
Int. J. Internet Protocol Technology, Vol. x, No. x, 200x 1

Copyright © 200x Inderscience Enterprises Ltd.

Inline bandwidth measurement techniques for
gigabit networks

Cao Le Thanh Man*
Graduate School of Information Science and Technology,
Osaka University, T5600043 Osaka-Fu,
Toyonaka-Shi, Machikaneyamacho 1-32, Japan
Fax: 0081-6850-6868
E-mail: mlt-cao@ist.osaka-u.ac.jp
*Corresponding author

Go Hasegawa
Cybermedia Center,
Osaka University, T5600043 Osaka-Fu,
Toyonaka-Shi, Machikaneyamacho 1-32, Japan
Fax: 0081-6850-6868
E-mail: hasegawa@cmc.osaka-u.ac.jp

Masayuki Murata
Graduate School of Information Science and Technology,
Osaka University, T5600043 Osaka-Fu,
Toyonaka-Shi, Machikaneyamacho 1-32, Japan
Fax: 0081-6850-6868
E-mail: murata@ist.osaka-u.ac.jp

Abstract: We introduce an inline measurement method that can overcome difficulties in
measurement task in high-speed network environment, such as short packet transmission
intervals and Interrupt Coalescence function deployed in the high-speed Network Interface Cards.
The method adjusts the number of packets involved in a packet burst of an active TCP
connection, and utilises the inter-intervals of the bursts of the corresponding ACK packets for
bandwidth measurement. Experiment results show that the proposed inline measurement method
can measure the bandwidth in the network paths at least 1-Gbps or higher.

Keywords: gigabit network; available bandwidth; capacity; TCP; inline measurement; Interrupt
Coalescence; IC.

Reference to this paper should be made as follows: Man, C.L.T., Hasegawa, G. and Murata, M.
(xxxx) ‘Inline bandwidth measurement techniques for gigabit networks’, Int. J. Internet Protocol
Technology, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Cao Le Thanh Man received the ME and DE Degrees from Graduate School
of Information Science and Technology, Osaka University, Japan, in 2004 and 2007,
respectively. He is now working as a research scientist at Systems Development Laboratory,
Hitachi Ltd. His research interests include network performance measurement and evaluation,
TCP protocol design and evaluation. He is a member of IEEE.

Go Hasegawa received the ME and DE Degrees in Information and Computer Sciences from
Osaka University, Osaka, Japan, in 1997 and 2000, respectively. From July 1997 to June 2000,
he was a research assistant of Graduate School of Economics, Osaka University. He is now an
Associate Professor of Cybermedia Center, Osaka University. His research work is in the area of
transport architecture for future high-speed networks. He is a member of the IEEE and IEICE.

Masayuki Murata received the ME and DE Degrees in Information and Computer Sciences from
Osaka University, Japan, in 1984 and 1988, respectively. He is now a Professor of Graduate
School of Information Science and Technology, Osaka University. He has more than 200 papers
of international and domestic journals and conferences. His research interests include computer
communication networks, performance modelling and evaluation. He is a member of IEEE,
ACM, The Internet Society, IEICE and IPSJ.

2 C.L.T. Man et al.

1 Introduction

Current efforts to improve TCP performance over
high-speed networks can be divided into two main
approaches. The first one changes the Additive-Increase-
Multiplicative-Decrease (AIMD) congestion control of
Reno TCP toward a faster increase of window size
when there is no congestion and a smaller decrease when
packet loss occurs. The representatives of this approach are
High-Speed TCP (Floyd, 2003), Scalable TCP (Kelly and
Ott, 2002) and Binary Increase Congestion (BIC) TCP
(Xu et al., 2004). They can perform better than
Reno/NewReno TCP in high-speed networks. However,
these TCP versions do not have optimal speed for increasing
the window size for all network environments because they
still rely on network feedback, that is, a packet loss event,
for adjustment of the speed. The packet loss event requires
TCP to retransmit a certain amount of data, which can be
large in high-speed networks. Therefore, these TCP variants
cannot fully utilise the bandwidth of a network path.
The second approach tries to avoid packet loss by deploying
a delay-based congestion control mechanism. This approach
uses queuing delay as a multi-bit congestion signal.
The representative of this approach is FAST TCP (Jin et al.,
2004). The difficulty with this approach is matching the
delay with the congestion signal because the relation is
affected by the capacity of the network path. A mismatch
may cause oscillation of the congestion window size,
leading to serious performance degradation.

The effective way for transport protocols to achieve the
desired throughput on a high-bandwidth and long-delay
network path is to observe the available bandwidth/capacity
of an end-to-end network and adapt accordingly.
Active measurement of the available bandwidth/capacity
of an end-to-end network path has been vigorously
investigated (Jain and Dovrolis, 2002; Hu and Steenkiste,
2003; Strauss et al., 2003; Ribeiro et al., 2003; Kapoor
et al., 2004). Compared with passive measurement, active
measurement can deliver faster and more accurate
results because the network can be investigated in
detail using probe traffic. However, the sending of probe
traffic is a drawback of active measurement. According to
Strauss et al. (2003), Pathload (Jain and Dovrolis, 2002)
generated between 2.5 MB to 10 MB of probe traffic per
measurement. Newer tools have succeeded in reducing the
amount of probe traffic. The average per-measurement
probe traffic generated by IGI (Hu and Steenkiste, 2003) is
130 KB and that generated by Spruce (Strauss et al., 2003)
is 300 KB. Although a few KB of probe traffic for a
single measurement is a negligible load on the network,
for routing in overlay networks, or adaptive control in
transmission protocols, these measurements may be
repeated continuously and simultaneously from numerous
network nodes and end hosts. In such cases, probe traffic of
a few KB per measurement will generate a large amount of
traffic that may interfere with data transmission in the
network, as well as degrading the measurement itself.

We have proposed an active measurement method that
overcomes the problem mentioned above (Man et al., 2004).

We proposed the concept of inline measurement, that is, the
idea of ‘plugging’ the active measurement mechanism into
an active TCP connection. This method has the advantage of
requiring no extra traffic to be sent on the network, and
provides fast and accurate measurement. When the sender
transmits data packets, TCP adjusts the transmission rate of
some packets, and considering arrival intervals of the
corresponding ACK packets, the TCP sender estimates the
available bandwidth/capacity of the network path between
the sender an the receiver of the TCP connection.

