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Abstract

We introduce a novel mechanism for actively measuring available bandwidth along a network path. Instead of adding probe traffic to the

network, the new mechanism exploits data packets transmitted in a TCP connection (inline measurement). We first introduce a new

bandwidth measurement algorithm that can perform measurement estimates quickly and continuously and is suitable for inline measurement

because of the smaller number of probe packets required and the negligible effect on other network traffic. We then show how the algorithm is

applied in RenoTCP through a modification to the TCP sender only. We call the modified version of RenoTCP that incorporates the proposed

mechanism ImTCP (Inline measurement TCP). The ImTCP sender adjusts the transmission intervals of data packets, then estimates available

bandwidth of the network path between sender and receiver utilizing the arrival intervals of ACK packets. Simulations show that the new

measurement mechanism does not degrade TCP data transmission performance, has no effect on surrounding traffic and yields acceptable

measurement results in intervals as short as some RTTs (round-trip times). We also give examples in which measurement results help

improving TCP performance.

q 2005 Published by Elsevier B.V.
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1. Introduction

Information concerning bandwidth availability in a

network path plays an important role in adaptive control

of the network. Many research on measuring available

bandwidth have been done so far. Available bandwidth can

be measured at routers within a network [1]. This approach

may require a considerable change to network hardware and

is suitable for network administrators only. Some passive

measurement tools can collect traffic information at

some end hosts for performance measurements [2], but

this approach requires a relatively long time for

data collection and bandwidth estimation. Exchanging

probe traffic between two end hosts to find the available

bandwidth along a path (an active measurement) seems
UN
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Ethe more realistic approach and has attracted much recent

research [3–7].

Sending extra traffic into the network is the common

weakness in all active available bandwidth measurement

tools. Depending on the algorithm used, the amount of

required probe traffic differs. According to one study [7],

Pathload [4] generated between 2.5 and 10 MB of probe

traffic per measurement. Newer tools have succeeded in

reducing this. The average per-measurement probe traffic

generated by IGI [6] is 130 KB and by Spruce [7] is 300 KB.

A few KB of probe traffic for a single measurement is a

negligible load on the network. But for routing in overlay

networks, or adaptive control in transmission protocols,

these measurements may be repeated continuously and

simultaneously from numerous end hosts. In such cases, the

few KB of per-measurement probes will create a large

amount of traffic that may damage other data transmission in

the network as well as degrade the measurement itself.

We propose an active measurement method that does not

add probe traffic to the network, with the idea of ‘plugging’

the new measurement mechanism into an active TCP

connection (inline measurement). That is, data packets and

ACK packets of a TCP connection are utilized for
Computer Communications xx (xxxx) 1–13
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the measurement, instead of probe packets. This method has

the advantage of requiring no extra traffic to be sent to the

network.

We first introduce a measurement algorithm suitable for

inline network measurement that generates periodic

measurement results at short intervals, on the order of

several RTTs. The key idea in measuring rapidly is to limit

the bandwidth measurement range using statistical infor-

mation from previous measurement results. This is done

rather than searching from 0 bps to the upper limit of the

physical bandwidth with every measurement as existing

algorithms do [4,5]. By limiting the measurement range, we

can avoid sending probe packets at an extremely high rate

and keep the number of probe packets small.

We then introduce ImTCP (Inline measurement TCP), a

Reno-based TCP that includes the proposed algorithm for

inline network measurement described above. When a

sender transmits data packets, ImTCP first stores a group up

to several packets in a queue and subsequently forwards

them at a transmission rate determined by the measurement

algorithm. Each group of packets corresponds to a probe

stream. Then, considering ACK packets as echoed packets,

the ImTCP sender estimates available bandwidth according

to the algorithm. To minimize transmission delay caused by

the packet store-and-forward process, we introduce an

algorithm using the RTO (round trip timeout) calculation in

TCP to regulate packet storage time in the queue. We

evaluate the inline measurement system using simulation

experiments. The results show that the proposed algorithm

works with the window-based congestion control algorithm

of TCP without degrading transmission throughput.

Measurement results of ImTCP can be passed to higher

network layer and used for optimal route selection [8] in

service overlay networks, in network topology design or in

isolating fault locations [9]. Besides, ImTCP can use such

bandwidth information to optimize link utilization or

improve transmission performance of itself. We present

two examples of the second usage. In background mode,

ImTCP uses the results of bandwidth availability measure-

ments to prevent its own traffic from degrading the

throughput of other traffic. This allows a prioritization of

other traffic sharing the network bandwidth. In full-speed

mode, ImTCP uses measurement results to keep its

transmission rate close to the measured value necessary

for optimum utilization of the available network bandwidth.

This mode is expected to be used in wireless and high-speed

networks where traditional TCP cannot use the available

bandwidth effectively.

The remainder of this paper is organized as follows. In

Section 2, we discuss related works concerning inline

measurement. In Section 3, we introduce our proposed

algorithm for inline network measurement and ImTCP. In

Section 4, we evaluate ImTCP performance. In Section 5,

we introduce two examples of congestion window control

mechanisms for ImTCP. Finally in Section 6, we present

concluding remarks and discuss future projects.
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2. Related research on inline network measurement

The idea of inline measurement has previously appeared

in traditional TCP. To some extent, traditional TCP can be

considered a tool for measuring available bandwidth

because of its ability to adjust the congestion window size

to achieve a transmission rate appropriate to the available

bandwidth. One version of TCP, TCP Vegas [10], also

measures the packet transmission delay. There are, in

addition, other tools that convert the TCP data transmission

stack into network measurement tools; Sting [11] (measur-

ing packet loss) and Sprobe [12] (measuring capacity in a

bottleneck link) are typical examples.

