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Abstract. In structured peer-to-peer (P2P) networks participating peers can join
or leave the system at arbitrary times, a process which is known as. dfiany
recent studies revealed that churn is one of the main problems faceu/iyis-
tributed Hash Table (DHT). In this paper we discuss different possibitfiasw

to estimate the current churn rate in the system. In particular, we showdow
obtain a robust estimate which is independent of the implementation details of
the DHT. We also investigate the trade-offs between accuracy, ovkraed re-
sponsiveness to changes.

1 Introduction

With the recent development of new peer-to-peer (P2P) atiires, P2P has evolved
from simple file-sharing networks to efficient alternativeshe classic client-server ar-
chitecture. This is accomplished by each peer particigdtia logical overlay structure,
simultaneously acting as client and as server. The peesjnsible for maintaining
its share of information and providing it to the other peeguesting this data.

Additionally, P2P networks have no static network topolagyl each participating
peer may join or leave the overlay at any time. This processfésred to ashurn [1].
However, this freedom of having a highly dynamic networkisture comes at a cost.
The higher the churn rate is, the more difficult it becomegltiernetwork to maintain
its consistency [2]. Too high churn can cause routing fasuioss of stored resources
or the entire overlay structure, or inconsistent views effieers on the overlay.

Thus, itis essential that the overlay network structureagwained even in the pres-
ence of high churn. Especially in structured P2P architestisuch as Chord [3], where
all peers are arranged in a ring structure, the integrithefrteighborhood relationship
among the peers must be kept at all times. As a consequerse, tietworks require
more maintenance traffic when the churn rate is high. How&&P networks operate
without a centralized control unit and each peer has onlynédd view of the entire
network, usually not being aware of the current churn ratbénetwork. Thus, a peer
should be able to estimate the churn rate from the limitearimétion that is available
and autonomously react to high churn situations by incnggtsie maintenance traffic.

In this paper, we propose a fully distributed algorithm feeps to estimate the churn
rate by exchanging measurement observations among neghtiee overlay network



itself is used as a memory for the estimate while each onlee pontributes to up-

dated measurements of the estimator. The advantage of #tischis that it operates
passively, i.e., there are no additional entities requiedhonitor online and offline

periods of the peers and no further overhead is necessarje Whaimainly consider

Chord-based DHT networks, our method is not restricted yotype of structured P2P
overlay since it operates independently of the underlyiatJ protocol. Wherever nec-
essary, we will point out the corresponding differencestbeptypes of structured P2P
networks, e.g. Kademlia [4] or Pastry [5].

The paper is organized as follows. In Section 2, we discusgsxisting models
for estimating the churn rate in P2P networks. This is fodvby Section 3 where we
give a detailed description of our proposed estimationseh&ection 4 will show that
our algorithm is capable of retrieving accurate estimatekvae will study the impact
of the parameters, e.g. the number of monitored neighbdisecstabilization interval,
on the performance of our approach. Finally, we concludeptier in Section 5 and
elaborate on possible extensions.

2 Discussion of Different Churn Models

The impact of joining peers is usually the less problemasioeat of churn, since it
mainly results in temporary failures like routing inconsigcies or resources which
might be temporarily located at a wrong position in the aeriThe process of peers
leaving the system, however, can result in irreparable danfige loss of the overlay
structure or loss of data stored in the overlay. In genecalerdepartures can be divided
into friendly leaves andnode failures. Friendly leaves enable a peer to notify its overlay
neighbors to restructure the topology accordingly. Nodkiries, on the other hand,
seriously damage the structure of the overlay by causing s&ghbor pointers or data
loss. In this paper we therefore concentrate on node failure

There are two predominant ways to model churn. The first agswurn per net-
work by specifying a global join and leave rate [1]. This isalery similar to the
half-life of a system as defined in [6]. Usually the globahjpirocess is modeled by a
Poisson process with rade One of the main problems of this model is that the number
of nodes joining the system within a given time interval idependent of the current
size of the system. However, while a join rate of 50 peers @evisd is quite significant
for small networks, it might have no noticeable influenceeémnarge networks.