Inline measurement results enable TCP to optimise its
bandwidth utilisation. Our research group has previously
proposed a congestion control mechanism based on a
logistic equation and a Lotka-Volterra competition model
(Hasegawa and Murata, 2006), by which TCP can fully
utilise the bandwidth when the available bandwidth and
capacity of the network path are provided. We have also
proposed a new TCP version that sets the upper limit of the
congestion window based on the results of the inline
network measurement (Tsugawa et al., 2006). In this case,
TCP can provide background data transfer without affecting
the foreground traffic, whereas previous methods cannot
avoid network congestion essentially. Another study
(Marcondes et al., 2006) shows the performance of TCP by
using the capacity information for congestion control in the
Internet. The performance of the TCP proposed by
Marcondes et al. (2006) is much better than that of Reno
TCP, while the fairness with Reno TCP is still maintained.
Besides its use as a part of congestion control mechanism,
inline measurement can be used in many other caces, such
as for routing or server selection in grid or overlay
networks.

In this study, we focus on the problem: Can TCP
still perform inline measurement in Gbps-level bandwidth?
The problem arises because even stand-alone active
measurement tools such as Pathload and CapProbe still
cannot work well in a Gbps network for two reasons.
First, measurement in fast networks requires short
transmission intervals of the probe packets (for example,
12 µs for a 1-Gbps link and 1500-byte packet). However,
regulating such short intervals causes a heavy CPU load.
Second, network cards for high-speed networks usually
employ IC (Intel, 2003; Syskonnect, 2003), which
rearranges the arrival intervals of packets and causes bursty
transmission, and, therefore, algorithms utilising packet
arrival intervals do not work properly.

We introduce a new inline measurement mechanism
that works well in high-speed networks. We call this
Interrupt Coalescence-aware Inline Measurement (ICIM).
Unlike other active measurement tools which observe the
inter-intervals of the packets, ICIM adjusts the number of
packets that are transmitted in a burst caused by IC and
estimates the capacity and available bandwidth by checking
whether the inter-intervals of the bursts of corresponding
ACK packets are increased or not as they pass through the
network. ICIM does not set the sending interval of the
packets, so the overhead for packet spacing at the sender is
eliminated.

 Inline bandwidth measurement techniques for gigabit networks 3

The contributions of this study are as follows.

• We propose Interrupt Coalescence-aware Inline
Measurement for available bandwidth (ICIM-abw),
an inline measurement algorithm for available
bandwidth that works in a gigabit network.

• We validate the measurement results of ICIM-abw in
many simulation scenarios. The results show that the
algorithm works well in a 1-Gbps and faster network.

• We introduce Interrupt Coalescence-aware Inline
Measurement for capacity (ICIM-cap), an algorithm
for inline measurement of the capacity in a gigabit
network. Unlike current measurement algorithms, the
ICIM-cap algorithm works well in extremely high-load
networks. However, the algorithm can work well only
when the tight link of the path, which has the smallest
available bandwidth, is identical to the bottleneck link,
which has the smallest capacity. We then discuss the
range of errors if this supposition is not true, and show
that the range of errors is small.

• We implement ICIM-abw in the FreeBSD system
to test its performance in a laboratory environment.
The measurement results show that ICIM-abw can
work well in a real system.

The remainder of this paper is organised as follows.
In Section 2, we discuss the problems of bandwidth
measurement in high-speed networks and look at a number
of related studies. In Section 3, we introduce ICIM-abw and
explain how to realise it in Reno TCP. We then evaluate the
performance of Reno TCP that is utilising ICIM-abw.
In Section 4, we introduce ICIM-cap and discuss the range
of errors that may occur with this algorithm. In Section 5,
we validate the performance of ICIM-abw in a real
environment. Finally, in Section 6, we present concluding
remarks and discuss future projects.

2 Bandwidth measurement in high-speed
networks

In this section, we discuss some of the difficulties
encountered by existing active available bandwidth/capacity
measurement tools in high-speed networks (1-Gbps or
higher). We assume that the machines that run the
measurement tools are general purpose machines, for
example, a x86-based CPU machine with a normal OS,
such as 4.4 BSD or Gnu/Linux (or similar). The problems
mentioned here may not occur in high-performance
machines that are designed especially for network
bandwidth measurement.

2.1 Limitation of packet pacing in general-purpose
machines

In current active measurement tools, probe packets must be
sent at a rate higher than the bandwidth of the network path,
otherwise the packet space will not be expanded and the

tools will not be able to determine the bandwidth. When the
bandwidth reaches 1-Gbps or higher, the transmission
intervals of the probe packets must be 12 µs (for measuring
1-Gbps bandwidth) or smaller. As we discuss below, for
a general-purpose machine, sending packets in such small
intervals causes high CPU overhead.

For pacing packets, there are two approaches. The first
is to continuously check the hardware clock (for example,
using gettimeofday()in UNIX systems) and send the
packets when the clock reaches a determined timing.
In a Linux system with an x86-based CPU, one access of the
hardware clock requires approximately 1.9 µs (in the
FreeBSD system, one access requires 9 µs) (Jin and
Tierney, 2003). The write() system call requires an
average of 2 µs (in the case of a Pentium III CPU).
Therefore, a Linux system can only send packets in intervals
greater than 2 + 1.9 = 3.9 µs. This means that, the system
can measure the bandwidth up to 3-Gbps (for the case in
which the probe packet size is 1,500 bytes). However, in
order to send packets at 3-Gbps, the CPU has to spend
most of the time checking the hardware clock overhead.
If the measurement is repeated continuously, then the
CPU will not be able to process tasks from other
applications. The system performance then will be
deteriorated. Thus, checking the hardware clock to send
packets in a high-speed network is not a good approach.

The second approach is to register the packet sending
program to an Interrupt Service Routine (ISR) of the
hardware clock interrupt. In a general-purpose UNIX OS,
the ISR hardclock() is provided for this purpose.
In 4.4BSD OS and 2.4 LINUX kernel, the hardclock()
system call is called by the interrupt of hardware clock
every 0.01 s. In the 2.6 LINUX kernel, it is called every
0.001 s. However, with this low interrupt frequency, the
program called by hardclock() can only send packets at
the rate of up to 12 Mbps (assuming that the packet size is
1,500 bytes). To obtain a higher interrupt frequency, a new
interrupt schedule of the hardware clock can be
implemented. However, one hardware interrupt (in 4.4 BSD
OS) normally requires more than 1 µs (Zec et al., 2002).
If the packet transmission rate is 1-Gbps, then the sending
interval is 12 µs This means that, in this case, the overhead
of the hardware interrupt is as high as 1/12 of the total
working time of the CPU. In addition, a new interrupt
schedule for the hardware clock requires many changes in
the OS.

