile computers or PDAs that are simply connect&ihce the selection is done independently by each nodeg thes
in an ad-hoc manner, whereas, sensor networks usually hadehoc routing schemes scale well with the number of nodes.
limited computational capabilities and a limited lifetindeie In order to simplify the task we assume that the hop
to exhausted battery power. Our focus in this paper lies émrwarding mechanism uses geographical information, the.
generic ad-hoc network architectures. nodes are aware of their own locations. The advantage of

In general, there are two major reactive routing concepsing location information in routing is that the number of
for ad-hoc networkssource routing, e.g. in Dynamic Source packets required for searching the paths to the destination
Routing (DSR) [1], anddistance vector-based, e.g. Ad-Hoc node can be limited in the direction of the destination node,
On-Demand Distance Vector (AODV) [2]. When a new routef. LAR (Location-Aided Routing) [5]. However, location
to a destination node is requested, the source routing apiprobased routing may have problems if the selection of the
uses probe packets to determine the path from sourcenext hop is performed in an entirely greedy way. Packets
destination node and stores this information in each packetust be routed around void areas where no forwarding node
On the other hand, in AODV each node uses routing tableszists in the direction to the destination. For instanceSEBP
to maintain the information of forwarding nodes. The rogtin(Greedy Perimeter Stateless Routing) [6] switches froredye
tables are also set up by flooding the network with probe padirwarding to routing around the perimeter of the void regio
ets. Several variants of DSR and AODV have been proposetien one is encountered. Finding the destinations can also b
to consider multiple paths between source and destinationperformed using specific location servers which are queried
increase transmission reliability, cf. [3]. by nodes to find the destination [7].

In this paper we consider a geographical routing schemeAnother class of random forwarding protocols is represknte
for ad-hoc networks. This means that we assume that edghGeRaF (Geographic Random Forwarding) [8] and ExOR
node is capable of determining its own location as well as §8]. Here, each node also assumes some limited geographic
estimate of the destination node location. Although outhoét information of itself and the sink node. When a node wishes
is also capable to operate without this restriction, it dlea to forward a packet toward the destination, it broadcasts it
helps to reduce the number of packets flooded in the netwdtk neighboring nodes, which then cooperate among each othe
by having a rough idea in which direction the packet shoutd determine the best choice as next hop.

Il. RELATED WORK
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IIl. THE PROPOSEDMARAS MECHANISM

We propose MARAS rfobile ad-hoc routing with attractor ~ characterized by the stochastic differential equatiortesys
selection), an entirely distributed multi-path routing mechgiven in Eqgn. (1) fori =1,..., M.
anism, where each node operates autonomously and only
gathers information about the network topology by exchaggi
messages with its neighbors. MARAS uses the concept of
adaptive response by attractor selection (ARAS) for each node The functionssyn(«) anddeg(a) are the rate coefficients of
to select its next hop. In contrast to this paper, previouskwomRNA synthesis and degradation in the original biological
in the field of overlay networks [10], [11] uses ARAS to selfmodel, respectively. They are both functions @f which
adaptively select the primary path among a set of multiptepresentsell activity or vigor. The terms;; are independent
predetermined paths at the source node. Those paths white Gaussian noise inherent in gene expression.
obtained by using an underlying routing protocol on network y
layer and ARAS is used there to reduce the selfishness of flows syn(a) = a[fa” +¢] deg(@) = o @)

in order to improve the overall performance of the network$},o parametersy and v in (2) are factors which influence

