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SUMMARY
We previously proposeda new version of TCP, called Inline measure-

ment TCP (ImTCP), in [2, 3]. The ImTCP sender adjusts the transmission
intervals of data packets and then utilizes the arrival intervals of ACK pack-
ets for available bandwidth estimation. This type of active measurement is
preferred because the obtained results are as accurate as those of other con-
ventional types of active measurement, even though no extra probe traffic
is injected onto the network. In the present research, we develop a new
capacity measurement function and combine it with ImTCP in order to en-
able simultaneous measurement of both capacity and available bandwidth
in ImTCP. The capacity measurement algorithm is a new packet-pair-based
measurement technique that utilizes the estimated available bandwidth val-
ues for capacity calculation. This new algorithm promises faster measure-
ment than current packet-pair-based measurement algorithms for various
situations and works well for high-load networks, in which current algo-
rithms do not work properly. Moreover, the new algorithm provides a con-
fidence interval for the measurement result.
key words: TCP, capacity, available bandwidth, packet pair, end-to-end
measurement, inline measurement

1. Introduction

The capacity of an end-to-end network path, which is con-
sidered to be the smallest capacity of network links along a
path, is the maximum possible throughput that the network
path can provide. Traffic may reach this maximum through-
put when there is no other traffic along the path. The avail-
able bandwidth indicates the unused bandwidth of a network
path, which is the maximum throughput that newly injected
traffic may reach without affecting the existing traffic. The
two bandwidth-related values are obviously important with
respect to adaptive control of the network.

In many cases, both capacity and available bandwidth
information are required at the same time. For example, net-
work transport protocols should optimize link utilization ac-
cording to available bandwidth. However, if a connection
tends to fully using the available bandwidth, other connec-
tions that join the network later will find it difficult in ob-
taining bandwidth. Therefore, connections do not share the
bandwidth fairly. In this case, if the connections are aware of
the capacity, they can quickly change the used bandwidth so

†This paper is based on “An Inline Measurement Method for
Capacity of End-to-end Network Path” [1], by the same authors,
which appeared in the Proceedings of IM’2005 E2EMON Work-
shop c©2005 IEEE

†The authors are with the Graduate School of Information Sci-
ence and Technology, Osaka University.

a) E-mail: mlt-cao@ist.osaka-u.ac.jp
b) E-mail: hasegawa@ist.osaka-u.ac.jp
c) E-mail: murata@ist.osaka-u.ac.jp

that the fairness with newly attended connections is main-
tained. One method of using capacity and available band-
width information to optimize both bandwidth utilization
and connection fairness for TCP is proposed in [4]. An-
other example is in large file transfers. Capacity informa-
tion can be used for the decision of the size of the data to be
transferred. The same video data can be recorded in many
files with different bit rates, such as Video CD (1.12Mbps),
DVD-Video (1.5Mps 9Mbps), etc., and, therefore, differ-
ent data sizes. Because available bandwidth changes fre-
quently, it is better to use capacity information to decide a
suitable file for the transfer. Available bandwidth informa-
tion is then used to improve the performance of the trans-
mission of the file. Besides, the billing policy of the Internet
service provider is based on both the capacity and the avail-
able bandwidth of the access link that they are providing to
the customer.

Several passive and active measurement approaches
exist for capacity or available bandwidth [5-14]. Although
active approaches are preferred because of their accuracy
and measurement speed, sending extra traffic onto the net-
work is a disadvantage that is common to all active measure-
ment tools. For example, Pathload [5] generates between
2.5 and 10 MB of probe traffic per measurement. The aver-
age per-measurement probe traffic generated by Spruce [6]
is 300 KB. For routing in overlay networks, or adaptive con-
trol in transport protocols, these measurements may be re-
peated continuously and simultaneously from numerous end
hosts. In such cases, the probes will create a large amount
of traffic that may degrade the transmission of other data on
the network, as well as the measurement accuracy itself.

