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1 Introduction 

Current efforts to improve TCP performance over  
high-speed networks can be divided into two main 
approaches. The first one changes the Additive-Increase-
Multiplicative-Decrease (AIMD) congestion control of 
Reno TCP toward a faster increase of window size  
when there is no congestion and a smaller decrease when 
packet loss occurs. The representatives of this approach are 
High-Speed TCP (Floyd, 2003), Scalable TCP (Kelly and 
Ott, 2002) and Binary Increase Congestion (BIC) TCP  
(Xu et al., 2004). They can perform better than 
Reno/NewReno TCP in high-speed networks. However, 
these TCP versions do not have optimal speed for increasing 
the window size for all network environments because they 
still rely on network feedback, that is, a packet loss event, 
for adjustment of the speed. The packet loss event requires 
TCP to retransmit a certain amount of data, which can be 
large in high-speed networks. Therefore, these TCP variants 
cannot fully utilise the bandwidth of a network path.  
The second approach tries to avoid packet loss by deploying 
a delay-based congestion control mechanism. This approach 
uses queuing delay as a multi-bit congestion signal.  
The representative of this approach is FAST TCP (Jin et al., 
2004). The difficulty with this approach is matching the 
delay with the congestion signal because the relation is 
affected by the capacity of the network path. A mismatch 
may cause oscillation of the congestion window size, 
leading to serious performance degradation.  

The effective way for transport protocols to achieve the 
desired throughput on a high-bandwidth and long-delay  
network path is to observe the available bandwidth/capacity 
of an end-to-end network and adapt accordingly.  
Active measurement of the available bandwidth/capacity  
of an end-to-end network path has been vigorously 
investigated (Jain and Dovrolis, 2002; Hu and Steenkiste, 
2003; Strauss et al., 2003; Ribeiro et al., 2003; Kapoor  
et al., 2004). Compared with passive measurement, active 
measurement can deliver faster and more accurate  
results because the network can be investigated in  
detail using probe traffic. However, the sending of probe 
traffic is a drawback of active measurement. According to 
Strauss et al. (2003), Pathload (Jain and Dovrolis, 2002) 
generated between 2.5 MB to 10 MB of probe traffic per 
measurement. Newer tools have succeeded in reducing the 
amount of probe traffic. The average per-measurement 
probe traffic generated by IGI (Hu and Steenkiste, 2003) is 
130 KB and that generated by Spruce (Strauss et al., 2003) 
is 300 KB. Although a few KB of probe traffic for a  
single measurement is a negligible load on the network,  
for routing in overlay networks, or adaptive control in 
transmission protocols, these measurements may be 
repeated continuously and simultaneously from numerous 
network nodes and end hosts. In such cases, probe traffic of 
a few KB per measurement will generate a large amount of 
traffic that may interfere with data transmission in the 
network, as well as degrading the measurement itself.  

We have proposed an active measurement method that 
overcomes the problem mentioned above (Man et al., 2004). 

We proposed the concept of inline measurement, that is, the 
idea of ‘plugging’ the active measurement mechanism into 
an active TCP connection. This method has the advantage of 
requiring no extra traffic to be sent on the network, and 
provides fast and accurate measurement. When the sender 
transmits data packets, TCP adjusts the transmission rate of 
some packets, and considering arrival intervals of the 
corresponding ACK packets, the TCP sender estimates the 
available bandwidth/capacity of the network path between 
the sender an the receiver of the TCP connection.  

Inline measurement results enable TCP to optimise its 
bandwidth utilisation. Our research group has previously 
proposed a congestion control mechanism based on a 
logistic equation and a Lotka-Volterra competition model 
(Hasegawa and Murata, 2006), by which TCP can fully 
utilise the bandwidth when the available bandwidth and 
capacity of the network path are provided. We have also 
proposed a new TCP version that sets the upper limit of the  
congestion window based on the results of the inline 
network measurement (Tsugawa et al., 2006). In this case, 
TCP can provide background data transfer without affecting 
the foreground traffic, whereas previous methods cannot 
avoid network congestion essentially. Another study 
(Marcondes et al., 2006) shows the performance of TCP by 
using the capacity information for congestion control in the 
Internet. The performance of the TCP proposed by 
Marcondes et al. (2006) is much better than that of Reno 
TCP, while the fairness with Reno TCP is still maintained. 
Besides its use as a part of congestion control mechanism, 
inline measurement can be used in many other caces, such 
as for routing or server selection in grid or overlay 
networks. 

In this study, we focus on the problem: Can TCP  
still perform inline measurement in Gbps-level bandwidth?  
The problem arises because even stand-alone active 
measurement tools such as Pathload and CapProbe still 
cannot work well in a Gbps network for two reasons.  
First, measurement in fast networks requires short 
transmission intervals of the probe packets (for example, 
12 µs for a 1-Gbps link and 1500-byte packet). However, 
regulating such short intervals causes a heavy CPU load. 
Second, network cards for high-speed networks usually 
employ IC (Intel, 2003; Syskonnect, 2003), which 
rearranges the arrival intervals of packets and causes bursty 
transmission, and, therefore, algorithms utilising packet 
arrival intervals do not work properly. 