As for the measurement of available bandwidth in an

active TCP connection, there is some related research.

Bandwidth estimation in traditional TCP (Reno TCP) is

insufficient and inaccurate because it is a measure of used

bandwidth, not available bandwidth. Especially in networks

where the packet loss probability is relatively high, TCP

tends to fail at estimating available bandwidth. Moreover,

the TCP sender window size often does not accurately

represent the available bandwidth due to the nature of the

TCP congestion control mechanism. The first TCP

measurement algorithm to improve accuracy used a passive

method in which the sender checks ACK arrival intervals to

infer available bandwidth proposed by Hoe [13]. It is a

simple approach based on the Cprobe [3] algorithm. A

similar technique is used in TCP Westwood [14] where the

sender also passively observes ACK packet arrival intervals

to estimate bandwidth, but the results are more accurate due

to a robust calculation. Another study in Ref. [15] proposes

TCP-Rab, a TCP with an inline measurement method that

based on the receiver. The receiver calculates the available

bandwidth from the arrival rate of TCP segments and

informs the sender, so that the sender can perform a

measurement-based congestion window control mechan-

ism. The approach estimates the bandwidth better than

Westwood, because it can eliminate noise caused by the

fluctuation of ACK packets’ transmission times. However,

because these methods are all passive measurements,

changes in available bandwidth cannot be detected quickly.

Especially, when the available bandwidth increases

suddenly, the TCP data transmission rate cannot adjust as

rapidly and needs time to ramp up because of the self-

clocking behavior of TCP. Meanwhile, as transmission

proceeds at a rate lower than the available bandwidth,

the measurement algorithm yields results lower than the

true value.

Our proposed algorithm uses an active approach for

inline measurement. That is, the sender TCP does not only

observe ACK packet arrival intervals, but also actively

adjusts the transmission interval of data packets. The sender

thus collects more information for a measurement and

improved accuracy can be expected. Moreover, the

proposed mechanism requires a modification of the TCP
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3. ImTCP: TCP with inline network measurement

3.1. Overview

We implement a program for inline network measure-

ment in the sender program of RenoTCP to create ImTCP.

The program locates at the bottom of TCP layer, as shown in

Fig. 1. When a new TCP data packet is generated at the TCP

layer and is ready to be transmitted, it is stored in an

intermediate FIFO buffer (hereafter called the ImTCP

buffer) before being passed to the IP layer. The timing at

that the packets are passed to the IP layer is controlled by the

program. When ImTCP performs a measurement, the

program adjusts the transmission intervals of some packets

according to the measurement algorithm. When ImTCP is

not performing a measurement, it passes all TCP data

packets arriving at the buffer immediately to the IP layer. On

the other hand, when an ACK packet arrives at the sender

host, the measurement program records the arrival time for

measurement then passes the ACK packets to the TCP layer

for TCP protocol processing.

3.2. Proposed measurement algorithm

The program adjusts the transmission intervals of packets

to form packet streams that are group packets sent at one

time, for the measurements. The measurements are

performed repeatedly.

In every measurement, a search range is introduced for

searching the value of the available bandwidth. Search

range IZ(Bl, Bu) is a range of bandwidth which is expected

to include the current value of the available bandwidth. The

proposed measurement algorithm searches for the available

bandwidth only within the given search range. The

minimum value of Bl, the lower bound of the search

range, is 0, and the maximum value of Bu, the upper bound,

is equal to the physical bandwidth of the link directly

connected to the sender host. By introducing the search
UNCOR
TCP layer

Application programs

IP layer

Network interface

Data packets

ACK
packets

Measurement 
program

ImTCP
buffer

Record the arrival time
Calculate results

TCP protocol processing

Fig. 1. Placement of measurement program at ImTCP sender.
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range, sending probe packets at an extremely high rate,

which seriously affects other traffic can be avoided. The

number of probe packets for the measurement can also be

kept quite small. As discussed later herein, even when the

value of the available bandwidth does not exist within

the search range, the correct value can be found in a

few measurements. The following are the steps of the

proposed algorithm for one measurement of the available

bandwidth A:

3.2.1. Set initial search range

First, the program send a packet stream according to the

Cprobe algorithm [3] to find a very rough estimation of the

available bandwidth. We set the search range to (Acprobe/2,

Acprobe), where Acprobe is the result of the Cprobe test.

3.2.2. Divide the search range

The search range is divided into k sub-ranges IiZ(BiC1,

Bi) (iZ1,2.k). All sub-ranges have the identical width of

the bandwidth. That is,

Bi ZBuK
BuKBl

k
ðiK1Þ ði Z 1;.; k C1Þ

As k increases, the results of Steps 4 and 6 become more

accurate, because the width of each sub-range becomes

smaller. However, a larger number of packet streams is

required, which results in an increase in the number of used

packets and the measurement time.

3.2.3. Send packet streams and check increasing trend

For each of k sub-ranges, a packet stream i (iZ1.k) is

sent. The transmission rates of the stream’s packets vary to

cover the bandwidth range of the sub-range. We denote the

jth packet of the packet stream i as Pi,j (1%j%N, where N is

the number of packets in a stream) and the time at which Pi,j

is sent from the sender host as Si,j, where Si,1Z0. Then Si,j

(jZ2.N) is set so that the following equation is satisfied:

M

Si;jKSi;jK1

ZBiC1 C
BiKBiC1

NK1
ðjK1Þ

where M is the size of the probe packet. Fig. 2 shows the

relationship between the search range, the sub-ranges and
Fig. 2. Relationship of search range, sub-ranges, streams, and probe

packets.
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the packet streams. In the proposed algorithm, packets in a

stream are transmitted with different intervals, for this

reason the measurement result may not be as accurate as the

Pathload algorithm [4], in which all packets in a stream are

sent with identical intervals. However, the proposed

algorithm can check a wide range of bandwidth with one

stream, whereas the Pathload checks only one value of the

bandwidth with one stream. This reduces the number of

probe packets and the time required for measurement. By

this mechanism, the measurement speed is improved at the

expense of measurement accuracy.