We therefore propose an active measurement method
that does not add probe traffic to the network. The proposed
method uses the concept of “plugging” the new measure-
ment mechanism into an active TCP connection (inline mea-
surement). We previously introduced ImTCP (Inline mea-
surement TCP) [3], a Reno-based TCP that deploys inline
measurement for available bandwidth. The ImTCP sender
not only observes the ACK packet arrival intervals in the
same manner as TCP Westwood [15], but also actively ad-
justs the transmission interval of data packets, in the same
way that active measurement tools use probe packets. When
the corresponding ACK packets return, the sender utilizes
the arrival intervals to calculate the measurement values.

The available bandwidth measurement algorithm for
ImTCP is described in detail in [3]. For each measurement,
the ImTCP sender searches for the available bandwidth only
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within a given search range. The search range is a range of
bandwidth that is expected to include the current available
bandwidth and is calculated statistically from the previous
measurement results. Without a search range, measurement
tools (such as Pathload) must send packet in many transmis-
sion rates, from 0 Mbps to the upper limit of the physical
bandwidth, to probe the network. The search range lim-
its the range of the bandwidth that the measurement tool
should probe, therefore, probe packets will not be sent in
a high rate if not necessary. Thus, the measurements do
not cause much effect on other traffic in the network. The
search range also allows the number of packets for the mea-
surement to be kept small, so that measurement is still pos-
sible when the TCP window size is relatively small. The
search range is divided into multiple sub-ranges of identi-
cal width of bandwidth. For each of the sub-ranges of the
bandwidth, the sender transmits a group of TCP data pack-
ets (a packet stream), the transmission rate of which varies
to cover the sub-range. The sender then determines whether
an increasing trend exists in the transmission delay of pack-
ets in each stream when the echoed (ACK) packets arrive at
the sender host. Delayed ACKs is supposed to be disabled
at the receiver because the ImTCP sender will stop mea-
surement and perform like a normal TCP sender if it finds
out that many expected ACKs do not arrive. The increas-
ing trend indicates that the transmission rate of the stream is
larger than the current available bandwidth of the network
path [5]. This fact allows the sender to infer the location
of the available bandwidth in the search range. The simula-
tion results show that the ImTCP sender can perform peri-
odic measurements at short intervals, on the order of several
RTTs and the measurements results reflect well the changes
in the available bandwidth of the network.

In the present paper, we introduce an inline measure-
ment algorithm for capacity for ImTCP. The proposed al-
gorithm utilizes the arrival intervals of the ACK packets
of packet pairs (PPs) that are sent back-to-back. Due to
the characteristic of ImTCP that PPs are available after the
transmission of each measurement stream, therefore the ca-
pacity measurements do not require any further changes in
ImTCP. With the proposed method, ImTCP measures the
capacity at the early stage of the connection and continues
to collect data to improve the measurement accuracy during
the transmission. We do not intend to develop a new ca-
pacity measurement tool that is better than the existing ones
[7-9]. Rather, with the effort of reducing the load over the
network caused by probe traffic, our main focus is on how
we can extract capacity information from a TCP connection
with the smallest change in TCP.

The main concept of the proposed capacity measure-
ment algorithm in ImTCP is that the available bandwidth
information, which can be yielded periodically due to the
deployed available bandwidth measurement mechanism, is
exploited. In the existing PP-based capacity measurement
algorithm [7-9], the PPs that are cut into by other packets
from cross traffic at the bottleneck link causes incorrect ca-
pacity estimation and are therefore eliminated from the data

used in the calculation. However, in the proposed method,
the available bandwidth information is used for estimation
of the quantity of the cross traffic that cuts in PPs at the
bottleneck link. The interval of the PPs becomes usable for
the capacity measurement, which enables ImTCP to collect
more information from PPs so that faster and more accurate
measurements can be expected. The proposed algorithm
also uses statistical analysis to calculate the confidence in-
terval of the delivered results.

Through simulation validations, we show that ImTCP
can deliver capacity measurement results quickly, indepen-
dent of the characteristics of the network. In addition, we
find that the capacity measurement algorithm works well in
extremely high-load networks, in which current measure-
ment algorithms do not work well.

The remainder of this paper is organized as follows.
In Section 2 we discuss PP-based measurement techniques
used for inline measurement. In Section 3, we introduce the
proposed measurement algorithm for network capacity. In
Section 4, we evaluate its performance through simulation
experiments. Finally, in Section 5, we present concluding
remarks and discuss future projects.