2.2 Effects of Interrupt Coalescence (IC)

Another reason for the difficulty in the task of measurement
in high-speed networks is IC, which is deployed in most
high-bandwidth NICs. IC is a technique in which NICs
group multiple packets that arrive in a short time interval
and pass them to the OS in a single interrupt. IC reduces the
CPU overhead when the arrival intervals of packets become
small. Because the inter-arrival intervals of the packets
observed by the kernel are changed, IC has an enormous
impact on bandwidth measurement tools, in which the

4 C.L.T. Man et al.

arrival intervals of packets are utilised for bandwidth
estimation.

There are a number of types of timer setting in IC.
For example, Intel Gigabit Ethernet Controllers (Intel)
contains the following mechanisms for IC:

• absolute timer: the absolute timer delays the assertion
of an interrupt to allow the controller to collect
additional interrupt events before delivering them to
software

• packet timer: the packet timers are inactivity timers,
triggering interrupts when the link has been idle for an
appropriately long interval

• master timer for throttling all interrupt sources: an
interrupt throttling mechanism is used to set an upper
bound for the interrupt rate.

Under sustained loads, the absolute timers will be the
primary source of device interrupts (Intel). We investigate
the absolute timers in greater detail. There are two absolute
timers. One is for transmit interrupts, and the other is for
receive interrupts. Because transmit interrupts only inform
the kernel as to the completion of packet sending, delays in
transmit interrupts do not affect the real transmission
intervals of the packets. In contrast, delays in receive
interrupts change the intervals of all receiving packets
observed by the kernel. As shown in Figure 1, the receive
absolute timer starts to count down upon receipt of the first
packet. Subsequent packets do not alter the countdown.
Once the timer reaches zero, the controllers generate an
interrupt to pass all of the packets to the OS in a bursty
manner. The length of the timer is decided by the parameter
RxAbsIntDelay, which is defaulted to 0.1312 ms in Intel
Gigabit Ethernet Controllers (Intel(R) PRO/1000 Adapter.
README file). Thus, all packets that have time intervals
smaller than RxAbsIntDelay will belong either to the same
burst, in which case the time interval between the packets
becomes zero, or to two successive bursts, in which case the
time interval becomes RxAbsIntDelay or larger. Therefore,
the software cannot detect packet intervals smaller than
RxAbsIntDelay. With the default value of 0.1312 ms for
RxAbsIntDelay, the software cannot perceive transmission
rates larger than 100 Mbps (if the packet size is
1,500 bytes).

Figure 1 Receive absolute timer

Without IC, an OS interrupt occurs whenever a single
packet arrives; this leads to a high CPU overhead when the
system performs high-speed data transmission. Therefore,
we should not disable IC feature for the purpose of
measurement. There are some studies that have discussed

measuring bandwidth using the existing IC. For example,
one study (Jin and Tierney, 2003) suggests that in order to
obtain the real arrival intervals of packets, the onboard
timestamp of some network cards (for example SysKonnect
GigE NIC (Syskonnect)) should be used. However, the
same study also concludes that this solution is not useful for
general-purpose network measurement tools, because very
few NICs have an onboard timer. Furthermore, using an
onboard NIC timer requires modification of the device
driver. This prevents the tool from being easy to run on
numerous systems. Another study (Prasad et al., 2004)
reports that since the last packet in a burst formed by IC has
the smallest delay in the NIC buffer, the intervals of the last
packets in the bursts can be used for estimation of the
available bandwidth, according to the Pathload (Jain and
Dovrolis, 2002) algorithm. However, because only a small
part of stream is used for the measurement, the stream must
be very long. This is not suitable in inline measurement,
because making long measurement streams in TCP badly
affects the TCP transmission performance.

2.3 Bursty transmission in TCP

The behaviour of TCP when the network cards enable IC
has been investigated in previous studies (Zec et al., 2002;
Prasad et al., 2004), and IC has been shown to be
detrimental to TCP self-clocking. IC causes the ACK
packets to arrive at the sender in bursts, and this bursty
arrival in turn causes bursty transmission of data packets
and, subsequently, bursty transmission of ACK packets
from the TCP receiver. According to one study (Prasad et
al., 2004), with IC, 65% of ACKs arrive with intervals of
less than 1 µs, because they are delivered to the kernel with
a single interrupt. Meanwhile, without IC, almost no ACK
packets arrive with small intervals.

In the present study, we propose an algorithm that can
exploit the burst of data packets in TCP under the effects of
IC to measure the available bandwidth/capacity of the
network path between TCP sender and receiver. The TCP
sender adjusts the number of packets involved in a burst
and checks whether the inter-intervals of the bursts of
corresponding ACK packets are increased or not to
investigate the bandwidth. ICIM can be employed into any
version of TCP. Using previously reported results (Prasad
et al., 2004), ICIM first checks to see if the network card
has IC enabled. If the IC is enabled, ICIM continues
measurement based on the bursty transmission of TCP.

3 ICIM-abw: Interrupt Coalescence-aware Inline
Measurement for available bandwidth

3.1 Packet burst-based available bandwidth
measurement algorithm

The basic idea of measuring bandwidth larger than 1-Gbps
is that, we consider a burst of packets as a big packet.
Two consecutive big packets are then treated as a packet
pair, of which the time interval in large enought so that the

 Inline bandwidth measurement techniques for gigabit networks 5

general purpose OS can read exactly. The measurement
algorithm is described below. Though the algorithm can
work somehow when Delayed ACK in the TCP receiver is
on, we recommend the Delayed ACK is off so that the
algorithm can works properly. Because the absolute timer
(described in Section 2) is the primary source of device
interrupts in the high-speed transmission, we assume that
the NIC uses the absolute timer when receiving packets.

As shown in Figure 2, we consider the situation in
which two bursts of packets are sent at the interval S.
The number of packets in the first burst (Burst 1) is N.
Assume that C is the capacity of the bottleneck link. CCross is
the average transmission rate of cross traffic over the
bottleneck link when the two bursts pass the link, and P is
the packet size. We suppose that CCross is not changed much
by the TCP connection performing inline measurement.
Otherwise, the available bandwidth is not determined; the
measurement becomes meaningless. Then, the amount of
traffic that enters the bottleneck link during the period from
the point at which the first packet of Burst 1 reaches the link
until the point at which the first packet of Burst 2 reaches
the link will be the sum of the packets in Burst 1 and the
cross traffic packets arriving in S, i.e., CCross S + N ⋅ P. If the
amount is larger than the transfer ability of the link during
this period, considered to be C ⋅ S, then Burst 2 will go to
the buffer of the link. This results in a tendency for the
interval between the two bursts to increase after leaving the
bottleneck link.

