Reasons not to Parallelize TCP Connections for Long Fat Networks

Zongsheng Zhang, Go Hasegawa, and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Tel: +81-6-6879-4542, Fax: +81-6-6879-4544
{zhang, hasegawa, murata } @ist.osaka-u.ac.jp

Keywords: parallel TCP, high-speed TCP, long fat network,
performance

Abstract

For utilizing long fat networks effectively, parallel TCP was
proposed, and has been employed. However, as high-speed
transport-layer protocols appear, it is necessary to reinvesti-
gate the performance of parallel TCP. In this paper, we use
mathematical analysis to explore its performance. Analysis
results show that the open issue of choosing the number of
TCP connections is difficult to be solved in practice. Despite
the mechanism that adjusts the number of TCP connections
during data transfer is proposed, some potential problems still
remain. In contrast, it is a better choice to use high-speed TCP
in your future applications.

1 INTRODUCTION

Currently, Transmission Control Protocol (TCP) [1] is the
most widely used transport-layer protocol in the Internet.
TCP was designed to provide a reliable end-to-end byte
stream over an unreliable IP network, while attempting to
maintain high utilization of the network link, avoid overload-
ing the bottleneck and provide fair sharing among compet-
ing flows. When TCP was designed in the 1960-70s, the T1
link (1.544 Mbps) was a fast network. The link bandwidth
of the network has grown quickly since that time, and link
bandwidths of 100 Mbps, 1,000 Mbps, or even higher, are
common. In such long fat networks (LFNs), which are high-
bandwidth and large-delay networks, TCP can not fully uti-
lize the link bandwidth. This is primarily because of the prin-
ciple of Additive Increase Multiplicative Decrease (AIMD) in
the congestion control mechanism of TCP. In the congestion
avoidance phase, TCP increases its congestion window lin-
early by one packet per Round Trip Time (RTT), and sharply
decreases its congestion window by half, once packet loss is
detected. TCP then requires a long time to increase its con-
gestion window size for fully utilizing LFNs. For example,

when a TCP Reno connection fills a 10 Gbps link, and RTT
is 100 ms, a congestion window of 83,333 packets is needed.
A time of 4,000 sec are required to recover throughput when
packets are lost in the network [2].

Addressing the problem of TCP used in LFNs, several
high-speed TCP, such as HSTCP [2] and XCP [3], have been
proposed in recent years. These protocols modify the TCP
algorithm, and their capability to utilize LFNs and their per-
formance have been evaluated [4, 5].

Prior to these high-speed TCP, parallel TCP was proposed
as a method of dealing with the problem of TCP in LFNs
and was implemented through a number of applications, e.g.,
BBCP [6] and GridFTP [7]. In parallel TCP, instead of using
one TCP connection, multiple TCP connections are utilized
between two end-hosts for one data transmission task. The
implementation of parallel TCP is relative simple compared
with the TCP modification mentioned above, because parallel
TCP can be implemented in the application layer.

The mechanism of parallel TCP can be viewed from dif-
ferent aspects. When the parallel TCP mechanism is used
for bulk data transfer, the data file is divided into a number
of small chunks, and each chunk is transmitted by one TCP
connection. Since each TCP connection uses the AIMD al-
gorithm, the aggregate of congestion window is increased by
N (N: number of TCP connections) packets per RTT when
there is no packet loss. Thus, parallel TCP uses a larger ad-
ditive increasing parameter for the congestion window than
that used by the normal TCP connection. With respect to the
network, the link bandwidth is shared by concurrent parallel
TCP connections. Intuitively, each TCP connection passes a
“stripped”” network link [8]. The “stripped” network link can
be considered as a “tight” network link, but it has a smaller
bandwidth-delay product (BDP) value. Compared with the
case of only one TCP connection, each TCP connection of
parallel TCP requires less time to recover its congestion win-
dow to utilize the “stripped” link after packet loss occurs.
Thus parallel TCP can boost the throughput of TCP in LFNs,
especially used on a lossy link [9].