2. Packet-pair-based capacity measurement algorithms

Currently there are various approaches for measuring the
capacity of an end-to-end network path [16-20]. Some of
these approaches use packets of various size to probe the
network and infer the network capacity from the difference
in the transmission delays of packets of various sizes [16].
Other approaches use the probe packets in different TTLs
(Time To Live) to measure all link bandwidth, rather than
just the capacity of the bottleneck link [17-20]. However,
the packet size in TCP is always set to path MTU, which
is the maximum size a packet can have to avoid fragmen-
tation. A change in packet size can therefore only be done
by selecting smaller packets, which requires TCP to send
more packets. Setting small TLL values to TCP packets in
order to dropt them along the path causes packet retransmis-
sions and reduction in TCP window size. Thus, changes in
TCP data packet size or TLLs for the purpose of measure-
ment may cause severe deterioration in the data transmission
throughput of TCP so these approaches can not be used for
inline measurement.

We found that only PP-based measurement can be used
for inline measurement because no changes in packet size
or TTL are required, whereas packets that are sent back-to-
back can be created with the current ImTCP structure with-
out requiring any changes.

2.1 Packet pair technique

The intuitive rationale of capacity measurement using PPs
is that if two packets are sent close enough together in time
to cause the packets to queue back-to-back at the bottleneck
link, then the packets will arrive at the destination with the
same spacing as when they left the bottleneck link [16]. The
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Fig. 1 Three cases showing how the spacing between a pair of packets
may change as the pair travels along a path.

spacing is supposed to remain unchanged until the PPs reach
the receiver, as shown in Case A of Figure 1, which is a
variation of a figure taken from [8].

In this case, the capacity of the bottleneck link (C) can
be calculated by the equation:

C =
P

Gap
(1)

where P is the size of the PPs, and Gap is the time spacing
of the two packets when arriving at the receiver.

However, when a PP travels along the path, two more
situations can occur. As shown by Case B in Figure 1, the
two packets may be cut into by other packets from cross
traffic at the bottleneck link. The result is that, the spacing
between the two packets becomes larger than expected. In
this case, Equation (1) leads to an under-estimation of the
capacity. In another case, indicated by Case C in Figure
1, the PPs may pass back-to-back through the bottleneck
link, but in a link downstream of the bottleneck link, the
pairs again get in queue, and the spacing between the two
packets is shortened. In this case, Equation (1) leads to over-
estimation.

Current PP-based measurement techniques use only the
PPs described in Case A to calculate capacity. These tech-
niques have various mechanisms for determining the Case-
A PPs from all of the received PPs. Some tools assume a
high frequency of appearance of Case-A PPs and so search
for these PPs from a frequency histogram (Pathrate [7]) or
a weighting function (Nettimer [8]). CapProbe [9] repeat-
edly sends PPs until it discovers a Case-A PP, based on the
transmission delay of the packets.

When the network path is almost empty, Case-A PPs
may appear with the highest frequency. However, when
other traffic appears in the network, there is a high proba-
bility that the cross traffic on the tight link (the link hav-
ing smallest available bandwidth) stretches the PPs so that
their intervals become large; the PPs then become Case B.
Case-C PPs do also exist, but some probing results from the
Internet in [7] show that they are much fewer than Case-B
ones. In this case, because Case B PPs occur more often,
CapProbe will spend an extremely long time for capacity
searching, and Pathrate and Nettimer will deliver incorrect
estimations.

Unlike those existing techniques, we propose a new
technique by which to calculate capacity that can use both
Case-A PPs and Case-B PPs. This is possible because of the

t2
t1

P1P2

Time

Bottleneck 
link

Direction of packet
transmissionCross

traffic

Cross
traffic

Arriving
timing

Average amount = L

Fig. 2 Arrival time at the bottleneck link of PPs and cross traffic

available bandwidth information that is available in ImTCP.