Figure 2 Packet burst-based available-bandwidth measurement
principle

We can write that the burst interval will be increased if

CrossC S N P C S⋅ + ⋅ > ⋅ (1)

or

Cross .
N P C C

S
⋅ > −

Note that C – CCross is the available bandwidth (A) of the
bottleneck link. Therefore, equation (1) becomes

.N P A
S
⋅ >

Since we assume that the absolute timer is used, S is always
larger than RxAbsIntDelay. Therefore, at the NIC of the
TCP receiver, since the arrival interval of the two bursts are

larger or equal to S, the two bursts are passed to the kernel
in two different interrupts. The TCP receiver then sends the
ACK of the two bursts in the same intervals to the sender
TCP. Thus, by checking the arrival intervals of the
corresponding ACK packets of the two bursts, the TCP
sender can determine if A > NP/S. By sending numerous
bursts with various values of NP/S (by changing N), we can
search for the value of the available bandwidth A. This is the
measurement principle of the proposed inline measurement
mechanism. Note that the bursty transmission in TCP
appears when IC is enables, as mentioned in Section 2.3.
ICIM-abw performing in reasonable measurement intervals
do increase the burstiness but the increase is not effect much
the performance of TCP, as shown in the simulation results
in Section 3.3.

3.2 ICIM-abw

ICIM-abw inherits the concept of the search range
from the measurement algorithm in ImTCP (Man et al.,
2004). This is the idea of limiting the bandwidth
measurement range using statistical information from
previous measurement results rather than searching from
0 bps to the upper limit of the physical bandwidth for every
measurement. By limiting the measurement range, we can
keep the number of probe packets small.

At first, we explain how to search for the available
bandwidth in a determined search range and then we present
an overview of the measurement algorithm. Assume that the
search range for a measurement is (Bl, Bu). The algorithm
then check k values in the range to determine which is
nearest to the real available bandwidth. We use k = 4 in the
following simulations. The k points are:

(1) (1, ,).
1

u l
i l

B B
B B i i k

k
−

= + − =
−

K

The TCP sender then sends k consequence bursts and the
number of packets are adjusted so that the probe rate of
Burst i is Bi:

.i
i

N P B
S
⋅ =

We illustrate the setting in Figure 3.

Figure 3 Probing a search range in ICIM-abw

6 C.L.T. Man et al.

Realisation of equation (2) requires the following:

• The value of Si is required at the timing of the
transmission of Burst i.

Infact, Si is unknown until Burst i + 1 is transmitted.
But we need the value at the timing of the transmission
of Burst i in order to guarantee equation (2).
We therefore estimate the value of Si by assuming
that the amount of data in Burst i is proportional
to the interval as follows:

.i
i

N PS
T
⋅

= (3)

where T is the average throughput of TCP.

• In case the number of packets in Burst i is smaller than
Ni, additional packets must be added to the burst so that
the packet number becomes Ni.

ICIM-abw utilises a buffer located at the bottom
of the TCP layer in order to store the packets
temporarily before sending them to the IP layer,
in the manner of ImTCP. ICIM-abw stores all of the
packets of the burst that preceded Burst 1 in the buffer.
Packets are added to Burst i (i = 1 … k) when
necessary in order to maintain the desired number
of packets (Ni) in these bursts.

ICIM-abw sends k bursts and checks the corresponding
ACK of the bursts. If from burst number j, j = 1 … k,
the arrival interval of the bursts becomes larger,
then Bj is considered to be the value of the available
bandwidth in that measurement. Here, the burst
interval is consider to become larger if the arrival
interval is larger then λ times of the sending
interval. We set λ to 1.01 in the following
simulations.

ICIM-abw first checks whether IC is enabled for the
network card. For the reasons explained in Section 3.1,
ICIM-abw checks the arrival intervals of the ACK packets.
If more than 50% of the intervals are less than 1 µs, then
ICIM-abw decides that IC is enabled. If the IC is enabled,
then ICIM-abw continues the following measurement steps.
Otherwise, the measurement algorithm introduced in
ImTCP is used.

The measurement algorithm of ICIM-abw is as follows:

1 Set the initial search range

We set the initial search range as (T, 2 ⋅ T) where T is
the throughput of TCP.

2 Search for the available bandwidth in the decided
search range.

ICIM-abw waits until the window size (cwnd) is larger
than Cmin (large enough to create bursts for
measurement). We use Cmin = 50 in the following
simulations. Data packets are then sent in order to
search the available bandwidth in the decided search
range, as described above.

3 Add the new measurement result to the database and
calculate the new search range.

The measurement result in the last step is added to a
dabatase of measurement results. We then calculate
the new search range (,)l uB B′ ′ from the database.
We use the 95% confidential interval of the data
stored in the database as the width of the next search
range, and the current available bandwidth is used as
the center of the search range. The search range is
calculated as follows:

max 1.96 ,
10

max 1.96 ,
10

l

u

V RB R
q

V RB R
q

′ = −

′ = +

where R is the latest measurement result. V is the
variance of stored values of the available bandwidth
and q is the number of stored values. R/10 is a value
that ensures that the search range does not become too
small. Moreover, when measurement result in Step 3
falls to Bl (Bu), it is possible to consider that the
network has changed greatly so that the real value of
the available bandwidth is lower (higher) than the
search range. In this case, we discard the accumulated
measurement results because they become unreliable
as statistic data and enlarge the search range
(Bl, Bu) twice towards the lower (higher) direction to
create (,)l uB B′ ′ .

4 Wait for Q seconds then return to Step 2 and start the
next measurement. During the waiting time Q, TCP
transmits packets in the normal manner. The waiting
time is needed for the TCP transmission to return to the
normal state after the packets store-and-forward process
at Step 2.

3.3 Simulation experiment

Measurement results

We show the measurement results for ICIM-abw through
ns-2 (NS homepage) simulations. We implement ICIM-abw
via Reno TCP, the most popular version of TCP, and use the
topology shown in Figure 4 for the simulation.

Figure 4 Simulation topology

 Inline bandwidth measurement techniques for gigabit networks 7

The sender and receiver of TCP are connected through
10-Gbps access links and a bottleneck link. The NICs of
both the sender and receiver host employ IC with an
absolute timer. The cross traffic on the bottleneck link is
made up of UDP flows in which various packet sizes
are used, according to results monitored on the internet
(NLANR Website), as shown in Table 1. The capacity of
the bottleneck link is 5-Gbps, and the available bandwidth
(A-bw) is 2-Gbps (from 0 s to 15 s), 3-Gbps (from 15 s to
35 s) and 4-Gbps (from 35 s to 50 s).