The program then observe Ri,j, the time the ACK of

packet Pi,j arrives at the sender host, where Ri,1Z0. We

calculate the transmission delay Di,j of Pi,j using the

function Di,jZRi,jKSi,j. We then check if an increasing

trend exists in the transmission delay (Di,jKDi,jK1)

(2%j%N) according to the algorithm used in Ref. [4]. As

explained in Ref. [4], the increasing trend of transmission

delay in a stream indicates that the transmission rate of the

stream is larger than the current available bandwidth of the

network path.

Let Ti be the increasing trend of stream i as follows:

Ti Z

1 increasing trend in stream i

K1 no increasing trend in stream i

0 unable to determine

8><
>:

As i increases, the rate of stream i decreases. Therefore, Ti is

expected to be 1 when i is sufficiently small. On the other

hand, when i becomes large, Ti is expected to become K1.

Therefore, when neither of the successive streams m or mC
1 have an increasing trend (TmZTmC1ZK1), the remaining

streams are expected not to have increasing trends (TiZK1

for mC2%i%k). Therefore, the program stops sending the

remaining streams in order to speed up the measurement.

3.2.4. Choose a sub-range

Based on the increasing trends of all streams, the

algorithm chooses a sub-range, which is most likely to

include the correct value of the available bandwidth. First, it

finds the value of a (0%a%kC1), which maximizesPa
jZ0 TjK

Pk
jZaC1 Tj

� �
. If 1%a%k, it determine the sub-

range Ia is the most likely candidate of the sub-range which

includes the available bandwidth value. That is, as a result

of the above calculation, Ia indicates the middle of streams

which have increasing trends and those which do not. If aZ
0 or aZkC1, on the other hand, the algorithm decides that

the available bandwidth does not exist in the search range

(Bl, Bu). The algorithm determines that the available

bandwidth is larger than the upper bound of the search

range when aZ0, and that when aZkC1 the available

bandwidth is smaller than the lower bound of the search

range.

In this way, the algorithm finds the sub-range which is

expected to include the available bandwidth according to

the increasing trends of the packet streams.
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3.2.5. Calculate the available bandwidth

The algorithm then derives the available bandwidth A

from the sub-range Ia chosen by Step 4. It first determines

the transmission rate and the arrival rate of the packet Pa,j

(jZ2.N) as M
Sa;jKSa;jK1

; M
Ra;jKRa;jK1

,respectively. It then

approximates the relationship between the transmission

rate and the arrival rate as two straight lines using the linear

regression method, as shown in Fig. 3. Since, it determines

that the sub-range Ia includes the available bandwidth, the

slope of line (i) which consists of small transmission rates is

nearly 1 (the transmission rate and the arrival rate are almost

equal), and the slope of line (ii) which consists of larger

transmission rates is smaller than 1 (the arrival rate is

smaller than the transmission rate). Therefore, it determines

that the highest transmission rate in line (i) is the value of

the available bandwidth.

On the other hand, when the algorithm has determined

that the available bandwidth value does not exist in the

search range (Bl, Bu) in Step 4, it temporarily set the value of

available bandwidth as follows:

A Z
Bl a Z 0

Bu a Z k C1

(

3.2.6. Create a new search range

When the program have found the value of the available

bandwidth from a sub-range Ia in Step 5, we accumulate the

value as the latest statistical data of the available bandwidth.

The next search range ðB0
l;B

0
uÞ is calculated as follows:

B0
l ZAKmax 1:96

Sffiffiffi
q

p ;
Bm

2

0
@

1
A

B0
u ZACmax 1:96

Sffiffiffi
q

p ;
Bm

2

0
@

1
A

where S is the variance of stored values of the available

bandwidth and q is the number of stored values. Thus, we

use the 95% confidential interval of the stored data as
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the width of the next search range, and the current available

bandwidth is used as the center of the search range. Bm is the

lower bound of the width of the search range, which is used

to prevent the range from being too small. When no

accumulated data exists (when the measurement has just

started or just after the accumulated data is discarded), we

use the same search range as that of the previous

measurement.

On the other hand, when we cannot find the available

bandwidth within the search range, it is possible to consider

that the network status has changed greatly. Therefore, we

discard the accumulated data because this data becomes

unreliable as statistical data. In this case, the next search

range ðB0
l;B

0
uÞ is set as follows:

B0
lZ

Bl aZ0

BlK
BuKBl

2
aZkC1

B0
uZ

BuC
BuKBl

2
aZ0

Bu aZkC1

8><
>:

8>>>>>><
>>>>>>:

This modification of the search range is performed in an

attempt to widen the search range in the possible direction

of the change of the available bandwidth.