We introduce a new inline measurement mechanism  
that works well in high-speed networks. We call this 
Interrupt Coalescence-aware Inline Measurement (ICIM). 
Unlike other active measurement tools which observe the 
inter-intervals of the packets, ICIM adjusts the number of 
packets that are transmitted in a burst caused by IC and 
estimates the capacity and available bandwidth by checking 
whether the inter-intervals of the bursts of corresponding 
ACK packets are increased or not as they pass through the 
network. ICIM does not set the sending interval of the 
packets, so the overhead for packet spacing at the sender is 
eliminated. 
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The contributions of this study are as follows. 

• We propose Interrupt Coalescence-aware Inline 
Measurement for available bandwidth (ICIM-abw),  
an inline measurement algorithm for available 
bandwidth that works in a gigabit network. 

• We validate the measurement results of ICIM-abw in 
many simulation scenarios. The results show that the 
algorithm works well in a 1-Gbps and faster network. 

• We introduce Interrupt Coalescence-aware Inline 
Measurement for capacity (ICIM-cap), an algorithm  
for inline measurement of the capacity in a gigabit 
network. Unlike current measurement algorithms, the 
ICIM-cap algorithm works well in extremely high-load 
networks. However, the algorithm can work well only 
when the tight link of the path, which has the smallest 
available bandwidth, is identical to the bottleneck link, 
which has the smallest capacity. We then discuss the 
range of errors if this supposition is not true, and show 
that the range of errors is small. 

• We implement ICIM-abw in the FreeBSD system  
to test its performance in a laboratory environment.  
The measurement results show that ICIM-abw can 
work well in a real system. 

The remainder of this paper is organised as follows.  
In Section 2, we discuss the problems of bandwidth 
measurement in high-speed networks and look at a number 
of related studies. In Section 3, we introduce ICIM-abw and 
explain how to realise it in Reno TCP. We then evaluate the 
performance of Reno TCP that is utilising ICIM-abw.  
In Section 4, we introduce ICIM-cap and discuss the range 
of errors that may occur with this algorithm. In Section 5, 
we validate the performance of ICIM-abw in a real 
environment. Finally, in Section 6, we present concluding 
remarks and discuss future projects. 

2 Bandwidth measurement in high-speed 
networks 

In this section, we discuss some of the difficulties 
encountered by existing active available bandwidth/capacity 
measurement tools in high-speed networks (1-Gbps or 
higher). We assume that the machines that run the 
measurement tools are general purpose machines, for 
example, a x86-based CPU machine with a normal OS,  
such as 4.4 BSD or Gnu/Linux (or similar). The problems 
mentioned here may not occur in high-performance 
machines that are designed especially for network 
bandwidth measurement. 

2.1 Limitation of packet pacing in general-purpose 
machines 

In current active measurement tools, probe packets must be 
sent at a rate higher than the bandwidth of the network path, 
otherwise the packet space will not be expanded and the 

tools will not be able to determine the bandwidth. When the 
bandwidth reaches 1-Gbps or higher, the transmission 
intervals of the probe packets must be 12 µs (for measuring 
1-Gbps bandwidth) or smaller. As we discuss below, for  
a general-purpose machine, sending packets in such small 
intervals causes high CPU overhead. 

For pacing packets, there are two approaches. The first 
is to continuously check the hardware clock (for example, 
using gettimeofday()in UNIX systems) and send the 
packets when the clock reaches a determined timing.  
In a Linux system with an x86-based CPU, one access of the 
hardware clock requires approximately 1.9 µs (in the 
FreeBSD system, one access requires 9 µs) (Jin and 
Tierney, 2003). The write() system call requires an 
average of 2 µs (in the case of a Pentium III CPU). 
Therefore, a Linux system can only send packets in intervals 
greater than 2 + 1.9 = 3.9 µs. This means that, the system 
can measure the bandwidth up to 3-Gbps (for the case in 
which the probe packet size is 1,500 bytes). However, in 
order to send packets at 3-Gbps, the CPU has to spend  
most of the time checking the hardware clock overhead.  
If the measurement is repeated continuously, then the  
CPU will not be able to process tasks from other 
applications. The system performance then will be 
deteriorated. Thus, checking the hardware clock to send 
packets in a high-speed network is not a good approach. 

The second approach is to register the packet sending 
program to an Interrupt Service Routine (ISR) of the 
hardware clock interrupt. In a general-purpose UNIX OS, 
the ISR hardclock() is provided for this purpose.  
In 4.4BSD OS and 2.4 LINUX kernel, the hardclock() 
system call is called by the interrupt of hardware clock 
every 0.01 s. In the 2.6 LINUX kernel, it is called every 
0.001 s. However, with this low interrupt frequency, the 
program called by hardclock() can only send packets at 
the rate of up to 12 Mbps (assuming that the packet size is 
1,500 bytes). To obtain a higher interrupt frequency, a new 
interrupt schedule of the hardware clock can be 
implemented. However, one hardware interrupt (in 4.4 BSD 
OS) normally requires more than 1 µs (Zec et al., 2002).  
If the packet transmission rate is 1-Gbps, then the sending 
interval is 12 µs This means that, in this case, the overhead 
of the hardware interrupt is as high as 1/12 of the total 
working time of the CPU. In addition, a new interrupt 
schedule for the hardware clock requires many changes in 
the OS. 