Figure 5(a) and (b) show the measurement results for
ICIM-abw when the interval between two measurements is
set to one RTT or two RTTs, respectively. Also shown are
the search ranges for each measurements. The search
ranges, in most cases, successfully cover the correct value
of the A-bw. Therefore, ICIM-abw can quickly detect the
A-bw, even in such a high-speed network. When Q = 1, the
throughput of TCP oscillates slightly, the estimation
of the burst interval in equation (3) becomes incorrect.
Therefore, the probing rate of each Burst i may not be
exactly equal to Bi (in Step 2 of Section 3.2). This leads to a
large dispersion of the measurement results in Figure 5(a).
When Q = 2, the TCP sender creates fewer packet bursts so
that the measurement results are nearer to the correct value
of the A-bw, as shown in Figure 5(b). However, the
measurement frequency (16.7 results/s) becomes half of that
when Q = 1 (34.2 results/s)

Table 1 Distribution of packet size of cross traffic

Packet size (bytes) Proportion of bandwidth (%)
28 0.08
40 0.51
44 0.22
48 0.24
52 0.45
552 1.10
576 16.40
628 1.50
1420 10.50
1500 37.10
40–80 (range) 4.60
80–576 (range) 9.60
576–1500 (range) 17.70

Comparison with IC-aware Pathload

We compare ICIM-abw with the only measurement tool we
have found that can work in Gbps network. That is a version
of Pathload that can detect and filter the effects of IC
(Prasad et al., 2004). We call this version IC-aware
Pathload. For the comparison between ICIM-abw and
Pathload, the TCP sender and receivers are next replaced by
the sender and receiver of Pathload. To make the
measurement of Pathload faster, we set the starting probing
rate to 200 Mbps (instead of the default setting of 1 Mbps).
In addition, ω and χ are set to 200 Mbps and 150 Mbps,

respectively, and the size of probing packets is set to
1,500 bytes.

Figure 5 Measurement results for ICIM (a) measuring intervals
Q = 1 RTT and (b) Q = 2 RTTs

(a)

(b)

The measurement results of IC-aware Pathload when the
number of packets in a stream K is set to 160 are shown in
Figure 6(a). Because the default value of RxAbsIntDelay
used in NIC is 0.000132 (s) and the packet size is
1,500 bytes, the average number of packets in a burst is 22
when the A-bw is 2-Gbps, 33 when the A-bw is 3-Gbps and
44 when the A-bw is 44-Gbps. Therefore, when K = 160,
there are approximately nine bursts in each stream when the
A-bw is 2-Gbps. This means that Pathload has
approximately nine packets (the last packet in the bursts) for
measurement. The increasing trend in the stream in this case
can be well determined so Pathload can deliver good
measurement results. However, when the A-bw becomes
3-Gbps or greater, the number of bursts becomes
approximately six or fewer. Then, Pathload does not have
enough packets to detect well the increasing trend in the
stream. Therefore, as shown in Figure 6(a), Pathload fails to
deliver good measurement results when the bandwidth is
equal to or greater than 3-Gbps.

Figure 6(b) shows the measurement results of Pathload
when K is set to 200. In this case, Pathload has a sufficient
number of packets for detecting the increasing trend of
streams. Therefore, the measurement results are correct.
However, since Pathload searches for the A-bw from a low
value, a long time is required to yield one result.

8 C.L.T. Man et al.

The measurement frequency is only 0.28 results/s, which is
60 times smaller than that of ICIM-abw (with Q = 2 RTTs).

Figure 6 Measurement results for IC-aware Pathload (a)
number of packets in a stream K = 160 packets
(b) K = 200 packets

(a)

Figure 6 Measurement results for IC-aware Pathload (a)
number of packets in a stream K = 160 packets
(b) K = 200 packets (continued)

(b)

Figure 6(b) shows that, if the A-bw changes during a
measurement, Pathload may not detect the change well.
At 15 s, the A-bw changes from 2-Gbps to 3-Gbps while
Pathload is probing a rate smaller than 2-Gbps. When the
probing rate reaches 2-Gbps, the A-bw is already changed,
therefore Pathload can successfully detect the value of
3-Gbps. However, at 35 s, the probing rate of the ongoing
measurement reaches 3-Gbps before the change in the
A-bw from 3-Gbps to 4-Gbps, so Pathload assumes that the
A-bw is smaller than or equal to 3-Gbps. Therefore,
Pathload delivers a value of approximately 3-Gbps at the
end of that measurement, which is far from the value of the
A-bw at this timing.

Table 2 compares the number of packets used in the
measurement of ICIM, and Pathload. ICIM-abw sends four
bursts of packets for each measurement. The average
number of total packets in four bursts are shown
in the second column of the table. On the other hand,
Pathload probes 8, 9 and 10 times for one measurement
result when the A-bw is 2, 3 and 4-Gbps, respectively.
Each probe requires 12 streams, the number of packets of

which is 200. We can see that the number of packets
used by ICIM-abw is less than 1% of that of Pathload.

Table 2 Number of packets required for a measurement

A-bw ICIM-abw IC-aware Pathload

2-Gbps 110 200 × 12 × 8 = 19,200

3-Gbps 130 200 × 12 × 9 = 21,600

4-Gbps 154 200 × 12 × 10 = 24,000

Figures 5 and 6 show that the measurement results of
ICIM-abw have a larger dispersion compared to Pathload
because, based on the nature of the algorithm, ICIM-abw
cannot increase the length of each measurement burst to
obtain high accuracy, as Pathload does. Instead, the
accuracy can be improved by taking the exponential moving
average in suitable intervals.

Measurement results in web traffic environment

We next investigate the measurement results for ICIM-abw
in the network model depicted in Figure 4. Cross traffic is
now changed to Web traffic involving a large number of
active Web document accesses. We use a Pareto distribution
for the Web object size distribution with 1.2 as the Pareto
shape parameter and 12 KBytes as the average object size.
The number of objects in a web page is 20. The capacity of
the bottleneck link is set to 1-Gbps. The access links are
also set to 1-Gbps.

The available bandwidth is calculated as the capacity of
the bottleneck link minuses the total amount of web traffic
passing the link. Figure 7(a) shows the changes of available
bandwidth and the average measurement results for each
second. ICIM-abw underestimates the available bandwidth a
little because the cross traffic, composed of so many
connections, arrives at the bottleneck link in a bursty
fashion. The burst of cross traffic may enlarge the intervals
of the measurement bursts of ICIM-abw even when the
probing rate is still lower than the average available
bandwidth. However, the measurement results deviate only
a litle from the correct values and in general they can follow
the changes of available bandwidth.