By this statistical mechanism, we expect the measure-

ment algorithm to behave as follows: when the available

bandwidth does not change greatly over a period of time, the

search range becomes smaller and more accurate measure-

ment results can be obtained. On the other hand, when the

available bandwidth varies greatly, the search range

becomes large and the measurement can be restarted from

the rough estimation. That is, the proposed algorithm can

give a very accurate estimation of the available bandwidth

when the network is stable, and a rough but rapid estimate

can be obtained when the network status changes.
Last stream of
a measurement 
sent

ACK packets return

SEND STREAMEMPTY BUFFER

Finish

Packet storing timeout  
or
Window size < N Buffer length = m

STORE PACKET PASSPACKET

One stream sent
(not the last one of measurement)

Fig. 5. State transition in the Control unit.
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UNCORREC3.3. Packet storing mechanism

The measurement algorithm uses previous measurement

results to determine a search range for the next measure-

ment. Therefore, it is natural that only one measurement

operation should be performed for one RTT. If the TCP

window size is sufficiently large, we can perform multiple

measurements for one RTT by introducing a quite complex

mechanism. However, many difficulties must be overcome

to accomplish this, including interaction of measurement

tasks, delays caused by multiple streams. We therefore

decided that ImTCP should perform at most one measure-

ment operation per RTT. One RTT is long enough for

ImTCP to recover the transmission rate after a

measurement.

The measurement program dynamically adapts to

changes in the TCP window size. It stores no data packets

when the current window size is smaller than the number of

packets required for a measurement stream. This is because
COMCOM 2845—25/8/2005—21:23—SHYLAJA—161555—XML MODEL 5 – pp. 1–13
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the TCP sender cannot transmit a number of data packets

larger than the window size. On the other hand, when the

window size is sufficiently large, the program creates all

streams required for a measurement in each RTT.

Fig. 4 shows the structure of the measurement

program. It consists of three units. The ImTCP Buffer

unit stores TCP data packets and passes each packet to the

IP layer under control of the Control unit. It informs the

Control unit when a new TCP packet arrives. The Control

unit determines when to send the packets stored in the

buffer. Details of the Measurement unit were introduced

in Section 3.2.

Here, we explain the operation of the Control unit. The

Control unit has four functional states, STORE PACKET,

PASS PACKET, SEND STREAM and EMPTY BUFFER,

as shown in Fig. 5. The Control unit is initially in the

STORE PACKET state. In what follows, we describe the

detailed behaviors of the Control unit in each state;

1. STORE PACKET state

† Start storing packets for the creation of measurement

streams. Set the packet storing timer to end packet

storing after certain length of time T. The timer value

T is discussed in Section 3.4.

† Go to the SEND STREAM state if the number of

stored packets equals to m. The value of m is

discussed in Section 3.4.
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† Go to the EMPTY BUFFER state if the current TCP

window size becomes smaller than N or the packet

storing timer expires. N is the number of packets

needed to create a measurement stream.

2. EMPTY BUFFER state

† Pass currently stored packets to the IP layer until the

buffer becomes empty.

† Return to the STORE PACKET state.

3. SEND STREAM state

† Send a measurement stream. The transmission rate of

the stream is determined according to the measure-

ment algorithm. During stream transmission, packets

arriving at the buffer are stored in the ImTCP buffer.

† After the transmission of the stream, if the stream is

the last of a measurement, go to PASS PACKET

state, if not, go to the EMPTY BUFFER state.

4. PASS PACKET state

† Pass every packet in the buffer immediately to the IP

layer.

† Go to the STORE PACKET state when all ACK

packets of the transmitted measurement streams have

arrived at the sender.
T
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Fig. 6. Packets transmission times in TCP.
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3.4. Parameter settings

3.4.1. Number of packets required to start a measurement

stream (m)

The timing for sending packets in a measurement stream

is determined by the measurement algorithm. If N packets

were stored prior to the beginning of transmission, the long

storage time would slow the TCP transmission speed.

Instead, transmission begins when only a partial number of

packets (m out of N packets) have arrived in the ImTCP

buffer. The timing is such that the former part of the stream

is being transmitted as the latter part of the stream is still

arriving at the buffer, and the latter packets are expected to

arrive in time for transmission. Thus, we reduce the effect of

the packet storing mechanism on TCP transmission.

If we set m to a very small value, the latter part of the

stream will not be available when the former part of

the stream has already been transmitted, in which case the

stream transmission fails. Therefore, m must be large

enough to ensure successful transmission of the measure-

ment stream, but no larger. The algorithm for determining m

is given below. In the algorithm, m is adjusted according to

whether or not transmission of the previous measurement

streams was successful.

† Set mZN initially. The minimum of m is 2, and the

maximum of m is N.

† If F successive measurements are completed success-

fully, and m is greater than its minimum of 2, then

decrement m by 1. We set F to 2.

† If a stream creation fails, and m is less than its maximum

of N, then decrement m by 1 and create the stream again.
MCOM 2845—25/8/2005—21:23—SHYLAJA—161555—XML MODEL 5 – pp. 1–13
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3.4.2. Packet storing timer (T)

We avoid degrading the TCP transmission speed, caused

by storing data packets before they are passed to the IP

layer, by appropriately setting a timer to stop the creation of

a stream. Obviously, there is a trade-off between measure-

ment frequency and TCP transmission speed when choosing

the timer value. That is, for large timer values, the program

can create measurement streams frequently so measurement

frequency increases. In this case, however, because TCP

data packets may be stored in the intermediate buffer for a

relatively long period of time, TCP transmission speed may

deteriorate. Following is an example. An application

temporarily stops sending data, but the measurement

program is still waiting for more packets to form a

measurement stream. There is no new data packet arriving

at the ImTCP buffer so the packets currently in the buffer are

delayed until the application sends new data. In this

situation, if the application does not send data within 1 s,

the TCP timeout will occur.