2.2 Capacity calculation

Let us consider the timing of the arrival at the bottleneck
link of a PP (Figure 2). We assume that the first packet
arrives at t1 and the second packet arrives at t2. During the
interval from t1 to t2, packets from other traffic may arrive
at the bottleneck link. The second packet (P2) must wait in
the queue for the processing of the cross packets. Therefore,
the time spacing (Gap) of the PP after leaving the bottleneck
link is the total of the queuing time and the processing time
of the second packet. That is:

Gap =
P + L

C
(2)

where L is the amount of the cross traffic that arrives at the
bottleneck link during the interval (t1, t2). Supposing that
the bottleneck link of a network path is the link having the
smallest available bandwidth, we can then calculate the total
transmission rate of the cross traffic at the bottleneck link as:
C − A, where A is the current available bandwidth. Let δ
be the time spacing of the PP upon arrival at the bottleneck
link (δ = t2 − t1). Then, the average value of L is:

L = δ(C − A) (3)

from Equations ( 2) and ( 3), we can write:

C =
P + δ(C − A)

Gap
,

or

C =
P − δ · A
Gap− δ

. (4)

Equation ( 4) enables the calculation of capacity from the
PPs for both Case A and Case B. In the next section, we
propose the new capacity calculation algorithm based on the
equation.

3. Inline measurement algorithm for capacity

3.1 Overview

We introduce an inline PP-based measurement algorithm
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Fig. 3 Placement of measurement program at ImTCP sender

for capacity that utilizes available bandwidth to improve
the measurement accuracy. The available bandwidth infor-
mation can be used because an inline packet stream-based
measurement mechanism for it already exists in ImTCP.
Some existing available bandwidth measurement tools, such
as IGI/PTR [12], take the reverse approach, that is obtain-
ing capacity information first, then using it together with
PP probing results to find available bandwidth. Moreover,
TOPP [21] measures both available bandwidth and capacity
at the same time using PPs. However, as shown in recent ex-
periments in real networks [10], measuring available band-
width with packet streams is more valid than using packet
pairs. Therefore, we think that the approach that we take in
ImTCP is better.

The proposed capacity measurement mechanism has
the following characteristics:

• The mechanism does not require any change in the cur-
rent structure of ImTCP. Therefore, it does not affect
the data transmission performance of ImTCP.

• The measurement starts and is able to provide results
at the early stage of the connection. Unlike other meth-
ods such as the work by Hoe [22], the measurement
also continues during the transmission. When the con-
nection lasts for a long time, the measurement exploits
the accumulated data to improve its accuracy.

3.2 Implementation of packet pairs in ImTCP

As introduced in our previous study [3], a measurement pro-
gram is inserted into the sender program of TCP Reno to
create an ImTCP sender. The measurement program is lo-
cated at the bottom of the TCP layer, as shown in Figure 3.
When a new data packet is generated at the TCP layer and is
ready to be transmitted, the packet is stored in an intermedi-
ate FIFO buffer. The measurement program waits until the
number of packets in the intermediate buffer becomes suffi-
cient and then decides the time at which to send the packets
in the buffer in order to create measurement streams. When
no measurement stream is needed, the program immediately

ImTCP sender receiver

Measurement

stream

Packet pair

Normal data packets

Normal data packets

Time

Fig. 4 Creation of PPs in ImTCP

passes all of the data packets to the IP layer. In the previous
version of ImTCP, we decided that the program forms and
sends one measurement stream for the available bandwidth
in each RTT in order to maintain fairness with respect to
traditional TCP Reno.

During the transmission of a measurement stream,
which includes five packets, there is a high probability that
more than two packets arrive at and are stored in the inter-
mediate FIFO buffer. Making use of the fact that after the
transmission of a stream, ImTCP sends all stored packets in
a bursty fashion, the capacity measurement program consid-
ers the first two packets in the burst as a PP to perform the
measurement. Thus, there is no effect on the performance
of ImTCP by introducing the capacity measurement mecha-
nism.

In ImTCP, 2–4 measurement streams are required in
order to determine the available bandwidth. As mentioned
above, each PP is formed and transmitted after each mea-
surement stream. Therefore, 2–4 results for PPs can be ob-
tained during the interval of two consecutive measurement
results for available bandwidth.