Another way to model churn is to specify a distribution foe time a peer spends
in the system (online time) or outside the system (offlinesdinT his way the churn rate
can be considered per node and thus generates a churn betvid is comparable in
networks of different size. As in [7] we turn our main attentito scenarios where the
join and failure rate are both described per node. To be altedadel the offline time
of a peer, we assume a global numbemngbeers, each of which can either be online
or offline. Joins are then modeled by introducing a randoraieée T, describing the
duration of the offline period of a peer. Accordingly, leaaes modeled by a random
variableTy, describing the online time of a peer. Usually, and7y are exponentially
distributed with mearE[T,n] and E[Tys], respectively. However, this may not hold in



realistic scenarios where distributions tend to becomeerskewed [8]. Therefore, in
Section 3 we design our estimator independent of the distoib of 7o, and 7.

The actual user behavior in a real system heavily dependbeokind of service
which is offered. For example, Gummadi et al. [9] showed B2R users behave essen-
tially different from web users. Additionally, Bhagwan ét[40] argue that availability
is not well-modeled by a single-parameter distributiort, instead is at least a com-
bination of two time-varying distributions. This is suppex by the observation that
failure rates vary significantly with both daily and weeklgtierns and that the failure
rate in open systems is more than an order of magnitude higherin a corporate
environment [11]. Finally, to be able to compare the perfamoe of different selection
strategies for overlay neighbors, Godfrey et al. [8] présedefinition of churn which
reflects the global number of changes within a time intetvalWhile the definition is
very useful in simulations which permit a global view on tlystem, it cannot be used
by an estimator which can only rely on local information.

3 Estimating the Churn Rate

In general, an estimator for the churn in the system must mesway capture the
fluctuations in the overlay structure and then deduce amatgi for the churn rate
from these observations. In structured P2P networks, eeehhas periodic contact to
a specific number of overlay neighbors. Those overlay neighlre calleduccessors
in Chord, k-bucket entries in Kademlia, orleafs in Pastry. The basic principle of the
estimator described here is to monitor the changes in thghher list and use them to
derive the current churn rate.

3.1 Obtaining Observations

We model the behavior of a peer using two random variableandTy which describe
the duration of an online session and an offline session.Mbdel assumes that offline
peers will rejoin the overlay network at a later point in tinvghile this is a very rea-
sonable assumption for closed groups like corporate né&saar distributed telephone
directories (Skype), other applications like contentrdistion (BitTorrent) might have
no recurring customers. For the latter case, an estimattindaglobal join rate\ is pre-
sented in [12] based on the average age of peers in the neiligtbdhe main problem
is that such estimators require an additional estimateettinrent system size [13].
Each online peep stores pointers to well defined overlay neighbors (or contacts)
which are specified by the individual DHT protocols. To maintthis structure of the
overlay, peep periodically contacts a special subset of its neighborsyexg,;, sec-
onds and runs an appropriaabilization algorithm. This corresponds, e.g., tocket
refreshes in Kademlia or the stabilization with the direct successo€hord. At each
of these stabilization instants the peer synchronizeseighibor list with those of its
contacts. Our estimator monitors the changes in this neigligi and collects different
realizations of the random variabl&s, andTy. Therebybs(i) is theith observation
made by the peer andme(s) is the time when the observation was made. The obser-
vation history is stored in a list which contains upitq,.. entries. Furthermore, a peer
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Fig. 1. Peerp rejoins the network and sends itBig. 2. Peerp only monitors its direct neighbor
offline duration to its: neighbors s but distributes its observations

stores the time stampg, andt_; which correspond to the time pegitself joined or
departed from the overlay, respectively.

The shorter a peer stays offline on average the higher is thegte. To obtain
realizations ofl, a peer stores the tim&; when it last went offline. The next time
it goes online it calculates the duration of its offline sessasnow — tf; and sends
this value to itsc overlay neighbors:; (cf. Fig. 1). Note that the information can be
piggybacked on other protocol messages to avoid unnegesgarhead. In Chord, a
joining peer contacts its successors and possibly its fapgerPastry its leaf set or
neighborhood set, and in Kademlia it refreshes its closasitdi. These messages can
be used to disseminate the observed offline time to the gvedighbors.