Although increasing throughput is the primary purpose of
parallel TCP, fairness of parallel TCP should be taken into

account when it traverses the public network. H. Hacker et
al [10] discuss this issue and propose a solution which uses
a long “virtual round trip time” in combination with paral-
lel TCP to prioritize fairness at the expense of effectiveness
when the network is fully utilized. However, in this paper, we
focus on whether parallel TCP is effective even when the fair-
ness is not taken into consideration. In this sense, we believe
high-speed TCPs are more effective. In addition, high-speed
TCPs are suitable when fairness is taken into account, for fair-
ness is one of requirements when these high-speed TCPs are
designed.

Based upon its mechanism, the throughput of parallel TCP
is generally increased as the number of TCP connections is
increased. However, the overhead of end-hosts is also in-
creased. Consequently, using twice the number of parallel
connections does not necessarily mean doubling the perfor-
mance. Because the issue of overhead on end-hosts is out of
the scope of this paper, it is assumed that the bottleneck is not
the end-hosts but the link bandwidth.

In the present paper, we focus on the issue of whether par-
allel TCP can really achieve high throughput, even when fair-
ness is not taken into account. The performance of parallel
TCP is evaluated by mathematical analysis. In the analysis of
DropTail deployment, not only is the number of TCP connec-
tions taken into account, but “global synchronization” is also
investigated. When the impact of global synchronization is
considered, two extreme cases, the synchronization case and
the non-synchronization case, are evaluated. In the synchro-
nization case, all TCP connections are synchronized, and the
throughput for this case is regarded as the lower limit. In the
non-synchronization case, TCP connections are not synchro-
nized to any degree, and this case gives the upper limit. The
results reveal the difficulty involved in using parallel TCP in
practice. Even in the non-synchronization case, which ben-
efits the throughput of parallel TCP, the results show that
choosing the number of TCP connections also depends on
the network conditions.

2 ANALYSIS OF THROUGHPUT

It is impossible to obtain a uniform expression that can be
used to evaluate the performance of parallel TCP for all cases.
As mentioned above, two extreme cases — synchronization
and non-synchronization cases — are analyzed, and the results
are regarded as the lower and upper limits of its throughput.

2.1 Network Topology and Metrics

A dumbbell topology is used in the analysis. DropTail man-
agement is deployed, and the buffer size of the routers is B
packets. The bottleneck link bandwidth between the routers
is C bps, the minimum RTT is RT T,;,. The value of BDP is
D (D = RTT,;, x C). There are N TCP connections with the

same access link bandwidth and propagation delay competing
for a fixed bottleneck link. These connections use the same
AIMD algorithm as TCP Reno. The access link bandwidth of
each connection is larger than C bps.

We focus on the aggregate behavior of parallel TCP. Packet
drop rate (p) and goodput are used as metrics. Here, goodput
is the amount of data received by the receiver in unit time, and
is not the same as useful throughput, for duplicated packets
may be received. It is calculated as:

good put = throughput x (1 — p) (1)

2.2 Synchronization Case

TCP senders reduce their transmission rate at the time when
packet losses occur. After their congestion windows are re-
duced, TCP senders will increase their transmission rate on
the assumption that the congestion experienced earlier will
no longer be present. This pattern of each sender decreasing
and increasing transmission rates at the same time as other
senders is referred to as global synchronization.

Under synchronization, we assume that each of the parallel
TCP connections fairly shares the bottleneck link, the buffer
of the routers, and their behaviors are identical. So the ag-
gregate congestion window (cwnd) of parallel TCP with N
connections can be considered as follows. In response to a
single acknowledgment, parallel TCP increases the number
of segments in its congestion window as:

cwnd«—cwnd + M
cwnd
In response to a congestion event, parallel TCP decreases the
number of segments in its congestion window as:

cewnd«—(1 —b(cwnd)) xcwnd.