Figure 7(b) shows the measurement results for IC-aware
Pathload in the same environment. We set K to 160
and the starting probing rate to 100 Mbps and ω and χ are
both set to 50 Mbps. Overall, the results have a trend of
over-estimation. We think that the problem can be solved
if we adjust the PCT/PDT thresholds of Pathload
appropriately, instead of using the default values.
Figure 7(c) shows the measurement of normal Pathload.
Because the probe packets are grouped at the NIC, the
increasing trend in the measurement streams becomes
difficult to discover. Therefore, Pathload overestimates in
most of the time. This frequent overestimation of bandwidth
may lead to more aggressive systems. A conservative
system caused by frequent underestimation of ICIM-abw
will give less effect to the others sharing the same network
environment.

 Inline bandwidth measurement techniques for gigabit networks 9

Figure 7 Measurement results in Web traffic environment (a)
average measurement results of ICIM-abw for each
second; (b) measurement results for IC-aware Pathload.
K = 160 and (c) measurement results for normal
Pathload. K = 200

(a)

(b)

(c)

TCP compatibility

We finally examine the data transmission performance of
Reno TCP when it employs ICIM-abw. We perform a
simulation where a number of Reno TCP connections
that have ICIM-abw conflict with the same number
of Reno TCP connections that do not have ICIM-abw
through a 1-Gbps bottleneck link, as shown in Figure 8.
All the connections have the same RTT (0.018 s)
and the same access link’s bandwidth (10-Gbps).
The number of connections is set to 4, 8 and 12. For each
value of connection numbers, simulation is repeated ten
times, and the throughputs of the TCP connections that have

and do not have ICIM-abw (and the ratio of thereof) are
calculated and compared.

Table 3 shows the results when Q of ICIM-abw is set to
1 RTT and 2 RTTs and when ICIM-abw does not perform.
In case ICIM-abw performs measurement in every RTT, the
TCP achieves lower throughput than TCP that does not
perform ICIM-abw when conflicts occur because ICIM-abw
has to delay several data packets for measurement in this
case. As shown in Table 3, the ratio of throughput between
TCP with ICIM-abw compared to RenoTCP is always
less than 1. When the number of connections increases, the
ratio is lower because conflicts between TCP connections
are more intense. If ICIM-abw takes a lower measurement
frequency, for example, when Q = 2 RTTs, then the TCP
connections performing ICIM-abw can obtain the same
throughput as normal Reno TCP, as shown in the third
column of the table. We also disable ICIM-bw in all the
TCP connections and show the throughput in this case in the
fourth column of the table. We can see that that total
throughput of TCP connection without ICIM-bw is almost
the same of that when ICIM-abw with Q = 2RTT is enabled.
This means that ICIM-abw with reasonable measurement
intervals does not effect the TCP connection performance.

Figure 8 Simulation topology for examining TCP compatibility

Table 3 Throughput (MBPs) of reno TCP using ICIM: normal
Reno TCP (ratio)

#con. Q = 1 RTT Q = 2 RTTs No measurement

4 466.4 : 490.6
(0.95 : 1)

483.7 : 475.6
(1.01 : 1)

489.5 : 478.9
(1.02 : 1)

8 451.1 : 544.4
(0.82 : 1)

505.1 : 490.5
(1.02 : 1)

510.7 : 485.9
(1.05 : 1)

12 418.7 : 577.7
(0.72 : 1)

503.5 : 493.2
(1.02 : 1)

503.1 : 493.3
(1.02 : 1)

4 ICIM-cap: Interrupt Coalescence-aware Inline
Measurement for capacity

In this section, we focus on measuring the
bandwidth-related metric: the end-to-end capacity of a
network path. Together with the available bandwidth,
capacity information is important for adaptive control in a
transport protocol.

10 C.L.T. Man et al.

4.1 Existing capacity measurement technique and
their problems

Many measurement techniques have been proposed for
capacity measurement, such as Bprobe (Carter and Crovella,
1996), Pathrate (Dovrolis et al., 2004), CapProbe (Kapoor
et al., 2004). All of these techniques utilise packet pairs for
measurement. However, because packets transmitting
back-to-back are always grouped at the NIC under the effect
of IC, the receiver cannot read the correct inter-arrival
intervals of the packets. Thus, the packet pair-based
techniques fail to perform the measurement when IC is
enabled.

The first algorithm that can work in an IC environment
is an enhanced version of Pathrate, suggested by Prasad
et al. (2004). The work of the algorithm is as follows.

The sender sends a measurement train (a group of
packets) that is long enough that at least two bursts are
observed in the received train. Then the number of the
packets in the first burst (N) is used for the calculation of
capacity:

.iN PC
L
⋅

=

where L is the inter-arrival interval of the first and second
burst (see the upper part of Figure 9).

Figure 9 Enhanced pathrate algorithm

However, the approach can work only when there
is no cross traffic in the network path. If cross traffic
exists, the cross traffic may cut into the measurement
burst so that the number of packets received in the first
interrupt may not reflect the value of the capacity correctly
(See the lower part of Figure 9). This means the approach
will not work well when the traffic load on the network is
high.

4.2 ICIM-cap

We propose a burst-based capacity measurement algorithm
that can overcome the problems mentioned above. The main
concept of the proposed algorithm is that the available
bandwidth information, which can be yielded periodically
due to ICIM-abw (introduced in the last section), is
exploited. The available bandwidth information is used to
estimate the quantity of cross traffic that cuts into the first
burst. In Figure 10, the top packets of the bursts are drawn
in black. The sending interval of the two packets is d.
The amount of traffic that arrives at the bottleneck link
between the arrivals of the two packets is as follows:

CrossC L N P d C⋅ = ⋅ + ⋅

where CCross is the average arrival rate of the cross traffic at
the bottleneck link. Existing capacity measurement
algorithms do not know the amount of CCross, so they cannot
find the exact value of C in the case shown in the lower part

of Figure 9. To the contrary, ICIM-cap can know the CCross,
so it can perform well in such a case. That is the biggest
feature of this algorithm.

Figure 10 ICIM-cap algorithm

If we suppose that the bottleneck link, which has the
smallest capacity, is identical to the tight link, which has the
smallest available bandwidth, we can write:

Cross .C A C+ =

We can then calculate the capacity as follows:

.N P d AC
L d

⋅ − ⋅=
−

 (4)

4.3 Applying ICIM-cap measurement algorithm
into TCP

The TCP sender sends the bursts for ICIM-abw alternately
with the bursts for ICIM-cap. The newest result of
ICIM-abw is used for the next measurement of ICIM-cap.