On the other hand, for small timer values, the program

may frequently fail to create packet streams, leading a low

frequency of measurement success. In the following

discussion, we derive the appropriate value for the packet

storing timer by applying an algorithm similar to the RTO

calculation in TCP [16].

If we assume a normal distribution of packet RTTs with

average ARTT and variance DRTT, ARTT and DRTT can be

inferred from the TCP timeout function [16]. We use the

following notation;

† X: RTT of a TCP data packet

† Y: The time since the first of N successive data packets is

sent until the ACK of the last packet arrives at the sender

† Z: The time necessary for N successive ACK packets to

arrive at the sender

We illustrate X, Y and Z in Fig. 6. We need to know the

distribution of Z to determine the appropriate value for
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Fig. 7. Network model for evaluation of ImTCP.
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the packet storing timer. From Fig. 11, we can see that:

Z Z YKX (1)

From the assumption mentioned above, X has a normal

distribution N(ARTT, DRTT). Note that Y is the period of time

from sending the first packet until the last packet is sent (we

denote the length of this period as K) plus the RTT of the last

packet. That is, we can conclude that the distribution of Y is

N(ARTTCK, DRTT). From Eq. (1) we then obtain the

distribution of Z, as N(K, 2$DRTT).

Here, we provide a simple estimate of K. In a TCP flow,

due to the self-clocking phenomenon, the TCP packet

transmission rate is a rough estimate of the available

bandwidth of the network link. The average time needed to

send N successive TCP data packets is

K Z
M

A
ðNK1Þ (2)

where M is the packet size and A is the value of available

bandwidth which can obtain from the measurement results.

From the distribution of Z and Eq. (2), we determine the

waiting time for N ACK packets as below:

T Z
M

A
ðNK1ÞC4DRTT

Using this value for the timer, the probability of

successfully collecting N packets reaches approximately

98% due to the characteristics of the normal distribution.

Thus, we are using a relatively short timer length that

reduces additional processing delays caused by the

measurement program but provides a high probability of

collecting a sufficient number of packets for creating

measurement streams.

3.5. Other issues

3.5.1. Effect of delayed ACK option

When a TCP receiver uses the delayed ACK option, it

sends only one ACK packet for every two data packets. In

this case, the proposed algorithm does not work properly,

since it assumes the receiver host will send back a probe

packet for each received packet. To solve this problem, Step

3 in Section 3.2 of the proposed algorithm should be

changed so that intervals of three packets are used rather

than intervals of two packets. That is, we calculate the

transmission delay ðDi;2j0C2KDi;2j0 Þ (1%j 0%bN/2c) for the

probing packets in stream i in order to check its increasing

trend. This modification has almost the same effect as

halving the number of packets in one stream, resulting in a

degradation in measurement accuracy. Therefore, the

number of packets in a stream should be increased

appropriately.

3.5.2. Effect of packet fragmentation

In the case, where TCP packets are transmitted through a

queue or node for which the Maximum Transmission Unit
COMCOM 2845—25/8/2005—21:23—SHYLAJA—161555—XML MODEL 5 – pp. 1–13
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(MTU) is smaller than the packet size, the packets will be

fragmented into several pieces in the network. The problem

here becomes a question of whether measurement result will

still be accurate if the packets in measurement streams

become fragmented somewhere on the way to the receiver.

We argue that fragmentation has little effect on the

measurement results. The measurement algorithm is based

on the increasing trend of the packet stream in order to

estimate available bandwidth. Even with fragmentation, the

stream still shows an increasing trend when and only when

the transmission rate is larger than the available bandwidth.

However, fragmentation does increase the packet proces-

sing overhead, which may in turn raise the increasing trend

of packet streams if it occurs at a bottleneck link. This may

lead to a slight underestimation in the measurement results.

3.5.3. Effect of packet retransmission

When 3 dupACKs arrive and TCP packet retransmission

occurs, the measurement program transmits the retrans-

mitted packet then immediately releases all packets stored

in the ImTCP Buffer. While the dupACKs arrive, the

measurement program cannot determine the arrival inter-

vals of the ACKs of the measurement streams, therefore, it

cannot deliver measurement results. The program stops

sending measurement streams and waits until a new ACK,

instead of dupACKs, arrives. This is done to that the

network has recovered from the congestion, and then

measurements are restarted. Thus, packet retransmission

only interrupts the measurements for a while.
ED4. Simulation results

4.1. Effect of parameters

4.1.1. N and the measurement accuracy

Fig. 7 shows the network model used in the ns-2

simulation. A sender host connects to a receiver host

through a bottleneck link. The capacity of the bottleneck

link is 100 Mbps and the one-way propagation delay is

90 ms. All of the links from the endhosts to the routers have

a 100-Mbps bandwidth. There is cross traffic 1, 2 and 3

generated by endhosts connecting to the routers. The cross

traffic is made up of UDP packet flows, in which various

packet sizes are used according to the monitored results in

the Internet reported in Ref. [17]. We make the available
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Fig. 8. Results of the proposed measurement algorithm.
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bandwidth on the bottleneck link fluctuate by changing

cross traffic 2’s rate. Cross traffic 1 and 3 is for adding noise

to the transmission delay of ACK packets.