Here, a(cwnd) = N, and b(cwnd) = 1/2. Figure 1 shows a
sketch of the aggregate congestion window of parallel TCP.
We use Ny to denote the total number of packets transmitted
in one cycle (t; +1,). It is the sum of the congestion window
increasing from (B+D)/2 to B+ D:

3(B+D)(B+D+2N
Npkts = ()(SN) ()

When packet loss occurs, each connection suffers from
packet drop, i.e, there are N packets dropped in 1-cycle. So
the packet loss rate is:

8N2
3(B+D)(B+D+2N)

p:N/Npkls: (3)

Time-out is another factor that can affect the performance
of TCP and can occur with reasonable certainty. Upon time-
out, the congestion window is set to one packet, then the lost

CWND
(Packets)

1-cycle

B+D

D

@oy2 | b] gffiiit ________

Time (RTT)

Figure 1: Congestion window in the steady state

packet is retransmitted. We use p;, to denote the probabil-
ity of packet loss resulting in a time-out. E(¢) is the mean
time, and E (n) is the mean number of packets sent during the
time-out period. Moreover, we assume that the limitation on
the congestion window size, the maximum congestion win-
dow size, is Wy,4y. If the number of parallel TCP connec-
tions is less than a certain value, there is no congestion on the
bottleneck link. When these components are considered, the
packet drop rate and throughput are determined by different
equations according to the aggregate value of the congestion
window:

0 ifNX Wy <B+D
p= 8N? : @)
fNXWyae >B+D
3BID)(BrDranN) N ma= B
W, .
NxR;a;f if NXWyar <D
throughput ={ C if DK NXWyqr <B+D
N N- -E
pkts + Pro (n) i N X Wy > B+D

14124 pro-E(2)
Q)

2.3 Non-Synchronization Case

When there are many TCP connections sharing a bottleneck
link, each TCP connection obeys the AIMD algorithm. Its
throughput (b(p)) can be calculated according to the square
root p formula [11] if the packet drop rate is known.

1

b(p) ~ (6)

RTT /%2 +Tomin<1,3 3’;”);:(1 +32p?)

where RT T is the average round trip time, Ty is the time-out, b
is the number of packets that are acknowledged by a received
ACK, and p is the packet drop rate.

From the point of view of all TCP connections, the distri-
bution of the aggregate window size is a normal distribution
based on the central limit theorem, if TCP connections are
not synchronized [12]:

1 4&X*@2 o
= e 20
cV2m

Here, W is the aggregate of congestion window size. u is
the mean of the aggregate congestion window size, and G is
its standard deviation. The packet drop rate can be obtained
from this distribution.

Based on Egs. (6) and (7), the packet drop rate and
throughput of parallel TCP can be evaluated by the fixed point
method.

W (x)

2.4 Numerical Results and Discussion

In this subsection, the performance of parallel TCP is shown
visually by numerical results. There are N TCP connections
that compete for a bottleneck link. The parameters are set as
follows, and the numerical results are shown in Figures. 2 and
3.

Example-1:
C = 100 Mbps | 1 Gbps, RTT = 100 ms,
Packet size = 1,500 Bytes,
Buffer size = (0.1--0.5)BDP,
Wimax = 64 KBytes.

Note that the maximum value of router buffer size is set to
BDP/2. The reason is building a router with a buffer size
of BDP is very difficult as the link bandwidth is increased
further because of limitations of the commercial memory de-
vices used by routers [12].

As the throughput equation (Eq. (5)) suggests, there ex-
ist three regions based on the aggregate congestion window
size Wym. In the first region, Wy, is less than the value of
BDP. Because of the limitation on the congestion window,
the bottleneck link cannot be fully utilized if the number of
TCP connections is less than a certain value. In this region,
throughput and goodput are identical, because there is no con-
gestion on the bottleneck link. They increase linearly as the
number of TCP connections increases. However, the utiliza-
tion is very low if there are a small number of TCP connec-
tions. The buffer size of the routers has no effect in this re-
gion, and there is no difference between synchronization and
non-synchronization. In the second region, Wy, lies between
BDP and BDP+buffersize. This is the best region, because
parallel TCP achieves its maximum throughput and goodput
is equal to throughput. However, it is hard to find a condition
that fulfills Wy,,, within this region, for this condition varies
significantly with several parameters, such as W, the value
of BDP, and the buffer size of the router. This is illustrated
by Figures. 2 and 3. Usually, the value of BDP and the buffer

non-synchronization ---------
synchronization

0.025
2
& 0.02
g 0.015 [
a
5 001
2
g 0.005
o
q 2
hronization
bronization ---------
7 7
100 %%;/ o
z -
g 80 T —
g 60 ///}//////“/)//7//
2
T 40
5 400