3.3 Proposed measurement algorithm

We next explain the procedure for determining the capacity
from the measurement results of PPs using Figure 5. The
procedure involves the following steps:

• Grouping of PPs: PPs that sent when the measured
available bandwidth remains unchanged are placed in
the same group. The average value of arrival inter-
val of PPs in a group, denoted by Gap, is then calcu-
lated. To obtain a good average value, the number of
PPs in each group should be enough large i.e. larger
than or equal to 3, as determined herein. Therefore, af-
ter grouping, a group having only one or two PPs will
be merged with the group that is collected right after
that.

• Calculation: Based on the Gap value of a group, a
sample of capacity is calculated using the following
function.
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Fig. 5 Proposed algorithm

C =

⎧
⎪⎪⎨
⎪⎪⎩

P

Gap
when A

P/δ
> λ, (5)

P − δ · A
Gap− δ

, otherwise, (6)

where λ is the threshold showing the relation between
the available bandwidth and the rate of the PPs upon ar-
riving at the bottleneck link, that is defined as P/δ . We
assume that the links before the bottleneck link do not
have a noticeable effect on the time space, so that δ is
approximated by the time interval in which the sender
sends the packets. When the available bandwidth is
approximately equivalent to the rate of the PPs upon
arriving at the bottleneck link, which is considered as

A
P/δ

> λ, the packets may pass through the link with-
out being cut into by other packets (Case A). In this
case, Equation (5) (based on Equation (1)) is used. On
the other hand, since when the arrival rate of the PPs
is much higher than the available bandwidth, which is
considered as A

P/δ
≤ λ, the probability is high that the

PP is a Case-B PP, Equation (6) (based on Equation
(4)) is used. The changes in δ before the PP arriving at
the bottleneck link make the calculation for sample of
capacity using Eq.(4) incorrect. However, we believe
that the changes are small and do not occur so often.
The task of grouping N samples in the next step of
the algorithm is is an effort to reduce the effects of the
changes.

• Statistical analysis:

– We form obsevations, each of which is the
average value of N samples. N should be large
enough so that each observation has high accu-
racy. But when N is too large, the time required
to finish an observation is long. This means that
the proposed algorithm can not deliver the mea-
surement results quickly. In the present paper,
based on empirical experiments, we recommend
N = 10.

ImTCP

cross
traffic 1

cross
traffic 2

cross
traffic 3

100 Mbps
bottleneck
link

Sender Receiver

100 Mbps 100 Mpbs 100 Mbps

Fig. 6 Simulation topology

Table 1 Distribution of packet size of the cross traffic.

Packet size (Bytes) Proportion of bandwidth (%)
28 0.08
40 0.51
44 0.22
48 0.24
52 0.45
552 1.10
576 16.40
628 1.50
1420 10.50
1500 37.10
40–80 (range) 4.60
80–576 (range) 9.60
576–1500 (range) 17.70

– The average value of the observations are calcu-
lated as the “final result”. The 90% confidence
interval is also calculated to show the degree of
fluctuation of the capacity.

4. Simulation experiments

In this Section, we examine the measurement results of the
proposed capacity measurement algorithm through ns-2 [23]
simulations. We also compare the proposed algorithm with
two existing algorithms, CapProbe [9] and Pathrate[7]. We
compare the algorithms in the scope of inline measurement,
because we only focus on how to extract capacity informa-
tion from a TCP connection without introducing any extra
probe traffic in to the network.

We use the simulation topology shown in Figure 6. The
transmission rate of Cross traffic 1 is fixed to 5 Mbps and
that of Cross traffic 3 is fixed to 15 Mbps. The packet size
distribution of cross traffic is set to the statistical results for
the Internet traffic reported in [24], as shown in Table 1.
This mixture has an average packet size of 404.5 bytes and
has a correlation value of 0.999 when compared to realistic
Internet traffic.