To avoid counting on the effect from TCP behaviors, we

investigate the results of the measurement algorithm when

the sender uses the UDP streams for the measurement. In

this case, the receiver simply echoes the UDP streams back

to the sender. We show results in which we turn off cross

traffic 1 and 3 and change the available bandwidth as

follows: from 0 to 50 s, the available bandwidth is 60 Mbps;

from 50 to 100 s, decreases to 40 Mbps; from 100 to 150 s,

increases to 60 Mbps; from 150 to 210 s, decreases to

20 Mbps; from 120 to 270 s, increases to 60 Mbps; and from

270 to 300 s the available bandwidth is 60 Mbps. The

simulation results are shown in Fig. 8. These figures indicate

that when N is 3, the measurement results are far from the

correct values. That is because, when N is very small, we

cannot determine the increasing trend of the streams

correctly in Step 3 in the proposed algorithm, which leads

to the incorrect choice of sub-range in Step 4. When N

becomes larger than five, on the other hand, the estimation

result accuracy increases.

With a large value of N, packet storing time for one

measurement stream becomes longer. Therefore, we want to

keep the value as small as possible to avoid degrading the

TCP transmission rate. We use NZ5 as the default setting.

In case the measurement accuracy is required, the N much

be set to a larger value. In the following simulations, when

there is no explicit mention, we use NZ5.

4.1.2. Effect of setting of m

We next examine number of measurement results yielded

in 80 (s) of simulation by a ImTCP connection when the

available bandwidth is set to 3 Mbps. Table 1 shows the

number of measurement results when N is set to different
UNTable 1

Number of measurement results

M 2 3 4 5 6 7 Pro.

NZ5 387 441 424 389 – – 424

NZ6 200 216 406 392 370 – 394

NZ7 77 173 277 279 348 349 359
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values. The results when using the proposed setting are

shown in the column ‘Pro’ of the table. We vary the value of

m to find at which value, the number of measurement results

is almost the same as that in case mZN (the underlined

values). When NZ5, mZ2 is a good setting, because the

number of results maintain highly while the average packet

storing time is smallest. But when NZ6, the optimal value

of m changes to 4 and mZ2 becomes a very bad setting

because it decrees the number of results. Thus, the ideal

value of m depends on the value of N. On the other hand, the

dynamic setting always delivers large number of measure-

ment results while the average packet waiting time is kept

low.

4.1.3. Packet waiting time T

We next examine the number of measurement results of

ImTCP when we set T to 0.04, 0.01, 0.004 s. Table 2 shows

the values when we set available bandwidth to 4 and

7 Mbps. The ‘Pro.’ column shows the correspondent values

when we use the proposed setting for T. When T takes small

values such as 0.004 s or 0.01 s, ImTCP often fails to create

measurement streams, therefore, the number of measure-

ment results is small. On the other hand, as shown in Fig. 9,

when T takes a large values, such as 0.04 s, the waiting time

of the packets for stream creation is long. As a result, we

found that the transmission rate of ImTCP when TZ0.04 s

is degraded. In contrast, the proposed setting for T can

eliminate the cases when the packet waiting time is long,

while maintaining the number of the measurement results.

4.2. Comparison with existing inline measurement methods

We set Cross traffic 1’s transmission rate to 5 Mbps,

Cross traffic 3’s rate to 15 Mbps and changes Cross traffic 2’

rate so that the available bandwidth fluctuates as shown by

the line ‘Available bandwidth’ in Fig. 10. We show
Table 2

Number of measurement results

T(s) 0.04 Pro. 0.01 0.004

A-bwZ4 Mbps 379 371 324 105

A-bwZ7 Mbps 486 488 423 298
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the average measurement results of every 0.5 s of ImTCP,

Westwood [14], the method proposed by Hoe [13] and

TCPRab [15] in the network condition. In fact, the method

by Hoe’s performs only one measurement right after the

connection starts. To compare with other methods, we

repeat the measurements in every RTT.

Fig. 10(a) and (b) show that TCP-Rab can delivers

accurate measurement results sometimes because the

measurements do not interfered by the Cross traffic 1 and

3. Hoe’s method is based on only three closely transmitted

ACK packets so the affect from Cross traffic 1 and 3 is also

small. Westwood perform worse in this condition because it

counts on the arrival intervals of all ACK packets. However,

the methods are all passive measurements so no one can

detect the real value of available bandwidth if it changes fast

from low to high. In contrast, ImTCP can detect the changes

of available bandwidth fast because it actively adjusts the

transmission rate of packets, even in the present of Cross

traffic 1 and 3.
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EC4.3. Effect of ImTCP on other traffic

To investigate the effect of inline measurement on other

traffic sharing the network, we compare the case of ImTCP

to that of Reno TCP using the network model depicted in

Fig. 7 with the Cross traffic 1 and 3 turn off. Cross traffic 2 is
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changed to Web traffic involving a large number of active

Web document accesses. We use a Pareto distribution for

the Web object size distribution. We use 1.2 as the Pareto

shape parameter with 12 kb as the average object size. The

number of objects in a Web page is eight. The capacity of

the bottleneck link is set to 50 Mbps. We use a large buffer

(1000 packets) in the router at the shared link to help

ImTCP/Reno TCP connections achieve high throughput

because, here, the effect of ImTCP/Reno TCP connections

on Web traffic is the focus of the simulation. We activate

ImTCP and Reno TCP in turn in the network.

We run the simulation for 500 s and find that the average

throughput of ImTCP is 25.2 Mbps while that of Reno TCP

is 23.1 Mbps. The results therefore show that data

transmission speed of ImTCP is almost the same as that of

Reno TCP.

We compare the effect of ImTCP and Reno TCP on Web

page download time in Fig. 11. This figure shows

cumulative density functions (CDFs) of the Web page

download time of Web clients. We can see that ImTCP and

Reno TCP have almost the same effect on the download

time of a Web page. This indicates that inline measurement

does not affect other traffic sharing the link with ImTCP.