the mapping of activity to the output probabilities and we us
8 = 50 and~ = 3 throughout this study. The variablg" is a
Adaptive response by attractor selection is a biologicalkpecial offset point which we will discuss below. For theesak
inspired method for adaptively selecting one of several capf simplicity we also defines(a) = ;;;;gg;
didates which best reflects the current situation in a dynami \when we define the functiong/n(a) anddeg(«) as given
environment. ARAS is originally a model for its host E. colin (2), we obtainAZ equilibrium solutionsx(®) of Eqn. (1) in
cells to adapt to changes in the availability of a nutrieRhe form of
for which no molecular machinery is available for signal T
transduction from the environment to the DNA [4]. x(F) = {xﬁk), . ,xg\'}')] k=1,....M
Basically, we can outline the attractor selection method as
follows. Using a set of differential equations, we describgith components(;l(.k), see (3).
the dynamics of an\/-dimensional system. Each differential
equation has a stochastic influence from an inherent Gaussia ,, | #(@) i=Fk (H value)
noise term. Additionally, we introduce aastivity o € [0,1] i T 1 [ 1+ o(a)? — (p<a)} i £k (L values)
which changes the influences from the noise terms. For ex-
ample, if « is large, the system behaves rather deterministicThe behavior can be summarized as follows. The system
and converges to attractor states defined by the structureiroEqn. (1) converges to solutions which have a single “high”
the differential equations. However, for smalthe noise term value (H) and all other values are “low’I(). The dynamics of
dominates the behavior of the system and essentially a nandactivity « influences the selected values. Wheiis high, the
walk is performed. When the input valuesufrients) require high valueH also approaches 1.0, i.e., the selection becomes
the system to react to the modified environment conditionsiore deterministic. On the other hand, for smallH and L
activity o changes accordingly causing the system to searshcome equal and the probabilities for selecting the negt ho
for a more suitable state, see Fig. 1. This may involve thatis controlled by the noise term, see Fig. 2.
causes a previously stable attractor to become unstable. Note that aty* = 1/1/2 we have a special point, as the
Consider a set ofd,, nodes of which we wish to selectsolutionsx(®) are only defined whep(a) > o* (i.e., H > L).
one to forward the packet as next hop of a nede_et the For ¢(a) = ¢* we obtain a single solutior with the same
cardinality of setAd,, be M. For each nodeé € A,, we define entries. Finally, the resulting state vector is normalizegield
the proportion of selecting nodeas m; with m,,,, being the probabilities for selecting a neighboring node as thd ne
the maximum over alln;. The dynamic behavior ofn; is hop.

dm; syn(a)
dt 14+ m2,, —m?

—deg(a)m; +m; Q)

A. Adaptive Response by Attractor-Selection
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Fig. 3. Comparison of activity evaluation for two paths Fig. 4. Decision of next hop with ARAS

B. Mapping of Activity Let us assume the set of all nodes.dsand an arbitrary

The activity valuea reflects the “goodness” of the currentyode n € A" which receives a packet for the destination
solution of ARAS. It is evaluated at the destination nodﬁoded c N On reception of the packet’ the node identifies
and fed back to all nodes along the taken path. Its desirggl current environment, by sending a distance request to
behavior is summarized as follows. If we have no informatios neighboring nodes. In order to reduce traffic load, this
about which hop to choose (e.g. when selecting the hopguest can be done at a certain time interval. However, the
for an |n|t|a”y-unknOWn destlnatlon). the selection shobie more frequenﬂy this guery is performed, the more accurate
performed uniformly among all neighbors. Therefore, eag§ the information about the current network topology. All
node should initializexx = 0 as this _corresponds to the “noneighboring nodes reply to this request by reporting their
preference” case. The same applies to the case when Bective distancedist(i,d) to the destination. Based on
maximum number of hopsmiaxhops) is exceeded. A lowy  this information, the node: maintains its neighbors in two
means that the current solution is not suitable and a new qBgjcal sets: theneighbor set V,, and thecandidate set C,,.

should be searched. If a path to the destination exists, WRe neighbor set contains all nodes within the transmission
wish to keep it with an activity 00.0 < a < 1.0. The larger radiusr,, of noden, i.e.,

a is, the greater is the difference betwe@nand L, which ‘ o
corresponds to the case where we have a clearly identified Ny, = {i € N|dist(i,n) < rn}. (6)

optimal choice as path as shown in Fig. 2. Therefore, we UgR, the other hand, the candidate set is a subset of the neighbo
in the following experiments an as defined in (5). set of all nodes which are nearer to the destination thare.,

o1 <1 _ W) (1 _ hﬂ};n) @) C,, = {i € N,|dist(i,d) < dist(n,d)}. @)

en
do 5(a* — a) All nodes inC,, are potential candidates for forwarding, since
— =0 (0 —«

the packet would get closer towards the destination witln eac
The first term in (4) is the ratio of the direct distanc&10P- Which one is chosen is up to ARAS itself and will be

dist between source and destinationl over the path length described in the following section. For simplicity. we also
len found by ARAS. Thuso* is small when the difference define the complementary candidate set w.r.t. its neigheor s

between both paths is large (i.e. the current path deviatehim asCpn = Ny \Ci.