2.2 Effects of Interrupt Coalescence (IC) 

Another reason for the difficulty in the task of measurement 
in high-speed networks is IC, which is deployed in most 
high-bandwidth NICs. IC is a technique in which NICs 
group multiple packets that arrive in a short time interval 
and pass them to the OS in a single interrupt. IC reduces the 
CPU overhead when the arrival intervals of packets become 
small. Because the inter-arrival intervals of the packets 
observed by the kernel are changed, IC has an enormous 
impact on bandwidth measurement tools, in which the 
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arrival intervals of packets are utilised for bandwidth 
estimation. 

There are a number of types of timer setting in IC.  
For example, Intel Gigabit Ethernet Controllers (Intel) 
contains the following mechanisms for IC: 

• absolute timer: the absolute timer delays the assertion 
of an interrupt to allow the controller to collect 
additional interrupt events before delivering them to 
software 

• packet timer: the packet timers are inactivity timers, 
triggering interrupts when the link has been idle for an 
appropriately long interval 

• master timer for throttling all interrupt sources: an 
interrupt throttling mechanism is used to set an upper 
bound for the interrupt rate. 

Under sustained loads, the absolute timers will be the 
primary source of device interrupts (Intel). We investigate 
the absolute timers in greater detail. There are two absolute 
timers. One is for transmit interrupts, and the other is for 
receive interrupts. Because transmit interrupts only inform 
the kernel as to the completion of packet sending, delays in 
transmit interrupts do not affect the real transmission 
intervals of the packets. In contrast, delays in receive 
interrupts change the intervals of all receiving packets 
observed by the kernel. As shown in Figure 1, the receive 
absolute timer starts to count down upon receipt of the first 
packet. Subsequent packets do not alter the countdown. 
Once the timer reaches zero, the controllers generate an 
interrupt to pass all of the packets to the OS in a bursty 
manner. The length of the timer is decided by the parameter 
RxAbsIntDelay, which is defaulted to 0.1312 ms in Intel 
Gigabit Ethernet Controllers (Intel(R) PRO/1000 Adapter. 
README file). Thus, all packets that have time intervals 
smaller than RxAbsIntDelay will belong either to the same 
burst, in which case the time interval between the packets 
becomes zero, or to two successive bursts, in which case the 
time interval becomes RxAbsIntDelay or larger. Therefore, 
the software cannot detect packet intervals smaller than 
RxAbsIntDelay. With the default value of 0.1312 ms for 
RxAbsIntDelay, the software cannot perceive transmission 
rates larger than 100 Mbps (if the packet size is 
1,500 bytes). 

Figure 1 Receive absolute timer 

 

Without IC, an OS interrupt occurs whenever a single 
packet arrives; this leads to a high CPU overhead when the 
system performs high-speed data transmission. Therefore, 
we should not disable IC feature for the purpose of 
measurement. There are some studies that have discussed 

measuring bandwidth using the existing IC. For example, 
one study (Jin and Tierney, 2003) suggests that in order to 
obtain the real arrival intervals of packets, the onboard 
timestamp of some network cards (for example SysKonnect 
GigE NIC (Syskonnect)) should be used. However, the 
same study also concludes that this solution is not useful for 
general-purpose network measurement tools, because very 
few NICs have an onboard timer. Furthermore, using an 
onboard NIC timer requires modification of the device 
driver. This prevents the tool from being easy to run on 
numerous systems. Another study (Prasad et al., 2004) 
reports that since the last packet in a burst formed by IC has 
the smallest delay in the NIC buffer, the intervals of the last 
packets in the bursts can be used for estimation of the  
available bandwidth, according to the Pathload (Jain and 
Dovrolis, 2002) algorithm. However, because only a small 
part of stream is used for the measurement, the stream must 
be very long. This is not suitable in inline measurement, 
because making long measurement streams in TCP badly 
affects the TCP transmission performance. 

2.3 Bursty transmission in TCP 

The behaviour of TCP when the network cards enable IC 
has been investigated in previous studies (Zec et al., 2002; 
Prasad et al., 2004), and IC has been shown to be 
detrimental to TCP self-clocking. IC causes the ACK 
packets to arrive at the sender in bursts, and this bursty 
arrival in turn causes bursty transmission of data packets 
and, subsequently, bursty transmission of ACK packets 
from the TCP receiver. According to one study (Prasad et 
al., 2004), with IC, 65% of ACKs arrive with intervals of 
less than 1 µs, because they are delivered to the kernel with 
a single interrupt. Meanwhile, without IC, almost no ACK 
packets arrive with small intervals. 

In the present study, we propose an algorithm that can 
exploit the burst of data packets in TCP under the effects of 
IC to measure the available bandwidth/capacity of the 
network path between TCP sender and receiver. The TCP 
sender adjusts the number of packets involved in a burst  
and checks whether the inter-intervals of the bursts of 
corresponding ACK packets are increased or not to 
investigate the bandwidth. ICIM can be employed into any 
version of TCP. Using previously reported results (Prasad  
et al., 2004), ICIM first checks to see if the network card 
has IC enabled. If the IC is enabled, ICIM continues 
measurement based on the bursty transmission of TCP.  

3 ICIM-abw: Interrupt Coalescence-aware Inline 
Measurement for available bandwidth 

3.1 Packet burst-based available bandwidth 
measurement algorithm 

The basic idea of measuring bandwidth larger than 1-Gbps 
is that, we consider a burst of packets as a big packet.  
Two consecutive big packets are then treated as a packet 
pair, of which the time interval in large enought so that the 
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general purpose OS can read exactly. The measurement 
algorithm is described below. Though the algorithm can 
work somehow when Delayed ACK in the TCP receiver is 
on, we recommend the Delayed ACK is off so that the 
algorithm can works properly. Because the absolute timer 
(described in Section 2) is the primary source of device 
interrupts in the high-speed transmission, we assume that 
the NIC uses the absolute timer when receiving packets. 