(b) Goodput

Figure 2: Numerical results (C = 100 Mbps)

size of the routers are unknown to the end-hosts. On the other
hand, if the network link is shared by several users, the valid
values of these parameters for a pair of end-hosts varies with
time. These make finding the optimal number of TCP con-
nections in practice even more difficult. Of course, there are
some users they maybe not expect the optimal performance
when they employ parallel TCP. Their purpose is not com-
pletely consistent with the object of parallel TCP. For these
users, we think their purpose of using parallel TCP should be
achieving the expected throughput. They also have to face
the problem of choosing the number of TCP connections as
well because of dynamics of network. When Wy, is larger
than BDP+buffersize, network congestion appears, and the
throughput of parallel TCP is located in the third region be-
cause the number of TCP connections is too large. In this
region, the packet drop rate becomes larger and the goodput
is degraded as the number of TCP connections increases. The
difference between synchronization and non-synchronization
is noticeable and becomes greater as the number of TCP con-
nections increases.

Despite the higher throughput in the non-synchronization

case, synchronization is common when DropTail is deployed,
and it easily occurs if TCP connections have the same RTT

non-synchronization ---------
synchronization

0.025
0.02
0.015
0.01
0.005

Packet Drop Rate

s
i 7

Goodput (Mbps)
[o2]
o
o

(b) Goodput

Figure 3: Numerical results (C = 1 Gbps)

[13, 14]. Parallel TCP possesses the exact properties that in-
duce synchronization. In the synchronization case, whereas
the router has a small buffer size, the performance of paral-
lel TCP deteriorates significantly as the number of TCP con-
nections is increased. Therefore, a great deal of attention
should be paid to synchronization. In synchronization case
and router with small buffer size (less than BDP), parallel
TCP can not achieve higher throughput as high speed TCPs
once congestion occurs, because the decreasing parameter of
parallel TCP is larger than high speed TCP (e.g., HSTCP).

In order to clarify the difficulty in choosing the number of
TCP connections in the synchronization case, the contours of
the expected throughput are plotted in Figure 4. We assume
that the expected throughput of parallel TCP is 95% of the
bottleneck link bandwidth. Note that the Y-axis is the relative
value of the router’s buffer size, which denotes the percent-
age of buffer size as BDP/2. Here, BDP/2 is used as a nor-
malization constant because the maximum buffer size is set
to BDP/2 in Example-1. The parameters for this graph are as
follows. The bottleneck link bandwidth is set to 100 Mbps,
1 Gbps, and 10 Gbps, respectively. Other parameters are as
described in Example-1.

100

; N H
v . H

60 — H H —
! H H
i : H

Relative size of buffer

1 H] i
40 ; i —
! H

' B
20 L 1021\0{! ------ H i ; _

10G

T 10 100 1000 10000

Number of parallel TCP connections

Figure 4: Contour of utilization (RTT = 100 ms, C = 100
Mbps/1 Gbps/10 Gbps)

In the graph, the areas bounded by the same type of lines
are expected in each case. The positions of the areas are dif-
ferent in each case. That is, in order to achieve the expected
throughput, the number of TCP connections must be changed
according to the different network conditions. In particular,
the range of the number of TCP connections for the expected
throughput is narrow if the buffer size of the routers is small.
This makes it more difficult to find the optimal number of
TCP connections. In practice, this range is significant be-
cause building a router with a large buffer size is difficult, as
mentioned above.