To obtain realizations df,, we proceed as follows. In a DHT system, a peeeri-
odically contacts at least one neighbaio stabilize the overlay structure (cf. Step 1 in
Fig. 2). In Chord this would be the direct successor in a chsk direction, in Kadem-
lia the closest peer according to the XOR-metric. If, duidng of its stabilization calls,
p hotices thas has become offline (cf. Step 2 in Fig. 2), it calculates thation of the
online session of peerasnow — t3,, wherets, is the time when peer went online.
Peerp then distributes this observation to all its overlay neigisbas shown in Step
3in Fig. 2. If the DHT applies some kind @eer down alert mechanism [1, 11], the
information could also be piggybacked on the correspondotdy messages.

An obvious problem of this approach is that pgetoes not always naturally know
ts., the time when peey went online. This is, e.g., true if went online afters or if s
became the successorpfiue to churn. For this reason each peeremorizes the time
ts, when it went online and sends this information to its new poegsor whenever it
stabilizes with a new peer. To cope with the problem of assorbus clocks it sends
its current online durationow — t3,. This way the error is in the order of magnitude of
a network transmission and thus negligible in comparisdhewnline time of a peer.

When a peer joins the network, it first needs to obtain someradsens before it
can make a meaningful estimate of the churn rate. Therefajse the overlay net-
work as a memory of already obtained observations. If a neaw joins the overlay it
downloads the current list of observations from its direatcgssor. This way the ob-
servations persist in the overlay and a new peer can alreadynsth a useful estimate
which reflects the current churn rate in the network. An aléve is to invest more
overhead by periodically contacting a number of peers &bt just one. Mahajan
et al. [14] present an algorithm which relies on the fact thgeer continuously ob-
servesc overlay neighbors. Such a peer should on average observiaiture every
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At = % - E[Ton]. Thus, if a peer observésfailures in At the mean online time of a
peer can be estimated as:

~ c- At ¢ (time(k) — time(1

Bl = ¢ At _ o (time(k) — time(1))

k k

In addition to the periodic contact tameighbors, the algorithm also has to struggle with
the correctness of the neighbor pointers and the problerbtairing enough observa-
tions during the lifetime of the peer.

3.2 Derivation of the Churn Rate

In this section we will use the following notation: For a randvariableX, we denote
x(t) as the pdf X (¢) as the cdf, an@'[ X ] as the mean. Estimated values will be marked
using a hat. Once a peer has obtained a list of observatisit§),: = 1, ..., k of the
random variabled,, and T, it can rely on robust estimates like the empirical mean
and the empirical standard deviation.

The larger we set, i.e. the more observations a peer maintains in its histbgy,
more accurate the estimate is going to be. Howevérjsfchosen too large, it will take
longer for the estimator to react to changes in the currentrchate. In this context,
the limits of the corresponding confidence interval can leglus autonomously derive
an optimal value of. If the calculated confidence interval is larger than a pliedd
threshold, a peer can increasaccordingly.

While the mean ofl,, and T give a first idea about the churn in the system, the
main purpose of the estimator is to self-tune the paramefdate DHT or to calculate
the probability of certain events. This usually requireswledge of the entire distri-
bution or at least of some important quantiles. For exantplealculate the probability
that an overlay neighbor will no longer be reachable at the s&bilization instant,
we need to know the probability that this contact will stay online for less than.,
seconds. An unbiased point estimator for this probabiditgiven by:

T Ly o .
p=P (Ton < tstap) = E|{Tgn Ton < tstay fori=1,2,.. k}|, (1)



where| - | indicates the cardinality of a set. Th80(1 — «) confidence interval fop
can be calculated using the following bounds:

p(1—p)
k

p(1 —p)

2@

u(k,a) =p+zi-g - I(k,a) =p—21-4g -
wherezl,% is thel — § critical point for a standard normal random variable. Inecas
over- or underestimating has serious consequences fopgiie@application, the limits
of the confidence interval can be used as estimates theraselve

We simulated an overlay with,,;, = 30 s where the online time of a peer was expo-
nentially distributed with mea®'[T,,] = 600s. Under these conditions, the probability
p that a specific peer goes offline before the next stabilinatistant is 4.88%. Fig. 3
shows the sorted estimatesofind the corresponding upper and lower bounds from
1000 peers. The upper boun¢k, «) tends to overestimate and the lower bolfid «)
tends to underestimate. Note, that due to the denominategm (1) the estimate is
discretized into steps df.

