ISPトポロジにおける オーバレイルーティングの効果 大阪大学大学院情報科学研究科 〇福元 良太、 荒川 伸一、 村田 正幸 2007/2/19

概要

- □ 背景
 - オーバレイルーティング
 - 関連研究
 - インターネットトポロジ
- □ シミュレーションモデル
- □ 結果
- □ まとめ

オーバレイルーティング

- □ インターネットにおける経路制御 (IP ルーティング)
 - OSPF, BGP
 - ルーティングの階層化、ポリシー、故障など
 - → ユーザ性能が犠牲
- □ 自律的な経路制御
 - 信頼性の向上、レイテンシの改善
 - エンドホストが経路を選択
 - □ ソースルーティング(Nimrod)
 □ オーバレイルーティング (Detour、RON)

 - 利己的 □ 各エンドホストが自身のパフォーマンスを最大化 □ システム全体の最適化は考えない

関連研究

- □ 利己的な経路制御の性能解析 [1]
 - 最悪時のユーザ性能が極端に悪くなることを証明
 - 特殊なトポロジでの証明
 - 実際のトポロジ構造を反映していない
- □ 計算機シミュレーションによる評価 [2]
 - 数10ノードのトポロジでのオーバレイルーティングの評価
 - □ 平均レイテンシの減少
 - 一部のリンクへの負荷の集中

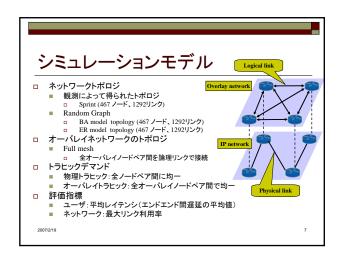
トポロジ構造の特徴が表われにくい小規模なトポロジでの評価

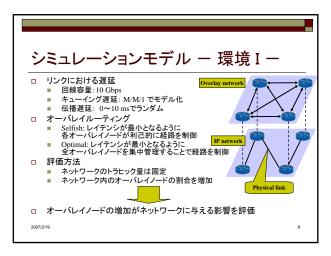
[1] T. Roughgarden and E. Tardos, How bad is selfish routing?, J. ACM, vol. 49, no. 2, pp. 236-259, 2002 [2] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On selfish routing in internet-like environments. In Proceedings of the ACM SIGCOMM, All ACM Conference, pages 151-162, Karlsruhe,

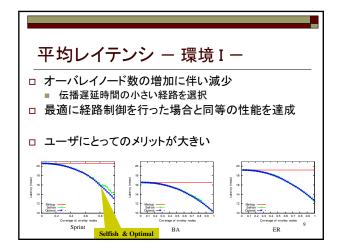
インターネットトポロジ □ 出線数分布がべき乗則に従う □ 隣接ノード数がkである確率: P(k) ≈ k⁽⁻⁷⁾ ■ 多くの出線数(隣接ノード)を持つ、少数のノード あまり出線数を持たない、多数のノード ポアソン分布 BA

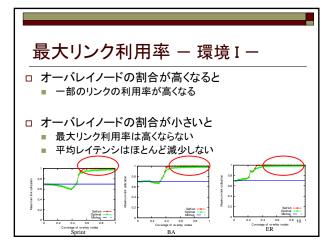
研究の目的

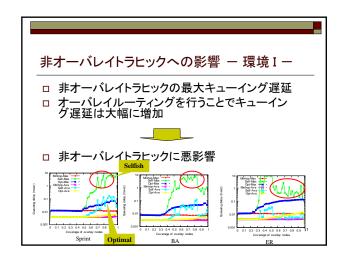
ネットワークの構造がオーバレイルーティングへ与える影響を明らかに

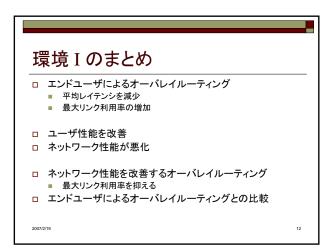


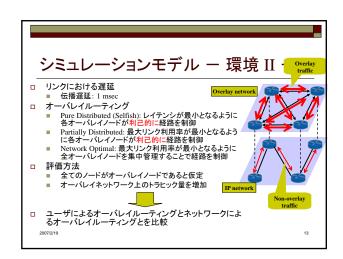

□ 構造的特徴の表われる ルータレベルのインターネットトポロジに着目 ■ 実測によって得られたルータレベルトポロジを使用

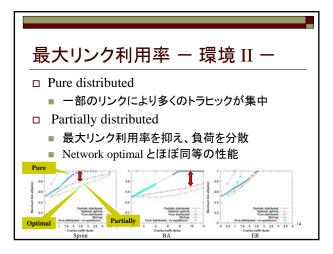

- 大規模かつべき乗則に従う
- □ オーバレイルーティングの均衡状態での性能を評価
 - エンドホストが経路を変更するインセンティブのない状態
 IPルーティングとオーバレイルーティングの比較
 IPルーティング:最短ホッブ経路制御

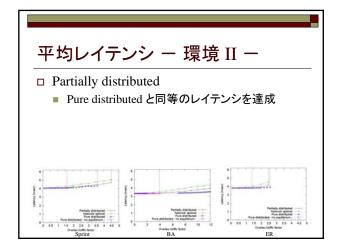

 - □ オーバレイルーティング
 ユーザ性能向上のためのオーバレイルーティング
 ネットワーク性能向上のためのオーバレイルーティング

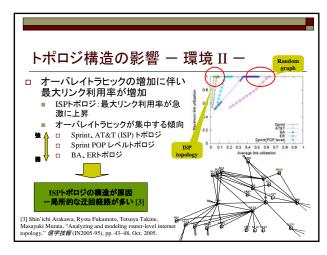

1











##