As shown in Figure 2, we consider the situation in 
which two bursts of packets are sent at the interval S.  
The number of packets in the first burst (Burst 1) is N. 
Assume that C is the capacity of the bottleneck link. CCross is 
the average transmission rate of cross traffic over the 
bottleneck link when the two bursts pass the link, and P is 
the packet size. We suppose that CCross is not changed much 
by the TCP connection performing inline measurement. 
Otherwise, the available bandwidth is not determined; the 
measurement becomes meaningless. Then, the amount of 
traffic that enters the bottleneck link during the period from 
the point at which the first packet of Burst 1 reaches the link 
until the point at which the first packet of Burst 2 reaches 
the link will be the sum of the packets in Burst 1 and the 
cross traffic packets arriving in S, i.e., CCross S + N ⋅ P. If the 
amount is larger than the transfer ability of the link during 
this period, considered to be C ⋅ S, then Burst 2 will go to 
the buffer of the link. This results in a tendency for the 
interval between the two bursts to increase after leaving the 
bottleneck link. 

Figure 2 Packet burst-based available-bandwidth measurement 
principle 

 

We can write that the burst interval will be increased if 

CrossC S N P C S⋅ + ⋅ > ⋅  (1) 

or 

Cross .
N P C C

S
⋅ > −  

Note that C – CCross is the available bandwidth (A) of the 
bottleneck link. Therefore, equation (1) becomes 

.N P A
S
⋅ >  

Since we assume that the absolute timer is used, S is always 
larger than RxAbsIntDelay. Therefore, at the NIC of the 
TCP receiver, since the arrival interval of the two bursts are  
 

larger or equal to S, the two bursts are passed to the kernel 
in two different interrupts. The TCP receiver then sends the 
ACK of the two bursts in the same intervals to the sender 
TCP. Thus, by checking the arrival intervals of the 
corresponding ACK packets of the two bursts, the TCP 
sender can determine if A > NP/S. By sending numerous 
bursts with various values of NP/S (by changing N), we can 
search for the value of the available bandwidth A. This is the 
measurement principle of the proposed inline measurement 
mechanism. Note that the bursty transmission in TCP 
appears when IC is enables, as mentioned in Section 2.3. 
ICIM-abw performing in reasonable measurement intervals 
do increase the burstiness but the increase is not effect much 
the performance of TCP, as shown in the simulation results 
in Section 3.3. 

3.2 ICIM-abw 

ICIM-abw inherits the concept of the search range  
from the measurement algorithm in ImTCP (Man et al., 
2004). This is the idea of limiting the bandwidth 
measurement range using statistical information from 
previous measurement results rather than searching from 
0 bps to the upper limit of the physical bandwidth for every 
measurement. By limiting the measurement range, we can 
keep the number of probe packets small. 

At first, we explain how to search for the available 
bandwidth in a determined search range and then we present 
an overview of the measurement algorithm. Assume that the 
search range for a measurement is (Bl, Bu). The algorithm 
then check k values in the range to determine which is 
nearest to the real available bandwidth. We use k = 4 in the 
following simulations. The k points are:  

( 1) ( 1, , ).
1

u l
i l

B B
B B i i k

k
−

= + − =
−

K  

The TCP sender then sends k consequence bursts and the 
number of packets are adjusted so that the probe rate of 
Burst i is Bi: 

.i
i

N P B
S
⋅ =  

We illustrate the setting in Figure 3. 

Figure 3 Probing a search range in ICIM-abw 
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Realisation of equation (2) requires the following: 

• The value of Si is required at the timing of the 
transmission of Burst i. 

Infact, Si is unknown until Burst i + 1 is transmitted. 
But we need the value at the timing of the transmission 
of Burst i in order to guarantee equation (2).  
We therefore estimate the value of Si by assuming  
that the amount of data in Burst i is proportional  
to the interval as follows: 

.i
i

N PS
T
⋅

=  (3) 

where T is the average throughput of TCP. 

• In case the number of packets in Burst i is smaller than 
Ni, additional packets must be added to the burst so that 
the packet number becomes Ni. 

ICIM-abw utilises a buffer located at the bottom  
of the TCP layer in order to store the packets 
temporarily before sending them to the IP layer,  
in the manner of ImTCP. ICIM-abw stores all of the 
packets of the burst that preceded Burst 1 in the buffer. 
Packets are added to Burst i (i = 1 … k) when  
necessary in order to maintain the desired number  
of packets (Ni) in these bursts. 

ICIM-abw sends k bursts and checks the corresponding 
ACK of the bursts. If from burst number j, j = 1 … k, 
the arrival interval of the bursts becomes larger,  
then Bj is considered to be the value of the available 
bandwidth in that measurement. Here, the burst  
interval is consider to become larger if the arrival 
interval is larger then λ times of the sending  
interval. We set λ to 1.01 in the following  
simulations. 