Although the non-synchronization case may benefit paral-
lel TCP, an extra mechanism is necessary. In order to break
synchronization, the approach of adding random packet-
processing time is required, or Active Queue Management
(AQM), such as RED, is deployed at routers [13, 14]. If the
approach of adding random packet-processing time is em-
ployed, then an extra mechanism at the end-hosts is required,
and moreover, this approach increases RTT. This is contrary
to the purpose of alleviating, by parallel TCP, the problem of
using TCP in LFNs. We consider that adding random packet-
processing time is not a good approach. When RED is de-
ployed, it must be deployed at the router of the bottleneck
link. In practice, there are several hops between two end-
hosts. The location of the bottleneck link is usually unknown.
This means that all routers along the path must use the RED
mechanism. It is not an actual require.

3 SUPPLEMENTAL DISCUSSION

To some extent, the analyses of the present paper indicate
how to choose the optimal number of TCP connections for
different network conditions based on the premise that the
parameters of the network are known by the end-hosts. The
results also show that the optimal number is sensitive to net-
work parameters. However, if this premise does not hold,
then obtaining an optimal value is difficult.

In addition, the number of TCP connections is unchange-
able during data transmission in the above analyses. When
the number of TCP connections (N) is determined, parallel
TCP can be considered as a high-speed protocol with an in-
crease parameter of N packets per RTT. This is not appro-
priate if the variability of network conditions is taken into
account, because the increase parameter of the high-speed
protocol varies with the network conditions. For example,
the increase parameter of HSTCP becomes larger and the de-
crease parameter becomes smaller as the size of the conges-
tion window increases. This may benefit parallel TCP if the
number of TCP connections is alterable during data transfer.
Such a mechanism has been proposed, e.g., dynamic network
resources allocation of GridFTP v2 [15], in which an active
peer can open/close one or more additional TCP connections
dynamically during data transfer. However, this mechanism
may lead to a number of problems.

e Determination of the granularity of changing the num-
ber of TCP connections is required. If the granularity is
large, tracing the change in link bandwidth is not effec-
tive. However, small granularity may lead to overhead
in handling TCP connections.

e It is difficult to manage opening/closing of TCP connec-
tions and control data channels dynamically. In order
to increase the number of TCP connections and attain a
steady state, a few dozen RTT are required each time a
new connection is created due to the effects of three-way
handshake and slow-start phase.

e This mechanism determines the number of TCP connec-
tions based on measurement of network conditions. Par-
allel TCP uses several TCP connections, and the inter-
action among these TCP connections may affect the ac-
curacy of measurement. Therefore, the performance of
parallel TCP may be influenced

e Because the number of TCP connections is changed dy-
namically, setting up the chunk size is not easy. In addi-
tion, chunk management is difficult when the number of
TCP connections decreases, because a TCP connection
may be closed during the transmission of a chunk.

In contrast, high-speed protocols can offer more flexibil-
ity to dynamic networks. Since there is only one high-speed
TCP connection when a high-speed protocol is employed, the
above-mentioned problems do not affect high-speed proto-
cols. We believe that high-speed protocols can work well and
are more efficient than parallel TCP, even for a scenario in
which the performance of parallel TCP is not very sensitive to
the number of TCP connections. Although high speed TCPs
are not widely available in production OS’s, e.g., Solaris and
Windows, this is likely to change shortly.

4 CONCLUSIONS

In the present paper, the characteristics of parallel TCP, which
have been obtained by simulations and experiments in past,
are clarified by mathematical analysis. When DropTail is
deployed, both the number of TCP connections and global
synchronization are investigated. The analysis results show
that, in practice, parallel TCP does not effectively improve
throughput. Future works will include further investigation
of the performance of parallel TCP by simulations, compari-
son with high speed TCPs, and validation in the Internet.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP conges-
tion control,” RFC 2581, April 1999.

[2] S. Floyd, “HighSpeed TCP for large congestion win-
dows,” RFC 3649, December 2003.

[3] D. Katabi, M. Handley, and C. Rohrs, “Congestion
control for high bandwidth-delay product networks,” in
Proc. of SIGCOMM 2002, August 2002.