from the shortest, direct connection). In the second téﬁﬂﬂ% D. Extension of the Basic Algorithm
is the fraction of the previously found minimal number of Bop We can now summarize the basic algorithm for packet

over the current hops. Thus, by using this activity mappingdrwarding with MARAS when a node: receives a packet
we achieve that short paths with a small number of hops gre

preferred over long paths. For example, in Fig. 3, path 1 i%r destination node’
preferred over path 2, which leads to a higher activity festétb

for path 1. Finally,j is the rate of adaptation af which we
keep constant ai = 0.1. Finally, in order to avoid outdate

information, activity decays over time.

1) If n =d, calculatea* from (5), update all nodes along
the path, and process packet at destinadion
d 2) Determine neighbor séY,, and candidate sef,,.
3) If C,, = 0, then there is no suitable candidate in the
direction of the destination. In order to avoid getting
C. Sdlection of the Candidate Nodes stuck in dead ends, we then set the ARAS4gt= C,,.
Consider a scenario as shown in Fig. 4 where a source Otherwise, i.e., ifC;, # 0, setA, = C,,.
node transmits packets to the destination node of which it4) Perform ARAS on set4,, and forward packet to next
only knows its coordinate location. Each intermediate node  hop according to resulting probabilities.
decides autonomously with its own ARAS mechanism to The dynamic behavior of the algorithm is illustrated in
which of its neighbors it forwards the packet. Once a packeig. 5. There ard /| = 100 nodes randomly distributed in
has been delivered successfully (or not), the quality of tleeunit area size o, 1] x [0, 1]. Each node has a transmission
path is evaluated and used to update the decision of the nodeius of r = 0.3. A snapshot of the system is given in
to maintain the current path or to dismiss it. Fig. 5(a). The source node (24) continuously sends pacgets t
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Fig. 5. Example of simulation scenario node density A

Fig. 6. Delivery rate over node density

the destination node using the previously described meésiman
to determine its next hop. In Fig. 5(b) the next hop selection
probabilities of the source node over the first 1000 timwill always outperform our proposal since the latter willeus
steps are given. Until about time step 500, node 11 is figtrandom decision for the next hop. Our focus therefore lies
chosen as relay hop. Then, this node leaves the system andhe more interesting cases when the node density is low or
the next hop is immediately switched to node 0 as shovhe radius of the nodes is small.
in Fig. 5(a). The lower number of nodes in the candidate i
set leads to a higher selection probability of the primarp hd™ Rate of Successful Delivery
candidate. Furthermore, although the probability for ciede Figure 6 shows the average packet delivery rate as a function
is about 0.95, the next hop is still chosen randomly, leatting of the node density\. When the node density is very small,
slight variations in the path for each packet being trartsahit there is often no connectivity to the destination which et
This also assists in resolving sometimes not optimal pathsa high failure rate regardless of the routing method. We can
highlighted in Fig. 5(a). see in Fig. 6 that MARAS achieves better performance than

In order to actively remove such zigzag-shaped paths, we greedy approach especially when the radius is small.
propose the following step when the activity of each node
along the path is updated (step 1). Since this update Bs Resilience to Topology Changes
performed by a packet sent from the destination back to theln order to cope with sudden changes in the network
source in the reverse direction of the original path, itisgiole topology, we now also take the state of the nodes into account
to check in the stored path in the packet if théh node along Since we are interested how well the system performs in the
the original path has thg-th node { + 2 < j) within its presence of suddenly changing topologies, we let all nadles i
transmission range. All nodes of the path lying betweenethegie transit area with am coordinate between 0.25 and 0.75
two nodes are eliminated simply by removing them from thgecome inactive with a probability. Wheng is large, many
respective setsl,,. The result of this operation would be thetransit nodes will be unavailable for routing so the mecsiani
dashed line shown in Fig. 5(a). must adapt to find a new route to the destination.