Small graph in Fig. 11 also confirms that the ImTCP

measurement result reflects the change in available

bandwidth well.

4.4. Bandwidth utilization and fair share

Two important characteristics of the Internet transport

protocol are full utilization of link bandwidth and fair

sharing of bandwidth among connections. We use the

following simulations to show that ImTCP has these two

characteristics. We use the network topology shown in

Fig. 12 with many ImTCP connections sharing a bottleneck

link. Using a small buffer (200 packets) in the router at the

bottleneck link to force conflict among connections, we vary

the number of ImTCP connections while observing total

throughput and fairness among the connections.

In Table 3 we show the Jain’s fairness index [18] for the

ImTCP connections as well as the total transmission rate of
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Table 3

Fairness and link utilization of ImTCP

Capacity #flows Jain’s index ImTCP Reno

50 2 0.999 44.4 45.6

10 0.997 46.7 46.0

24 0.986 47.6 46.1

60 2 0.999 53.2 53.1

10 0.992 55.3 54.0

24 0.995 56.7 54.11

70 2 0.999 59.9 60.6

10 0.992 63.7 61.9

24 0.992 65.9 62.0
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ImTCP connections in Mbps when the capacity of the

bottleneck link is set to 50, 60, and 70 Mbps. The number of

connections is also varied. Also shown are the transmission

rates when ImTCP is replaced by Reno TCP.

This Jain’s fairness index takes a value from 0 to 1; a

share is considered fair as its index is near 1. We can see that

the ImTCP connections share the bandwidth link fairly

because the index is always near to 1. Due to the small

buffer size of the bottleneck link, when the number of

connections are small the total throughput is not very high.

When the number of connections is large, total throughput

increases. We can see that ImTCP and Reno TCP have

almost the same link utilization regardless of the number of

connections.
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4.5. TCP-friendliness and TCP-compatibility

ImTCP is TCP-friendly; it achieves the same throughput

as Reno TCP under the same condition. Simulation results

shown in Table 3 confirm this. Although ImTCP buffers

packet stream at the sender host, the buffered packets is

quickly transmitted after each transmission of a packet

stream (in the EMPTY BUFFER state). Therefore, there is

almost no degradation in transmission speed of data packets.

A network protocol is called TCP-compatible if the

connections using this protocol fairly share the bandwidth

in a bottleneck link with Reno TCP [19]. We examine the

TCP-compatibility of ImTCP by observing the throughput

of ImTCP connections when they coexist with Reno TCP

connections and non-TCP traffic. The non-TCP traffic is
UNCO

Fig. 12. Network model for investigating bandwidth utilization and fair

share.

MCOM 2845—25/8/2005—21:23—SHYLAJA—161555—XML MODEL 5 – pp. 1–13
ED P
ROOF

indicated by a 0.1 Mbps UDP flows with randomly varied

packet size (300–600 bytes). All TCP and non-TCP traffic

conflict at the 50 Mbps bottleneck link. We use the same

number of ImTCP and Reno TCP connections.

The ratio of the total throughput of ImTCP connections

to that of Reno TCP connections is shown in Fig. 13. When

the ratio is around 1, ImTCP is TCP-compatible. The

horizontal axis shows the total number of the TCP

connections. In the current version of ImTCP, there is no

time interval between two measurements. The result of this

version is shown by the line numbered 0. We can see that

ImTCP receives lower throughput than Reno TCP. The

reason is as follows. Some of packets of ImTCP may not be

transmitted in burst due to the affect of packets buffering at

the sender. On the other hand, traditional TCP connections

in competing environment have the trend to transmit

packets in a bursty fashion. When the packets of ImTCP

collide with the bursts of packets of Reno TCP, they have

higher probability to be dropt. Therefore, ImTCP with high

measurement frequency may lost more packets when

conflicting with Reno TCP, leading to a lower throughput.

The simple and effective way to overcome this problem

is increasing the measurement interval of ImTCP. We next

consider the cases when the measurement intervals are 12,

15 and 20 RTTs, and show the results by the line numbered

12, 15 and 20, respectively, in Fig. 13. Note that the RTT in

this case is 0.14 s and each measurement takes at most 4

RTTs. Therefore, 12, 15 and 20 RTT interval means ImTCP
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Fig. 13. Comparison of ImTCP and Reno TCP throughput. The number on

the lines are the number of RTT between two measurements of ImTCP.
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releases measurement results in 2.24(s), 2.66(s) and 3.36(s),

respectively. When the measurement interval is relatively

small, ImTCP achieves lower throughput than Reno TCP.

On the other hand, when the measurement interval is equal

to or larger than 20 RTTs, ImTCP is compatible to Reno

TCP. In other words, when the measurement frequency is

smaller than a certain value (in this simulation, that is 1/3.36

times per second) there is a trade-off relationship between

the TCP compatibility and the measurement frequency.