In some cases an application requires knowledge of theeettistribution function
of the online time. If the type of distribution is known a piicthe peer can use the
corresponding/laximum Likelihood Estimator (MLE) to estimate the parameters of the
distribution. However, there is always the danger of asegran incorrect distribution
which would lead to correspondingly distorted results. Agibility to reduce this risk
is to perform a hypothesis test [15] to verify that the typediftribution is actually
the assumed one and only use an MLE if the test delivers aiymsisult. In general,
however, the actual type of distribution is not known or aesppsition of multiple
distributions. In this case, a peer has to rely on an estiofatee quantiles [16] of the
online distribution.

To show the importance of using the overlay network as a merfwralready
made observations, we regard the random variablehich describes the number of
observations a peer makes during its lifetime provided ithaintinuously observes
overlay neighbors. This concept is visualized in Fig. 4 vehee assume that a neighbor
n; which went offline is immediately replaced by another pebe fandom variabl&
corresponds to the number of leave events in the figure andecaomputed as

P(X =i)= /OOO ton(t) - P (X = i|Ton = t) dt. (3)

In the case of exponentially distributed online times, tae be written as

o] M\ 7 %
P(X:i):/ Ae*”-(c_) A . —
0 il (c+1)i+1

(4)

since the number of departures in a fixed interval of lengsiPoisson distributed with
parameter - \.

To compare this theoretical approximation to practicaligal we simulated an over-
lay network withTy, = 300s, tgq = 30s, ande = 40, where the online/offline
time of a peer is exponentially distributed. The maximune izthe history was set to
kmaz = 100. Fig. 5 shows the probability density function &f for both the analysis
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and the simulation. It can be seen that the analysis matbieesimnulation very well
except for the two peaks at the left and the right of the figlite peak at 100 clearly
results from the maximum size of the history. That is, allgadailities for P(X > 100)

are added td°(X = 100). The peak at 0 arises from the fact that while the analysis
immediately takes offline peers into account, the first §iztion instant in the simu-
lation occurs 30s after the peer joined the network. Thugedrs which stay online
for less than 30 s, can never make an observation. In conalusbth the analytical and
the simulation results show that a peer does not make endwggna@tions during its
lifetime in order to derive a meaningful estimate and a gasithvator should therefore
utilize the overlay network as a memory for already made ofasiens.

The more observations a peer makes per time unit, the fast@n react to changes
in the global churn rate. This can be measured by lookirifgt¢, the time between
two observed leave events, @f,"", the time between two observed join events. If
a peer shares its observations witlhverlay neighbors, the next observation is made
as soon as one of theset+ 1 peers goes offline. Thus, the distribution@*> can
be calculated as the minimum ef+ 1 forward recurrence times dfy,. Due to the
memoryless property, the forward recurrence time of aneeptally distributed online
time Ty, is also exponentially distributed with the same parametershis case the
distribution of 7'¢v¢ can be calculated as:

obs

P (T <) =1 P (Ton > t)°"" =1 — ¢ (c+DA, 5)

O

If the distribution is not known, we can still easily comptite mean off 7" as

BT = EC[IT] The calculation is a little more complicated f6f2>¢ since the
time when a peer actually observes that another peer iseffiiifers from the actual
time the node left the overlay. Assuming that overlay ne@ghlare updated evety,.;

seconds, the average erroeis = “TI which leads to

E [Ton] + €on
c+1

The above considerations can be used to approximate thetegame it takes the
estimator to respond to a global change of the churn rate. \Wigemean online time of

B[Tlgve) = (6)



the peers changes frofy,;4[Ton] t0 Erew|[Ton], We approximate the expected response
time E[R] by the time needed to collekt,, .. new observations.

BIR] = BoalTon] + 222 - (Epea[Tan] + o) )
Fig. 6 compares the analytical response time to that oltdireen a simulation
run. In the simulation we again used exponentially distedwnline/offline times, set
kmaz = 100, ¢ = 10, ts1qp = 30s, and changed[T,n) from 10 min to 5 min to 15min
and back to 10 min afted.33 h, 16.66 h, and25 h of simulation time, respectively. The
simulated curve shows the mean of the estim#tgfl,,| values of all peers, which were
online at the corresponding time. The error bars repreberinterquartile range. It can
be seen that the estimator is able to capture the changes ohthn rate and that the
time it takes to adjust to the new value complies with theysisl Note that, due to the
stabilization period of 30 s, the estimated valuegdje= 15 s above the actual value.