It can be recognized in Fig. 7 that the delivery rate with
MARAS is higher than that of the greedy approach due to the

In the following we will evaluate the influence of the pagreater flexibility in the selection of the next hop. Thiseeff
rameter settings on the performance of our method. The nodiegven greater for smaller node radius
are randomly distributed according to a spatial homogeseou
Poisson process with density in a unit square, see [12].

IV. NUMERICAL EVALUATION

We construct the process with increasimgcoordinate and B

choose as source the node with the smaltesbordinate and o |

as destination the one with the largest. Since the randasnnes B 0.94--.

of the node locations has a great influence, a large number of % 08

simulation replications is required. Thus, the followirggults s

are averaged over all connections of 500 simulation runis wit g 0.7

3000 time steps each. Error bars in the curves indicate the 2 06

95% confidence levels of the sampled mean values. S 1.
We compare the results of our method to those obtained 05 +gi§3§ 3

from a simple greedy selection of the next hop. In the greedy 0.40 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘7 0‘3 0‘9 .

method, each node forwards the packet deterministicalitsto " state change probability g

neighboring node which lies nearest to the destinations It i
expected that when the node density is large enough, greedy Fig. 7. Delivery rate over state-change probability
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indicate that the proposed method operates well when the nod
density and transmission radius are sufficiently large. ®en
of nodes as well as node additions can be easily compensated.
The implementation itself can be performed in a straight-
forward manner with numerical methods which makes it also
applicable for networks with nodes that have only limited
computational capabilities like sensor networks. We casilyea
consider the total energy consumption per path and theualsid
energy of each node for selecting the path with the leasggner
dissipation. More detailed studies on appropriate inputicse
for evaluating the paths as well as performance comparisons
to other existing randomized mechanisms are the subject of
future studies. Especially, when we consider a high chuen ra
C. Analytical Discussion on Density vs. Radius of the nodes or high mobility, we expect that our r_n_ethod
operates well compared to other approaches. Additionally,

The radius and density greatly influence the probability @fye to the randomization of the hop selection, a better load
finding a next hop within the coverage range. Due to th&ciripution will be achieved

assumption that all nodes are distributed as a homogeneous
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Fig. 8. Probability of finding an empty candidate set

Poisson process with density we can analytically elaborate
further on this. Assume that a nodeis randomly located
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d can be given a¥ (r,d)

X d—X 8
V(r,d) = arccos <r> r? 4 arccos <d> d?>—dy [1]

with X = ;—Z andY = v/r2 — X2. The number of nodes in [2]
areaV (r,d) follows a Poisson distribution with ratg so the
probability to find an empty candidate set of nodes is giver[b]
as in Egn. (8) and illustrated in Fig. 8 far= 1.0.

P(K — 0) _ e—ATrV(nd) (8)

In Fig. 8 we can recognize that for densities)ok 50 and
small radius-, there is a high probability of finding no node in [5]
the candidate set. In these cases the complementary cendida
setC, is used for MARAS, which may result in long detours
of paths or dead ends.

(4]

(6]

V. CONCLUSION AND OUTLOOK

In this paper we presented a new approach for self-adaptiyg
routing in an ad-hoc network. The concept is inspired from
biology and is capable of rapidly reacting to changes in the
environment. Basically, the proposed mechanism detesnings]
the probabilities for choosing the next hop of a packet on
its path to the destination. Suitable paths with small numbzg]
of hops or high path length-to-distance ratio are rewarded,
whereas long paths or those which do not lead to the destina-
tion are penalized. The whole mechanism is controlled by 49
activity term which evaluates the current path and is fedkbac
from the destination to all nodes along the path. Although we
focused here on finding short paths, our method can easiy tzykll
into account further metrics, e.g. radio link quality (sdpto- [12]
interference ratio), load of each node, etc. Numerical ltesu

ogy in Japan.
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