ICIM-abw first checks whether IC is enabled for the 
network card. For the reasons explained in Section 3.1, 
ICIM-abw checks the arrival intervals of the ACK packets. 
If more than 50% of the intervals are less than 1 µs, then 
ICIM-abw decides that IC is enabled. If the IC is enabled, 
then ICIM-abw continues the following measurement steps. 
Otherwise, the measurement algorithm introduced in 
ImTCP is used. 

The measurement algorithm of ICIM-abw is as follows: 

1 Set the initial search range 

We set the initial search range as (T, 2 ⋅ T) where T is 
the throughput of TCP. 

2 Search for the available bandwidth in the decided 
search range. 

ICIM-abw waits until the window size (cwnd) is larger 
than Cmin (large enough to create bursts for 
measurement). We use Cmin = 50 in the following 
simulations. Data packets are then sent in order to 
search the available bandwidth in the decided search 
range, as described above. 

3 Add the new measurement result to the database and 
calculate the new search range. 

The measurement result in the last step is added to a 
dabatase of measurement results. We then calculate  
the new search range ( , )l uB B′ ′  from the database.  
We use the 95% confidential interval of the data  
stored in the database as the width of the next search 
range, and the current available bandwidth is used as 
the center of the search range. The search range is 
calculated as follows: 

max 1.96 ,
10

max 1.96 ,
10

l

u

V RB R
q

V RB R
q

 
′ = −   

 
 

′ = +   
 

 

where R is the latest measurement result. V is the 
variance of stored values of the available bandwidth 
and q is the number of stored values. R/10 is a value 
that ensures that the search range does not become too 
small. Moreover, when measurement result in Step 3 
falls to Bl (Bu), it is possible to consider that the 
network has changed greatly so that the real value of 
the available bandwidth is lower (higher) than the 
search range. In this case, we discard the accumulated 
measurement results because they become unreliable  
as statistic data and enlarge the search range  
(Bl, Bu) twice towards the lower (higher) direction to 
create ( , )l uB B′ ′ . 

4 Wait for Q seconds then return to Step 2 and start the 
next measurement. During the waiting time Q, TCP 
transmits packets in the normal manner. The waiting 
time is needed for the TCP transmission to return to the 
normal state after the packets store-and-forward process 
at Step 2. 

3.3 Simulation experiment 

Measurement results 

We show the measurement results for ICIM-abw through 
ns-2 (NS homepage) simulations. We implement ICIM-abw 
via Reno TCP, the most popular version of TCP, and use the 
topology shown in Figure 4 for the simulation.  

Figure 4 Simulation topology 
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The sender and receiver of TCP are connected through  
10-Gbps access links and a bottleneck link. The NICs of 
both the sender and receiver host employ IC with an 
absolute timer. The cross traffic on the bottleneck link is 
made up of UDP flows in which various packet sizes  
are used, according to results monitored on the internet 
(NLANR Website), as shown in Table 1. The capacity of 
the bottleneck link is 5-Gbps, and the available bandwidth 
(A-bw) is 2-Gbps (from 0 s to 15 s), 3-Gbps (from 15 s to 
35 s) and 4-Gbps (from 35 s to 50 s). 

Figure 5(a) and (b) show the measurement results for 
ICIM-abw when the interval between two measurements is 
set to one RTT or two RTTs, respectively. Also shown are 
the search ranges for each measurements. The search 
ranges, in most cases, successfully cover the correct value 
of the A-bw. Therefore, ICIM-abw can quickly detect the 
A-bw, even in such a high-speed network. When Q = 1, the 
throughput of TCP oscillates slightly, the estimation  
of the burst interval in equation (3) becomes incorrect. 
Therefore, the probing rate of each Burst i may not be 
exactly equal to Bi (in Step 2 of Section 3.2). This leads to a 
large dispersion of the measurement results in Figure 5(a).  
When Q = 2, the TCP sender creates fewer packet bursts so 
that the measurement results are nearer to the correct value 
of the A-bw, as shown in Figure 5(b). However, the 
measurement frequency (16.7 results/s) becomes half of that 
when Q = 1 (34.2 results/s) 

Table 1 Distribution of packet size of cross traffic 

Packet size (bytes) Proportion of bandwidth (%) 
28 0.08 
40 0.51 
44 0.22 
48 0.24 
52 0.45 
552 1.10 
576 16.40 
628 1.50 
1420 10.50 
1500 37.10 
40–80 (range) 4.60 
80–576 (range) 9.60 
576–1500 (range) 17.70 

Comparison with IC-aware Pathload 

We compare ICIM-abw with the only measurement tool we 
have found that can work in Gbps network. That is a version 
of Pathload that can detect and filter the effects of IC 
(Prasad et al., 2004). We call this version IC-aware 
Pathload. For the comparison between ICIM-abw and 
Pathload, the TCP sender and receivers are next replaced by 
the sender and receiver of Pathload. To make the 
measurement of Pathload faster, we set the starting probing 
rate to 200 Mbps (instead of the default setting of 1 Mbps). 
In addition, ω and χ are set to 200 Mbps and 150 Mbps, 

respectively, and the size of probing packets is set to 
1,500 bytes. 

