

Contents

- Congestion control mechanism of TCP Reno
 Summary and problems
- TCP Symbiosis: a new congestion control mechanism
 - Uses bandwidth information of a network path by inline network measurement
 - Regulates window size based on Lotka-Volterra competition model
- · Performance evaluation through simulations
- · Conclusion and future work

Congestion control mechanism of TCP

- Main purpose
 - Avoiding network congestion and utilizing fully the link bandwidth
 - Fair bandwidth usage among competing connections
- Window-based congestion control

 Adjusting data transmission rate by maintaining a window size

Window Size Control in TCP Reno (2)

- Reasons
 - The increase speed is fixed and small and/or decrease ratio is too large, especially for long-distance and high-bandwidth networks
 - Reno cannot recognize the bandwidth information of the network path, so it continues increasing its window size until a packet loss occurs due to buffer overflow
- Our solution: TCP Symbiosis
 - Utilizes the bandwidth information of the network path • If it is possible to obtain the bandwidth information, the increase/decrease speed can be changed dynamically according to the bandwidth
 - Introduces a new algorithm in window size increase / decrease
 - · Based on Lotka-Volterra competition model

- Obtains the bandwidth information from the inline measurement mechanism

 Physical capacity and available bandwidth
- Controls the window size by using below equation:

$$\frac{d}{dAck}w_i = \varepsilon \left(1 - \frac{w_i + \gamma (K - A_i) \times RTT_{\min}}{K \times RTT_{\min}}\right) w_i$$

- Uses the same control mechanism as TCP Reno when:
 - A TCP connection is in slow-start phase
 - Bandwidth information is not available
 - Packet losses are detected by sender TCP

Conclusion

- Congestion control mechanism of TCP based on Lotka-Volterra competition model
 - Features
 - It uses the bandwidth information obtained from inline measurement (ImTCP)
 - It has the window size control algorithm based on the mathematical models from biophysics
 - Simulation results show that the proposed mechanism can improve the performance of TCP
- Future work
 - Mathematical analysis
 - Paramter setting with considering the effect of measurement errors
 - Experiments in actual Internet environment