4.1 Effect of parameters

• Value of λ
We set the bottleneck link capacity to 90 Mbps and the
transmission rate of Cross traffic 2 to 5 Mbps and ex-
amine the measurement results when λ = 0.9 (Figure
7(a)) and λ = 0.8 (Figure 7(b)). These figures show
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Fig. 7 Measurement results for the proposed algorithm when Cross traffic 2 is 5 Mbps. The errors
bars show the 90% confidence interval of the correspondent results. λ = 0.8 gives more accurate results
than λ = 0.9.
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Fig. 8 Measurement results for the proposed algorithm when Cross traffic 2 is 20 Mbps. λ = 0.8
gives more accurate results than λ = 0.5.

the changes of the capacity measurement results as the
number of PPs sent for the measurement increases. The
errors bars show the 90% confidence interval of the cor-
respondent results. For the first some PPs, there is at
most one “observation” is delivered therefore ImTCP
can not calculate the confidence interval. In this case,
the load on the bottleneck link is low, so the Equation
(5) should normally be used. The setting λ = 0.9 does
not allow the Equation (5) to be used so frequently and
therefore leads to a bad result, that can be seen in large
confidence intervals. We see that in this case λ = 0.8
(or lower than 0.8) is a better setting.
We next show the case when the capacity is 80 Mbps
and the rate of Cross traffic 2 is set to 20 Mbps in Figure
8(a) (λ = 0.5) and 8(b) (λ = 0.8). In this case, the rate
of the cross traffic is high, so Equation (6) should nor-
mally be used. Therefore, a small value of λ, such as
0.5, gives incorrect results for the capacity, and, again,

λ = 0.8 is a good setting in this case. Thus, λ = 0.8 is
a suitable setting for the two cases above, and we found
that it is a good setting in many other cases. Therefore,
in the following simulations, we used λ = 0.8. How-
ever, this is cannot be proved to be a suitable setting for
all of the cases. Finding an optimal value for λ is one
of our future goals.
In general, for longer connections, because the larger
number of PPs is sent, ImTCP’s results approach nearer
to the right value. However, we can see that the mea-
surement results of ImTCP are sometimes not exactly
the right value (for example results in Figure 7(b)) even
when the connection lasts for along time. The reason
for this is that, we suppose that the amount of the traf-
fic that cut in every PPs is the average value of that
(L = δ(C − A)), but the amount of traffic that cut
in a certain PP is sometimes too large or too small in
comparison with L. In these cases, the Sample cal-
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Fig. 9 Measurement results for the proposed algorithm when N changes. N=10 is the best setting.

culated from these outstanding values (using Equation
(6)) is far from the right value of Capacity, this leads to
a slight inaccuracy in the final result of ImTCP.

• Value of N
N is the number of samples to form an observation. We
set the bottleneck link capacity to 80 Mbps and the rate
of Cross traffic 2 to 40 Mbps. Figures 9(a), 9(b) and
9(c) show the measurement results when N is set to 1,
10 and 50, respectively. We can see that in Fig. 9(a),
the results are yielded after only 20 PPs are sent, while
in Fig 9(b), the number is 70, and in Figure 9(c), it is
260. The large confidence interval in Figure 9(a) indi-
cates that a small value of N (N = 1) is not suitable.
On the other hand, Figure 9(c) indicates that a value of
N (N = 50), that is too large, is unsuitable as well, be-
cause in this case the time required for the results to be
yielded is long. Figure 9(b) shows the results with the
proposed setting (N = 10), which can provide faster
and better results. Unlike the results in Fig 7 and 8,
the measurement results in Fig. 9(a), 9(b) and 9(c) are
all accurate from the first values. We can not expect
the results to be better, as we have explained in Section
4.1 Therefore we could not see an improvement in the

measurement accuracy in the figures, as the number of
PPs increases.
We use N = 10 for the following simulations. In
fact, N must be set by applications or programs for
that the measurement results are collected, depending
on its uses. For example, if the application needs the
measurement results to be updated in short intervals, it
may choose a small value for N . In future works, we
will examine in detail the requirement of the applica-
tion or any program that uses the measurement results
and create an outline for setting N based on it.