Figure 5 Measurement results for ICIM (a) measuring intervals 
Q = 1 RTT and (b) Q = 2 RTTs 

 
(a) 

 
(b) 

The measurement results of IC-aware Pathload when the 
number of packets in a stream K is set to 160 are shown in 
Figure 6(a). Because the default value of RxAbsIntDelay 
used in NIC is 0.000132 (s) and the packet size is 
1,500 bytes, the average number of packets in a burst is 22 
when the A-bw is 2-Gbps, 33 when the A-bw is 3-Gbps and 
44 when the A-bw is 44-Gbps. Therefore, when K = 160, 
there are approximately nine bursts in each stream when the 
A-bw is 2-Gbps. This means that Pathload has 
approximately nine packets (the last packet in the bursts) for 
measurement. The increasing trend in the stream in this case 
can be well determined so Pathload can deliver good 
measurement results. However, when the A-bw becomes  
3-Gbps or greater, the number of bursts becomes 
approximately six or fewer. Then, Pathload does not have 
enough packets to detect well the increasing trend in the 
stream. Therefore, as shown in Figure 6(a), Pathload fails to 
deliver good measurement results when the bandwidth is 
equal to or greater than 3-Gbps. 

Figure 6(b) shows the measurement results of Pathload 
when K is set to 200. In this case, Pathload has a sufficient 
number of packets for detecting the increasing trend of 
streams. Therefore, the measurement results are correct. 
However, since Pathload searches for the A-bw from a low 
value, a long time is required to yield one result.  
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The measurement frequency is only 0.28 results/s, which is 
60 times smaller than that of ICIM-abw (with Q = 2 RTTs). 

Figure 6 Measurement results for IC-aware Pathload (a)  
number of packets in a stream K = 160 packets  
(b) K = 200 packets 

 
(a) 

Figure 6 Measurement results for IC-aware Pathload (a)  
number of packets in a stream K = 160 packets  
(b) K = 200 packets (continued) 

 
(b) 

Figure 6(b) shows that, if the A-bw changes during a 
measurement, Pathload may not detect the change well.  
At 15 s, the A-bw changes from 2-Gbps to 3-Gbps while 
Pathload is probing a rate smaller than 2-Gbps. When the 
probing rate reaches 2-Gbps, the A-bw is already changed, 
therefore Pathload can successfully detect the value of  
3-Gbps. However, at 35 s, the probing rate of the ongoing 
measurement reaches 3-Gbps before the change in the  
A-bw from 3-Gbps to 4-Gbps, so Pathload assumes that the 
A-bw is smaller than or equal to 3-Gbps. Therefore, 
Pathload delivers a value of approximately 3-Gbps at the 
end of that measurement, which is far from the value of the 
A-bw at this timing. 

Table 2 compares the number of packets used in the 
measurement of ICIM, and Pathload. ICIM-abw sends four 
bursts of packets for each measurement. The average 
number of total packets in four bursts are shown  
in the second column of the table. On the other hand, 
Pathload probes 8, 9 and 10 times for one measurement 
result when the A-bw is 2, 3 and 4-Gbps, respectively.  
Each probe requires 12 streams, the number of packets of 

which is 200. We can see that the number of packets  
used by ICIM-abw is less than 1% of that of Pathload. 

Table 2 Number of packets required for a measurement 

A-bw ICIM-abw IC-aware Pathload 

2-Gbps 110 200 × 12 × 8 = 19,200 

3-Gbps 130 200 × 12 × 9 = 21,600 

4-Gbps 154 200 × 12 × 10 = 24,000 

Figures 5 and 6 show that the measurement results of  
ICIM-abw have a larger dispersion compared to Pathload 
because, based on the nature of the algorithm, ICIM-abw 
cannot increase the length of each measurement burst to 
obtain high accuracy, as Pathload does. Instead, the 
accuracy can be improved by taking the exponential moving 
average in suitable intervals. 

Measurement results in web traffic environment 

We next investigate the measurement results for ICIM-abw 
in the network model depicted in Figure 4. Cross traffic is 
now changed to Web traffic involving a large number of 
active Web document accesses. We use a Pareto distribution 
for the Web object size distribution with 1.2 as the Pareto 
shape parameter and 12 KBytes as the average object size. 
The number of objects in a web page is 20. The capacity of 
the bottleneck link is set to 1-Gbps. The access links are 
also set to 1-Gbps. 

The available bandwidth is calculated as the capacity of 
the bottleneck link minuses the total amount of web traffic 
passing the link. Figure 7(a) shows the changes of available 
bandwidth and the average measurement results for each 
second. ICIM-abw underestimates the available bandwidth a 
little because the cross traffic, composed of so many 
connections, arrives at the bottleneck link in a bursty 
fashion. The burst of cross traffic may enlarge the intervals 
of the measurement bursts of ICIM-abw even when the 
probing rate is still lower than the average available 
bandwidth. However, the measurement results deviate only 
a litle from the correct values and in general they can follow 
the changes of available bandwidth. 