4 Numerical Results

In this section we will evaluate the proposed estimatorgisimulations. Unless stated
otherwise, we will always consider that the online and offltrmes of the users are
exponentially distributed with meafi[To,] and E[Tc], respectively. The default stabi-
lization interval ists,, = 30s and the size of neighbor list is= 20. We will further
assume that there are 40000 initial peers V#itfin] = E[Towx], resulting in an average
of 20000 online peers at a time. Although our estimator wekbults for both online
and offline time, we will concentrate on estimating the oalimeTy,, since this is usu-
ally a more important parameter for the system performandég; can be calculated
in an analogous way.

4.1 Proof of Concept

The main purpose of this section is to show that the theoceticept of the proposed
estimator as described in Section 3 does work equally webr@ctice. We focus on
Chord since it is the currently most studied DHT network a@estiure. Additionally,
we will provide analytical calculations verified by simpdifl simulations, focusing on
properties which are important to our estimator. That ispveénly disregard all mech-
anisms dealing with document management or replicatiorm@del the stabilization
algorithm, a peer synchronizes its neighbor list every, = 30 s with its direct succes-
sor. When a peer notices that another peer is offline, it ngtifie peers in its neighbor
list, piggybacking the observed online time in these messag@/e consider a symmet-
ric neighbor list, i.e. the number of peers in the successbislthe same as that of the
predecessor list. This improves the stability of the Chorerlay and provides a better
comparability of the result to symmetric overlays like Kedia.

In practice too high or too low estimates might have critmahsequences in terms
of performance or even functionality. In such a case it sthdwal avoided that the esti-
mator underestimates or overestimates the actual chugnThis can be achieved by
using the upper or lower bound of a specified confidence lestdad of the estimated
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value itself. Fig. 7 shows the upper and lower bounds of tHé 88nfidence interval
for the mean. As expected, the upper bound overestimateacthal value, while the
lower bound underestimates it. The frequency at which tipeupound underestimates
or the lower bound overestimates the actual value can beeimdkd by the confidence
level. The higher the confidence level is chosen, the smialtee probability for this to
happen at the cost of more inaccurate values.

4.2 Accuracy and Responsiveness

We now take a closer look at the trade-off between accuradyresponsiveness in
dependence of the size of the history. To express accuracgpnsider how much the
97.5% and 2.5% quantiles of the estimated values basédotservations differ from
the actual value in percent. This is plotted as the dotted bluves in Fig. 8 using the
left y-axis. It can be recognized that increasing the historyrggalts in more accurate
estimates which decreases exponentially dver

An increased accuracy, however, comes at the drawback atireglthe respon-
siveness of the estimatdResponsiveness is defined as the time it takes to colldet
fresh results when there is a change in the global churn Itateexpressed in multi-
ples of E[T,n] and approximated by Eqn. (7). Responsiveness increasesliinwith
k (cf. green solid curves of Fig. 8 with rightaxis) and its slope is determined by the
number of overlay neighbors. The more neighbors there aeemiore results are ob-
tained per time unit and the faster the estimator reactseehlange. The study shows
that depending on the application requirements, a traleaafbe made between higher
accuracy and faster responsiveness by changing the nurintmrsidered observations.

In order to provide a more comprehensive study of the respemsss of the esti-
mator and to validate our analytical approximation in EqM), e perform simulation
runs with different churn rates and measure the time betweersuccessive obser-
vations. Obviously, the smaller this inter-observationdiis, the faster the reaction to
changes of the churn rate, see Fig. 9. For different chues @ftF[T,,] = 300s, 600 s,
and 900 s, the inter-observation time is shown over the nuoftm/erlay contacts. The
dashed lines are the results obtained by the approximatioBgn. (6). It can be seen
that the inter-observation time decreases exponentialiythat the analytical curves
match well with those obtained by simulations. A greater banthan 20 neighbors is
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not justified due to the small improvement in responsiveaessthe higher overhead
in maintaining those neighbors. Smaller value€§fy,| result in smaller values of the
inter-observation time, but the number of overlay conthesan even greater influence
on the inter-observation time. Note, that the responssgaéso depends on the quality
of the stabilization algorithm. If a simple algorithm is dséhe neighbor lists might be
inaccurate, which in turn results in a loss of updates andlaghiinter-observation time.