[4] K. Kumazoe, K. Kouyama, Y. Hori, M. Tsuru, and
Y. Oie, “Transport protocol for fast long-distance net-
works: Evaluation of their penetration and robustness
on JGNIL” in Proc. of SIGCOMM 2005, Feburary 2005.

[5] R. Gupta, S. Ansari, R. L. Cottrell, and R. Hughes-
Jones, “Characterization and evaluation of TCP and
UDP-based transport on real networks,” in Proc. of SIG-
COMM 2005, Feburary 2005.

[6] A. Hanushevsky, A. Trunov, and L. Cottrell, “Peer-to-
Peer computing for secure high performance data copy-
ing,” in Proc. of CHEP 01, September 2001.

[71 W. Allcock, “GridFTP: Protocol extensions to FTP for
the Grid,” Available as: http://www.ggf.org/documents/
GFD.20.pdf, April 2003.

[8] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSock-
ets: The case for application-level network striping for
data intensive applications using high speed wide area
networks,” in Proc. of the IEEE/ACM SC2000, Novem-
ber 2000.

[9] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-
end performance effects of parallel TCP sockets on a
lossy wide-area network,” in Proc. of the 16th Interna-

tional Parallel and Distributed Processing Symposium,
April 2002.

[10] T. Hacker, B. Noble, and B. Athey, “Improving through-
put and maintaining fairness using parallel TCP,” in
Proc. of IEEE INFOCOM 2004, March 2004.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Mod-
eling TCP throughput: A simple model and its empirical
validation,” in Proc. of ACM SIGCOMM 98 conference
on Applications, technologies, architectures, and proto-
cols for computer communication, September 1998.

[12] G. Appenzeller, 1. Keslassy, and N. McKeown, “Siz-
ing router buffers,” in Proc. of ACM SIGCOMM 2004,
September 2004.

[13] S. Floyd and V. Jacobson, “Traffic phase effects in
packet-switched gateways,” Journal of Internetworking:
Practice and Experience, September 1992.

[14] L. Qiu, Y. Zhang, and S. Keshav, “Understanding the
performance of many TCP flows,” Computer Networks,
November 2001.

[15] 1. Mandrichenko, W. Allcock, and T. Perelmutov,
“GridFTP v2 protocol description,” Available as: http:
//www.ggf.org/documents/GFD.47.pdf, May 2005.

Biography

Zongsheng Zhang: received the M.S. degree from Jilin
University, China, in 1993 and D.E. from Graduate School
of Information Science and Technology, Osaka University,
Japan, in 2006. He is with Jilin University, China from June,
2006.

Go Hasegawa: received the M.E. and D.E. degrees in
Information and Computer Sciences from Osaka University,
Osaka, Japan, in 1997 and 2000, respectively. He is now an
Associate Professor of Cybermedia Center, Osaka University.
His research work is in the area of transport architecture for
future high-speed networks. He is a member of the IEEE and
IEICE.

Masayuki Murata: received the M.E. and D.E. degrees
in Information and Computer Sciences from Osaka Univer-
sity, Japan, in 1984 and 1988, respectively. In April 1984,
he joined Tokyo Research Laboratory, IBM Japan, as a Re-
searcher. From September 1987 to January 1989, he was an
Assistant Professor with Computation Center, Osaka Univer-
sity. In February 1989, he moved to the Department of In-
formation and Computer Sciences, Faculty of Engineering
Science, Osaka University. From 1992 to 1999, he was an
Associate Professor in the Graduate School of Engineering
Science, Osaka University, and from April 1999, he has been
a Professor of Osaka University. He moved to Advanced
Networked Environment Division, Cybermedia Center, Os-
aka University in 2000, and moved to Graduate School of In-
formation Science and Technology, Osaka University in April
2004. He has more than two hundred papers of international
and domestic journals and conferences. His research inter-
ests include computer communication networks, performance
modeling and evaluation. He is a member of IEEE, ACM,
The Internet Society, IEICE and IPSJ.