Figure 7(b) shows the measurement results for IC-aware 
Pathload in the same environment. We set K to 160  
and the starting probing rate to 100 Mbps and ω and χ are 
both set to 50 Mbps. Overall, the results have a trend of  
over-estimation. We think that the problem can be solved  
if we adjust the PCT/PDT thresholds of Pathload 
appropriately, instead of using the default values.  
Figure 7(c) shows the measurement of normal Pathload. 
Because the probe packets are grouped at the NIC, the 
increasing trend in the measurement streams becomes 
difficult to discover. Therefore, Pathload overestimates in 
most of the time. This frequent overestimation of bandwidth 
may lead to more aggressive systems. A conservative 
system caused by frequent underestimation of ICIM-abw 
will give less effect to the others sharing the same network 
environment. 
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Figure 7 Measurement results in Web traffic environment (a) 
average measurement results of ICIM-abw for each 
second; (b) measurement results for IC-aware Pathload. 
K = 160 and (c) measurement results for normal 
Pathload. K = 200 

 
(a) 

 
(b) 

 
(c) 

TCP compatibility 

We finally examine the data transmission performance of 
Reno TCP when it employs ICIM-abw. We perform a 
simulation where a number of Reno TCP connections  
that have ICIM-abw conflict with the same number  
of Reno TCP connections that do not have ICIM-abw 
through a 1-Gbps bottleneck link, as shown in Figure 8.  
All the connections have the same RTT (0.018 s)  
and the same access link’s bandwidth (10-Gbps).  
The number of connections is set to 4, 8 and 12. For each 
value of connection numbers, simulation is repeated ten 
times, and the throughputs of the TCP connections that have  
 
 

and do not have ICIM-abw (and the ratio of thereof) are 
calculated and compared. 

Table 3 shows the results when Q of ICIM-abw is set to 
1 RTT and 2 RTTs and when ICIM-abw does not perform. 
In case ICIM-abw performs measurement in every RTT, the 
TCP achieves lower throughput than TCP that does not 
perform ICIM-abw when conflicts occur because ICIM-abw 
has to delay several data packets for measurement in this 
case. As shown in Table 3, the ratio of throughput between 
TCP with ICIM-abw compared to RenoTCP is always  
less than 1. When the number of connections increases, the 
ratio is lower because conflicts between TCP connections 
are more intense. If ICIM-abw takes a lower measurement 
frequency, for example, when Q = 2 RTTs, then the TCP 
connections performing ICIM-abw can obtain the same 
throughput as normal Reno TCP, as shown in the third 
column of the table. We also disable ICIM-bw in all the 
TCP connections and show the throughput in this case in the 
fourth column of the table. We can see that that total 
throughput of TCP connection without ICIM-bw is almost 
the same of that when ICIM-abw with Q = 2RTT is enabled. 
This means that ICIM-abw with reasonable measurement 
intervals does not effect the TCP connection performance. 

Figure 8 Simulation topology for examining TCP compatibility 

 

Table 3 Throughput (MBPs) of reno TCP using ICIM: normal 
Reno TCP (ratio) 

#con. Q = 1 RTT Q = 2 RTTs No measurement 

4 466.4 : 490.6 
(0.95 : 1) 

483.7 : 475.6 
(1.01 : 1) 

489.5 : 478.9 
(1.02 : 1) 

8 451.1 : 544.4 
(0.82 : 1) 

505.1 : 490.5 
(1.02 : 1) 

510.7 : 485.9 
(1.05 : 1) 

12 418.7 : 577.7 
(0.72 : 1) 

503.5 : 493.2 
(1.02 : 1) 

503.1 : 493.3 
(1.02 : 1) 

4 ICIM-cap: Interrupt Coalescence-aware Inline 
Measurement for capacity 

In this section, we focus on measuring the  
bandwidth-related metric: the end-to-end capacity of a 
network path. Together with the available bandwidth, 
capacity information is important for adaptive control in a 
transport protocol. 
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4.1 Existing capacity measurement technique and 
their problems 

Many measurement techniques have been proposed for 
capacity measurement, such as Bprobe (Carter and Crovella, 
1996), Pathrate (Dovrolis et al., 2004), CapProbe (Kapoor  
et al., 2004). All of these techniques utilise packet pairs for 
measurement. However, because packets transmitting  
back-to-back are always grouped at the NIC under the effect 
of IC, the receiver cannot read the correct inter-arrival 
intervals of the packets. Thus, the packet pair-based 
techniques fail to perform the measurement when IC is 
enabled. 

The first algorithm that can work in an IC environment 
is an enhanced version of Pathrate, suggested by Prasad  
et al. (2004). The work of the algorithm is as follows. 

The sender sends a measurement train (a group of 
packets) that is long enough that at least two bursts are 
observed in the received train. Then the number of the 
packets in the first burst (N) is used for the calculation of 
capacity: 

.iN PC
L
⋅

=  

where L is the inter-arrival interval of the first and second 
burst (see the upper part of Figure 9). 

Figure 9 Enhanced pathrate algorithm 

 
 
However, the approach can work only when there  
is no cross traffic in the network path. If cross traffic  
exists, the cross traffic may cut into the measurement  
burst so that the number of packets received in the first  
interrupt may not reflect the value of the capacity correctly 
(See the lower part of Figure 9). This means the approach 
will not work well when the traffic load on the network is 
high.  

4.2 ICIM-cap 

We propose a burst-based capacity measurement algorithm 
that can overcome the problems mentioned above. The main 
concept of the proposed algorithm is that the available 
bandwidth information, which can be yielded periodically 
due to ICIM-abw (introduced in the last section), is 
exploited. The available bandwidth information is used to  
estimate the quantity of cross traffic that cuts into the first 
burst. In Figure 10, the top packets of the bursts are drawn 
in black. The sending interval of the two packets is d.  
The amount of traffic that arrives at the bottleneck link 
between the arrivals of the two packets is as follows: 

CrossC L N P d C⋅ = ⋅ + ⋅  

where CCross is the average arrival rate of the cross traffic at 
the bottleneck link. Existing capacity measurement 
algorithms do not know the amount of CCross, so they cannot 
find the exact value of C in the case shown in the lower part 

of Figure 9. To the contrary, ICIM-cap can know the CCross, 
so it can perform well in such a case. That is the biggest 
feature of this algorithm. 