4.2 Comparision with CapProbe

We implement the CapProbe algorithm in TCP in order to
compare the performance with the greatest possible impar-
tiality. The difference from the original CapProbe algorithm
proposed in [9] is that the packet size remains unchanged
over the “runs” in the algorithm, because in TCP connec-
tions, changing the data packet size may have a bad effect
on the TCP performance. The restriction on the packet size
may be the reason for the poor performance of CapProbe in
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Table 2 Number of PPs required for the first measurement result of the
proposed algorithm and CapProbe. CapProbe requires more PPs to deliver
the first result.

Capacity Cross traffic 2 Proposed Algorithm CapProbe
10 (Mbps) 1 (Mbps) 60 (PPs) 87 (PPs)

10 2 60 85
10 4 60 92
10 5 60 159

the following simulations. This means that CapProbe is not
suitable for inline measurement.

4.2.1 Small capacity, low network load scenario

The capacity is set to 10 Mbps, and the rate of Cross traf-
fic 2 is set to 4 Mbps. Figures 10(a) and 10(b) show the
measurement results for the proposed algorithm and Cap-
Probe, respectively. Both of the measurement results are
good. Moreover, we can see that the results obtained by
CapProbe have high accuracy, because when CapProbe suc-
cessfully finds the PP in Case A, the capacity can be cal-
culated exactly. Another advantage of CapProbe is that,
compared with the proposed algorithm, CapProbe is simple
because it requires no complicated calculations. Howerver,
CapProbe only delivers a measurement result after sending
a large number of PPs. Table 2 shows the number of PPs
sent until the proposed algorithm and CapProbe deliver the
first measurement result. Here, the capacity of the bottle-
neck is kept unchanged while the Cross traffic 2 is varied
from 1 Mbps to 5 Mbps. The table shows that, CapProbe
only delivers a measurement result after 85 PPs or more are
sent. The required number of PP is larger as the network
load increases. In contrast, the proposed algorithm delivers
good measurement results faster, after sending 60 PPs.

4.2.2 Small capacity, high network load scenario

We next change the Cross traffic 2 to 9 Mbps to form a high
network load environment. In this case, ImTCP still deliv-
ers good measurement results, as shown in Figure 11(a). On
the other hand, CapProbe, as can be seen in Figure 11(b)
introduces fewer results. It also delivers one incorrect mea-
surement result. The reason for this is that, when the bottle-
neck link is crowded, many PPs are cut into by cross traffic
so most of PPs are in Case-B. It is easy for CapProbe to
mistake a Case-A PP for a Case-B PP.

4.2.3 Large capacity, high network load scenario

The capacity is set to 80 Mbps, and the rate of Cross traffic
2 is set to 60 Mbps. In a network with such a heavy load,
the proposed algorithm can perform well (Figure 12(a)),
whereas CapProbe can not deliver accurate results (Figure
12(b)), because, in this case, most of the PPs are cut into by
other traffic so there are few Case-A PPs. In Figure 12(b) we
also show the measurement results of CapProbe when the
Cross traffic 2 is decreased to 50 Mbps. These measurement
results are still far from the correct value. We believe that

CapPobe will perform better if the size of PPs is adapted ap-
propriately, instead of being unchanged in the simulations,
but changing packet size is not suitable with inline measure-
ment.

4.3 Comparision with Pathrate

In order to accommodate the Pathrate algorithm into TCP,
we use the interval of PPs delivered in ImTCP to form the
histogram to be used in Pathrate. Pathrate also requires the
measurement results of packet trains, referred to as the Av-
erage Dispersion Rate (ADR) in the Pathrate algorithm [7].
However, integrating the packet train into TCP is difficult
because this has an adverse effect on the performance of
TCP. Therefore, we perform the packet train measurement
separately from TCP connection, in the same environment
as that in the simulation with the ImTCP connection. The
result of ADR is then used to find the measurement result
for Pathrate.