 Inline bandwidth measurement techniques for gigabit networks 11

The length of the burst of ICIM-cap must be decided
properly. It must be long enough that it can arrive in two
interrupts. However, if it is too long, the TCP transmission
will be adversely affected. We, therefore, propose a
dynamic setting for the length, as follows:

• Quickly determine the initiative value.

During the starting phase of the TCP connection,
the TCP sender observes the length of the burst of
packets and records the length of the longest one (G).
The longest value is near the maximum number of
packets that can be grouped in the same interrupt.
So, we set the initial length of the measurement burst
L to 1.5 ⋅ G in order to be sure that the burst can be
divided into two small bursts at the receiver.

• Adapt the length dynamically to the changes of the
environment.

If L is too short, which can be noticed when the
measurement burst is not divided into multiple
bursts at the receiver, then the sender doubles the
length. If L is too long, which can be noticed when
the measurement burst is divided into more than two
bursts, the sender sets the length to 1.5 ⋅ B, where B is
the number of packets passed to the receiver in the
first burst.

4.4 Simulation experiment

Through simulation validations, we show that ICIM-cap can
deliver capacity measurement results quickly and correctly.
Especially, it can deliver good results in extremely
high-load networks, where current measurement algorithms
such as (enhanced) Pathrate do not work well.

We repeat the simulation using the topology shown in
Figure 4. This time, the TCP sender performs both
ICIM-abw and ICIM-cap. For comparison, we also
show the measurement results when we replace the
ICIM-cap measurement algorithm by enhanced Pathrate.
The measurement results are shown in Figures 11(a)
and (b). In these figures, the measurement results of
ICIM-abw are almost the same as those in Figure 5.
Figure 11(a) shows the measurement results of enhanced
Pathrate. As we can see, when the traffic load on the
bottleneck link is heavy (when the available bandwidth is
2-Gbps while the capacity is 5-Gbps), Pathrate
underestimates the capacity. On the other hand, as shown in
Figure 11(b), ICIM-cap can deliver good measurement
results regardless of the load on the network.

4.5 Discussion

ICIM-cap relies on the supposition that the bottleneck link
and tight link are identical. In this session, we discuss the
errors in the measurement results of ICIM-cap when the
above supposition is incorrect.

Figure 11 Measurement results for IC-aware Pathload and
ICIM-cap (a) measurement results for enhanced
Pathload and (b) measurement results for ICIM-cap

(a)

(b)

The case when the tight link is the upper link of the
bottleneck link

Figure 12 shows the case when the tight link is the upper
link of the bottleneck link. In this case, we suppose that
traffic on another link does not affect much of the probe
traffic. Moreover, the effect from the cross traffic on the
bottleneck link is small. When the supposed condition is not
true, the curve showing the relation between Rin, Rout will be
more complex, but the tendency in general is unchanged.

Figure 12 The case when the tight link is the upper link of the
bottleneck link

12 C.L.T. Man et al.

Rin, Rout are the sending rate and arrival rate, respectively, of
the probe traffic. From equation (4), we can write:

Cross
/ .
/

NP L NPC C
NP d d

 = +

Because NP/L = Rin, NP/d = Rout, we can rewrite this using
Rin and Rout as follows:

Cross out
out

().inRC C R
R

= +

We call Cout the result of the above calculation. Cout is the
measurement result given by ICIM-cap. In this case, we
examine the relation between Cout and the real capacity
value (C0) as well as the capacity of the tight link (C1).

Figure 12 shows the changes of Rout when Rout increases.
When Rin is smaller than the available bandwidth (A), Rout
increases in proportion to Rin. When Rin reaches
A (but is still smaller than (C0⋅CCross)/(C1 – C0), the probe
traffic starts to conflict with the cross traffic, and the
increasing trend of Rout becomes slower. When Rin becomes
larger than (C0⋅CCross)/(C1 – C0), Rout does not change
regardless of the value of Rin. That happens because Rout is
limited by the bottleneck link C0 in this case. We summarise
the results as follows:

• When A < Rin < (C0⋅CCross)/(C1 – C0), the measurement
result of ICIM-cap Cout will be: C0 ≤ Cout ≤ C1

• When Rin ≤ (C0⋅CCross)/(C1 – C0), we also have
C0 ≤ Cout ≤ C1.

The case when the bottleneck link is the upper link of the
tight link

If the tight link is the upper link of the bottleneck link, with
the same observations as the above case, we can go to the
following results (Figure 13).

• When A < Rin < C0, the result of ICIM-cap Cout is equal
to C1 (Cout = C1)

• When C0 ≤ Rin, the result of ICIM-cap Cout is included
in the range: Rout ≤ Cout ≤ C1.

Figure 13 The case when the bottleneck link is the upper link of
the tight link

4.6 Interpretation of the results

When a tight link and bottleneck link are not identical,
ICIM-cap’s measurement result can overestimate, but
the measurement never gets higher than the capacity
of the tight link. In fact, a link with a large capacity
does not often become a tight link, so the overestimation
will not be very large. The measurement results can
be an underestimation, however, the result is never
smaller than Rout, which is the measurement result of
enhanced Pathrate. Thus, the measurement results for
ICIM-cap may not be correct when the supposition of
the tight link and bottleneck link is not true, but the error
is not large.

5 Experiment in a real environment

In this section, we present the experiment result in a real
environment to validate the burst-based measurement
algorithm. We implement the basic algorithm, ICIM-abw,
in a FreeBSD system and use the simple network
shown in Figure 14 to examine whether the algorithm
works well. This network consists of two switches
equipped with 1-Gbps Ethernet ports; all links are 1-Gbps.
Table 4 shows the specifications of the PCs. The cross
traffic is made up of UDP traffic sent by Iperf. One TCP
connection is established between the sender and the
receiver. In the TCP sender program, the ICIM-abw
program is implemented. In this case, the link
connecting the two switches becomes the bottleneck
link. We control the Iperf flows so that the available
bandwidth on the bottleneck link is 600 Mbps from 0 s
to 50 s, 300 Mbps from 50 s to 100 s and 500 Mbps from
100 s to 150 s. Both NICs of the sender and the receiver
enable IC; the RxAbsIntDelay parameter of IC is set to
0.1312 ms.