To show how the inter-observation time translates into ttteiad response time
and how the estimator behaves during these reaction phasesmulated a network
where the mean online time of all peers was globally change the initial value
of 5min to 15min after a simulation time of 250 min. In Fig. 1&ch data point shows
the average of the estimatét|T,,] values of all online peers at the same time instant.
Again the more neighbors there are, the faster the estimpfmoaches the new churn
rate. However, increasing the number of neighbors beyord20 does not justify its
additional overhead. Thus, using 20 overlay neighbors,@assaggested in Kademlia,
is a reasonable choice.

4.3 Practicability and mplementation Aspects

In practice, it is desirable that all peers obtain equahestis in order to derive similar
input parameters for the maintenance algorithms of the R2®ank. However, those
algorithms are performed between direct neighbors of th&d.DSince these direct
overlay neighbors also exchange their measured obseamgatizeir churn estimates de-
rived from this data are expected to be highly correlatedquantify the degree of this
correlation, we took a global snapshot during the simutaind had a closer look at
the estimates of 5000 consecutive peers on the Chord ringhgveinvestigated the
correlation between these peers by applying methods from ¢eries analysis. Fig. 11
depicts the autocorrelation over the number of neighbodsshows that there is a high
correlation among neighboring peers. The curves for tieréifit numbers of overlay
neighbors among which the measurement values are exchahgedthat the correla-
tion extends to at leastneighbors in both directions of the ring.

A possible application of the proposed estimator is seifrtg the stabilization of
the overlay structure. In practice, the stabilization ivé i.e. the frequency at which
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overlay neighbors are contacted to update the neighbsyikst fixed value. This results
in unnecessary overhead when there is no churn in the netimairivhen there is a high
churn rate, the stabilization overhead may not be suffidentaintain the stability of
the overlay. For self-adaptive selectionf,;, a peer should therefore estimate the
current churn rate to derive the probability that the owesiucture becomes instable,
i.e. that all neighbors will be offline before the next steaition call. For example,
given a mean online time af[T,,] = 600s, a peer needs to stabilize at least every
300s in order to maintain the overlay stability with a proltigbof 99.99%. In Fig. 12,
the mean and standard deviation of thg,;, derived from estimation is shown over
the size of the observation history. It can be seen that #redard deviation decreases
exponentially and that a history size of 100 again resuls good value for practical
purposes.

5 Conclusion

Structured P2P networks apply different maintenance nméshes to guarantee the sta-
bility of the overlay network and the redundancy of storedwnents. Ideally, the pa-
rameters of these mechanisms should be adapted to the tccinien rate. The more
churn there is in the system, the more overhead is neede@potke system stable. As
a first step toward a self-organizing overlay network, weodticed a method which
enables a peer to estimate the current churn rate in thensgstd can be used to auto-
nomically adapt the overhead.

The estimator is based on the changes a peer observesshafsdiverlay neighbors.
The more observations a peer makes, the better is the qafilisyestimate. Therefore, a
peer shares observed events with its direct overlay neighiyopiggybacking the cor-
responding information in regular protocol messages. Baotlytical and simulation
results show that the estimator is able to capture the ductamn rate. The accuracy,
the required overhead, and the responsiveness to changés ealjusted by the num-
ber of observations considered in the estimation proces$®wpithe number of overlay
neighbors which share the results. We investigated theegponding trade-offs and
deduced values which are suitable for practical purposassapplications which are



sensitive to an overestimation or underestimation of theawalue, we showed how
to use the upper and lower bounds of a confidence intervaltiasates themselves.

In future work, we intend to use the estimator to enable a prautonomously

adapt the number of overlay neighbors and the number ofcaptd the current churn
rate. This way, the functionality of the overlay networksiill be guaranteed in times
of high churn while the maintenance overhead will be redueeiines of no churn.
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