We use the same network topology as that for the
above-described simulations. The capacity is set to 80 Mbps
and the transmission rate of Cross traffic 2 is variable. We
show the case when the cross traffic contains mainly pack-
ets of small size, by randomly varying the packet sizes of
the cross traffic within the range of 400 to 600 B, because in
this environment the difference between the proposed algo-
rithm and Pathrate appears clearly. The performance of the
proposed program in this environment is also examined, and
the measurement results are listed in Table 3. In this case,
since most PPs are cut into by cross traffic packets, Pathrate
should not work very well. On the other hand, the proposed
can yields good measurement independent on the value of
cross traffic. However, when the cross traffic is small, (Cross
traffic 2 is 10Mb/s), many PPs do not stretched at the bot-
tleneck link so they do not become Case-B PPs. Instead,
they become Case C PPs due to the effect of Cross traffic
3. Because the number Case-B decreases, the measurement
algorithm introduces larger confidence intervals.

We explain in detail the respective behaviors of these
two algorithms in Figures 13(a) and 13(b). In Figure 13(a),
the “Raw data” histogram indicates the measurement results
calculated using Equation (1) that are used in Pathrate, and
in Figure 13(b), the “Proposed method” histogram shows
the “observation” results obtained using proposed algo-
rithm, when the Cross traffic 2’s rate is 75 Mbps. In this
case, Pathrate fails to deliver good measurement results be-
cause in this case number of Case-A PPs are fewer than
Case-B PPs. This can be seen in some high peaks near 50
Mbps (while the correct value of capacity is 80 Mbps) in
Figure 13(a). In contrast, the proposed algorithm can de-
liver good results, because the “observation” values always
concentrate at the correct value of capacity, regardless of the
network load.

4.4 Measurement in Web traffic environment

We finally investigate the measurement results for ImTCP in
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Fig. 10 Measurement results for the proposed algorithm (ImTCP) and CapProbe in small capacity,
low network load scenario. Both deliver accurate results.
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Fig. 11 Measurement results for the proposed algorithm (ImTCP) and CapProbe in small capacity,
high network load scenario. CapProbe can not deliver accurate results.

Table 3 Measurement results of ImTCP and Pathrate when Cross traffic
2 changes. The proposed algorithm can deliver accurate results in high-load
network, in which Pathrate does not work well.

Cross traffic 2 ImTCP’s results (90%confidence interval) Pathrate
75 (Mbps) 79.35 (18.26) 49.00

60 80.24 (23.03) 48.00
40 78.32 (26.04) 80.00
10 81.57 (46.98) 80.00

the network model depicted in Figure 6 with the Cross traf-
fic 1 and 3 turn off. Cross traffic 2 is now changed to Web
traffic involving a large number of active Web document ac-
cesses. We use a Pareto distribution for the Web object size
distribution. We use 1.2 as the Pareto shape parameter with
12 KBytes as the average object size. The number of objects
in a Web page is eight. The capacity of the bottleneck link
is set to 50 Mbps.

Figure 14(a) shows the measurement results for avail-
able bandwidth given by ImTCP. Also shown are the correct

values of available bandwidth. We can see that the avail-
able bandwidth fluctuate frequently, because of the changes
in the number of TCP connections in the crossing Web traf-
fic. Figure 14(b) shows the measurement results for capacity
also introduced by ImTCP in this case. The results are al-
ways approximately 50 Mbps, the correct value. The figure
confirms that, even when the available bandwidth fluctuates
frequently, ImTCP can deliver good measurement results for
capacity.

5. Conclusion and future works

In this paper, we have proposed a new capacity measure-
ment technique that is suitable for use in TCP connections.
In contrast to existing techniques, the proposed mechanism
uses available bandwidth information that is available in
ImTCP, which enables the utilization of packet pairs that
can not be used in existing techniques to calculate the ca-
pacity. The simulation results show that, the proposed tech-
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Fig. 12 Measurement results for the proposed algorithm (ImTCP) and CapProbe in high network load
scenario. CapProbe can not deliver accurate results.
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Fig. 13 Comparison of the histograms collected by Pathrate and the proposed algorithm in heavy load
network (Cross traffic 2’s rate is 75 Mbps).

nique can deliver measurement results quickly, even for a
heavily loaded network, in which other techniques do not
work well.

As our future works, we should find a proper setting for
parameters such as λ and N . We are currently implementing
ImTCP using the proposed technique on a FreeBSD system.
We will also consider a bandwidth measurement algorithm
that can be deployed at the TCP receiver.
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