Figure 14 Network topology

Table 4 Specifications of the PCs in the experiment

 Sender Receiver

CPU Intel P4 3.0 GHz Intel P4 3.4 GHz
Mem. 1,024 MB 1,024 MB
OS Free BSD 4.10 FedoraCore 4
NIC Int. PRO/1000 Adapter Int. PRO/1000 Adapter

 Inline bandwidth measurement techniques for gigabit networks 13

In Figure 15, we plot the correct values of the available
bandwidth. The measurement results for ICIM-abw and the
search ranges are shown in the same figure. We can see that
ICIM-abw can suitably measure the available bandwidth in
this experimental network. Moreover, the measurement
accuracy is as high as the evaluation of the simulation
experiments in Section 3. As future studies, we will perform
an experiment on ICIM algorithms in a large-scale network
as well as on the internet.

Figure 15 Changes of the available bandwidth and the
measurement results

6 Conclusion and future studies

In the present paper, we introduced ICIM-abw and
ICIM-cap the methods that can measure the available
bandwidth and capacity on a 1-Gbps or higher network path.
The proposed measurement algorithms do not require
regulation of packet transmission intervals and work well
with IC. The simulation experiments showed that the
proposed measurement algorithm works well in networks as
high or higher than 1-Gbps.

At present, we are evaluating the performance of ICIM
in a real internet environment. We are also testing the
performance of the congestion control mechanism proposed
by Hasegawa and Murata (2006) when ICIM is used for
bandwidth estimation, in the real network environments.

References
Carter, R. and Crovella, M. (1996) Measuring Bottleneck Link

Speed in Packet-Switched Networks, Technical Report,
TR-96-006, March, Computer Science Department, Boston
University, Boston.

Dovrolis, C., Ramanathan, P. and Moore, D. (2004)
‘Packet dispersion techniques and a capacity-estimation
methodology’, IEEE/ACM Transactions on Networking,
Vol. 12, No. 6, pp.963–977.

Floyd, S. (2003) Highspeed TCP for Large Congestion Windows,
RFC 3649, December, Available at ftp://ftp.rfc-editor.org/in-
notes/rfc3649.txt

Hasegawa, G. and Murata, M. (2006) ‘TCP symbiosis: congestion
control mechanisms of TCP based on Lotka-Volterra
competition model’, Proceedings of Workshop on
Interdisciplinary Systems Approach in Performance
Evaluation and Design of Computer and Communications
Systems (Inter-Perf. 2006), October, Pisa, Italy.

Hu, N. and Steenkiste, P. (2003) ‘Evaluation and characterization
of available bandwidth probing techniques’, IEEE Journal on
Selected Areas in Communications, Vol. 21, No. 6, August,
pp.879–894.

Intel (2003) Interrupt moderation using Intel Gigabit Ethernet
Controllers, Available at http://www.intel.com/design/
network/applnots/ap450.pdf

Jain, M. and Dovrolis, C. (2002) ‘End-to-end available bandwidth:
measurement methodology, dynamics, and relation with TCP
throughput’, Proceedings of ACM SIGCOMM 2002, August,
Pittsburgh, PA, USA.

Jin, C., Wei, D. and Low, S. (2004) ‘FAST TCP: motivation,
architecture, algorithms, performance’, Proceedings of
INFOCOM 2004, March, HongKong.

Jin, G. and Tierney, B. (2003) ‘System capability effect
on algorithms for network bandwidth measurement’,
Proceedings of Internet Measurement Conference 2003,
October, Florida, USA.

Kapoor, R., Chen, L., Lao, L., Gerla, M. and Sanadidi, M. (2004)
‘CapProbe: a simple and accurate capacity estimation
technique’, Proceedings of ACM SIGCOMM 2004, August,
Philadelphia, USA.

Kelly, T. and Ott, T. (2002) ‘Performance sensitivity and fairness
of ECN-aware modified TCP’, Proceedings of Second
International IFIP-TC6 Networking Conference, May, Pisa,
Italy.

Man, C., Hasegawa, G. and Murata, M. (2004) ‘Available
bandwidth measurement via TCP connection’, Proceedings of
the 2nd Workshop on End-to-End Monitoring Techniques and
Services E2EMON, October, San Diego, CA, USA.

Marcondes, C., Persson, A., Sanadidi, M., Gerla, M.,
Shimonishi, H., Hama, T. and Murase, T. (2006) ‘Inline path
characteristic estimation to improve TCP performance in high
bandwidth-delay networks’, Proceedings of the International
Workshop on Protocols for Fast Long-Distance Networks,
February, Nara, Japan.

Prasad, R., Jain, M. and Dovrolis, C. (2004) ‘Effects of interrupt
coalescence on network measurements’, Proceedings of the
5th Passive and Active Measurement Workshop (PAM 2004),
April, Antibes Juan-les-Pins, France.

Ribeiro, V., Riedi, R., Baraniuk, R., Navratil, J. and Cottrell, L.
(2003) ‘PathChirp: efficient available bandwidth estimation
for network paths’, Proceedings of the 4th Passive and Active
Measurement Workshop (PAM 2003), April, San Diego, CA,
USA.

Strauss, J., Katabi, D. and Kaashoek, F. (2003) ‘A measurement
study of available bandwidth estimation tools’, Proceedings
of Internet Measurement Conference 2003, October, Miami,
Florida, USA.

Syskonnect (2003) SK-NET GE Gigabit Ethernet Server
Adapter, Available at http://www.syskonnect.com/
syskonnect/technology/SK-NET_GE.PDF

Tsugawa, T., Hasegawa, G. and Murata, M. (2006) ‘Background
TCP data transfer with inline network measurement’, IEICE
Transactions on Communications, Vol. E89-B, No. 8, August,
pp.2152–2160.

Xu, L., Harfoush, K., and Rhee, I. (2004) ‘Binary increase
congestion control for fast long-distance networks’,
Proceedings of INFOCOM 2004, March, HongKong.

Zec, M., Mikuc, M. and Zagar, M. (2002) ‘Estimating the impact
of interrupt coalescing delays on steady state TCP’,
Proceedings of the 10th SoftCOM Conference, October,
Dalmacija, Italy.

14 C.L.T. Man et al.

Websites
Intel(R) PRO/1000 Adapter. README file. available at

http://support.intel.co.jp/jp/support/network/adapter/1000/linu
x_readme%.htm

Iperf. available at http://dast.nlanr.net/Projects/Iperf/
NLANR Web site. available at http://moat.nlanr.net/Datacube/
NS homepage. available at http://www.isi.edu/nsnam/ns/

Appendix: List of acronyms

ImTCP Inline measurement TCP
IC Interrupt Coalescence
ICIM Interrupt Coalescence-aware Inline Measurement
ICIM-abw Interrupt Coalescence-aware Inline Measurement

for available bandwidth
ICIM-cap Interrupt Coalescence-aware Inline Measurement

for capacity