In such a heavy congested network that there is no

available bandwidth even when ImTCP does not exist,

ImTCP must be TCP-compatible in order to gain the equal

throughput to other connections. Moreover, in this

environment, the measurement results themselves usually

do not bring so much valuable information so they will be

not required updated frequently. Therefore, in this case,

ImTCP must take a low measurement frequency. When the

network is vacant, ImTCP will not conflict with other

connections so much. In this case, TCP-compatibility does

not strictly required, because ImTCP is TCP-friendly so that

ImTCP will perform exactly like traditional TCP. Besides,

the information about the vacancy in the network will be of

interest. In this case, ImTCP should increase its measure-

ment frequency. Thus, there should be a dynamic

adjustment for the measurement frequency according to

the network status. We will consider the problem in our

future works.
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5. Transmission modes of ImTCP

5.1. Background transmission

The transmission for backup data or cached data

(background traffic) should not degrade throughput of

other traffic (foreground traffic), which may be more

important. We introduce an example showing that ImTCP

successfully uses the results of bandwidth availability

measurements to prevent its own traffic from degrading

the throughput of other traffic. We call this type of ImTCP

data transmission background mode. The main idea is to set

an upper bound on the congestion window size according to

estimated values so that the transmission rate does not

exceed the available bandwidth. This reduces the effect

ImTCP has on other traffic in the same network links. We

use the following control mechanism. When

gRTTAOmN

we set

MaxCwndZ gRTTA

where A is the estimated value of available bandwidth,

MaxCwnd is the upper bound of the congestion window size

and N is the number of packets for a measurement stream.

The parameter g can range from 0 to 1. When g is small,

ImTCP uses less bandwidth and interferes only very slightly
COMCOM 2845—25/8/2005—21:23—SHYLAJA—161555—XML MODEL 5 – pp. 1–13
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with foreground traffic. When g is near 1, ImTCP uses more

bandwidth and its effect on foreground traffic grows. We set

the upper bound of the congestion window size (MaxCwnd)

to gRTTA only when the value is large enough for ImTCP to

continue performing measurements well.

We examine the behavior of ImTCP in background mode

when foreground traffic is originated with Web document

transfers. We replace the ImTCP connection in the

simulation in Section 4.3 with a background mode ImTCP

connection. Fig. 14 compare the download time for Web

pages under ImTCP and Reno TCP. We find that ImTCP has

only a very small effect on the download time of the

foregroundWeb traffic. The average throughput of ImTCP

in this case is about 72% that of Reno TCP. The small graph

in Fig. 14 shows the measurement value and throughput of

ImTCP connection as a function of simulation time in this

case. Note that the throughput of ImTCP does not approach

the actual value of available bandwidth. This indicates that

ImTCP background mode is successfully avoiding inter-

ference with Web traffic.
5.2. Full-speed transmission

We introduce another example of a modified congestion

control mechanism to show that ImTCP can enhance link

utilization using its measurement results. We explain the

study in details in [20].

To improve TCP throughput in wireless or high-speed

networks, we introduce an available-bandwidth-aware

window size adjustment. The idea is to use the measurement

result to adjust the increasing speed of the congestion

window size. When the available bandwidth is large, the

window size increases quickly to make full use of available

bandwidth, and when the available bandwidth is small due

to the existence of other traffic, the window size increases

slowly. We call this type of ImTCP data transmission full-

speed mode.

In the congestion avoidance phase, we do not increase

the congestion window size (Cwnd) by one in every RTT.
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Instead, we use the following adjustment.

Cwnd)CwndCmax 1; h 1K
Cwnd

V

0
@

1
A

0
@

1
A

V ZARTT

In the equation, h(hR1) is a parameter that determines

how fast the window size increases. If h is large, ImTCP can

successfully utilize the bandwidth link. When h is small or

equal to one, ImTCP behaves the same as Reno TCP.

We perform the following simulation to investigate the

performance of ImTCP in full-speed mode. The ImTCP

sender and ImTCP receiver is connected by two routers with

Gigabit links. The 500 Mbps link between the two routers

becomes the bottleneck link in the path. We assume the

buffer of the TCP receiver is large so the TCP throughput

can achieve 500 Mbps.

Fig. 15 shows the changes in the window size of ImTCP

in full-speed mode, High-Speed TCP (HSTCP) [21] and

Reno TCP in the network. Reno TCP requires a long time to

reach a large window size. HSTCP increases the window

size quickly to fully use the free bandwidth, however, the

increasing speed is non-sensitive to the available bandwidth

such that packet loss events occur frequently. Therefore,

overall, the throughput of HSTCP is not as large as

expected. ImTCP increases the window size quickly when

the window size is small and decreases the speed when its

transmission rate reaches the available bandwidth to avoid

packet losses. Therefore, the throughput of ImTCP is better

than the others.

Finally, we compare the throughput of ImTCP in full-

speed mode with Reno TCP in a wireless network. We insert

a 2 Mbps network link in the path between a TCP sender and

TCP receiver to simulate a wireless link. We vary the packet

loss rate of the network links and find that ImTCP can

achieve a larger throughput than TCP Westwood and Reno

TCP when the loss rate is high, as shown in Fig. 16.

Parameter h is set to 100 in this case. When the packet

loss rate is high, a higher value for parameter h can help

ImTCP obtain higher available bandwidth. When the packet
MCOM 2845—25/8/2005—21:23—SHYLAJA—161555—XML MODEL 5 – pp. 1–13
loss rate is low, the value of h should be low so that ImTCP

will share bandwidth fairly with other traffic.
ED P
ROOF6. Conclusions

In this paper, we introduced a method for measuring the

available bandwidth in a network path between two end

hosts using an active TCP connection. We first constructed a

new measurement algorithm that uses a relatively small

number of probe packets yet provides periodic measurement

results quickly. We then applied the proposed algorithm to

an active TCP connection and introduced ImTCP, a version

of TCP that can measure the available bandwidth. We

evaluated ImTCP through simulation experiments and

found that the proposed measurement algorithm works

well with no degradation of TCP data transmission speed.

We also introduced examples of ImTCP special trans-

mission modes.

In future projects, we will make ImTCP to be completely

TCP-compatible without decreasing measurement fre-

quency requires. We will also develop new transmission

modes for ImTCP as well as evaluate the performance of the

modes introduced in the paper.
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