Figure 10 ICIM-cap algorithm 

 

If we suppose that the bottleneck link, which has the 
smallest capacity, is identical to the tight link, which has the 
smallest available bandwidth, we can write: 

Cross .C A C+ =  

We can then calculate the capacity as follows: 

.N P d AC
L d

⋅ − ⋅=
−

 (4) 

4.3 Applying ICIM-cap measurement algorithm  
into TCP 

The TCP sender sends the bursts for ICIM-abw alternately 
with the bursts for ICIM-cap. The newest result of  
ICIM-abw is used for the next measurement of ICIM-cap. 
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The length of the burst of ICIM-cap must be decided 
properly. It must be long enough that it can arrive in two 
interrupts. However, if it is too long, the TCP transmission 
will be adversely affected. We, therefore, propose a 
dynamic setting for the length, as follows: 

• Quickly determine the initiative value.  

During the starting phase of the TCP connection,  
the TCP sender observes the length of the burst of 
packets and records the length of the longest one (G).  
The longest value is near the maximum number of  
packets that can be grouped in the same interrupt.  
So, we set the initial length of the measurement burst  
L to 1.5 ⋅ G in order to be sure that the burst can be 
divided into two small bursts at the receiver. 

• Adapt the length dynamically to the changes of the 
environment.  

If L is too short, which can be noticed when the 
measurement burst is not divided into multiple  
bursts at the receiver, then the sender doubles the 
length. If L is too long, which can be noticed when  
the measurement burst is divided into more than two 
bursts, the sender sets the length to 1.5 ⋅ B, where B is 
the number of packets passed to the receiver in the  
first burst. 

4.4 Simulation experiment 

Through simulation validations, we show that ICIM-cap can 
deliver capacity measurement results quickly and correctly. 
Especially, it can deliver good results in extremely  
high-load networks, where current measurement algorithms 
such as (enhanced) Pathrate do not work well. 

We repeat the simulation using the topology shown in 
Figure 4. This time, the TCP sender performs both  
ICIM-abw and ICIM-cap. For comparison, we also  
show the measurement results when we replace the  
ICIM-cap measurement algorithm by enhanced Pathrate. 
The measurement results are shown in Figures 11(a)  
and (b). In these figures, the measurement results of  
ICIM-abw are almost the same as those in Figure 5.  
Figure 11(a) shows the measurement results of enhanced 
Pathrate. As we can see, when the traffic load on the 
bottleneck link is heavy (when the available bandwidth is  
2-Gbps while the capacity is 5-Gbps), Pathrate 
underestimates the capacity. On the other hand, as shown in 
Figure 11(b), ICIM-cap can deliver good measurement 
results regardless of the load on the network. 

4.5 Discussion 

ICIM-cap relies on the supposition that the bottleneck link 
and tight link are identical. In this session, we discuss the 
errors in the measurement results of ICIM-cap when the 
above supposition is incorrect. 
 
 

Figure 11 Measurement results for IC-aware Pathload and  
ICIM-cap (a) measurement results for enhanced 
Pathload and (b) measurement results for ICIM-cap 

 
(a) 

 
(b) 

The case when the tight link is the upper link of the 
bottleneck link 

Figure 12 shows the case when the tight link is the upper 
link of the bottleneck link. In this case, we suppose that 
traffic on another link does not affect much of the probe 
traffic. Moreover, the effect from the cross traffic on the 
bottleneck link is small. When the supposed condition is not 
true, the curve showing the relation between Rin, Rout will be 
more complex, but the tendency in general is unchanged. 

Figure 12 The case when the tight link is the upper link of the 
bottleneck link 
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Rin, Rout are the sending rate and arrival rate, respectively, of 
the probe traffic. From equation (4), we can write:  

Cross
/ .
/

NP L NPC C
NP d d

 = + 
 

 

Because NP/L = Rin, NP/d = Rout, we can rewrite this using 
Rin and Rout as follows: 

Cross out
out

( ).inRC C R
R

= +  

We call Cout the result of the above calculation. Cout is the 
measurement result given by ICIM-cap. In this case, we 
examine the relation between Cout and the real capacity 
value (C0) as well as the capacity of the tight link (C1). 

Figure 12 shows the changes of Rout when Rout increases. 
When Rin is smaller than the available bandwidth (A), Rout 
increases in proportion to Rin. When Rin reaches  
A (but is still smaller than (C0⋅CCross)/(C1 – C0), the probe 
traffic starts to conflict with the cross traffic, and the 
increasing trend of Rout becomes slower. When Rin becomes 
larger than (C0⋅CCross)/(C1 – C0), Rout does not change 
regardless of the value of Rin. That happens because Rout is 
limited by the bottleneck link C0 in this case. We summarise 
the results as follows: 

• When A < Rin < (C0⋅CCross)/(C1 – C0), the measurement 
result of ICIM-cap Cout will be: C0 ≤ Cout ≤ C1 

• When Rin ≤ (C0⋅CCross)/(C1 – C0), we also have 
C0 ≤ Cout ≤ C1. 

The case when the bottleneck link is the upper link of the 
tight link 

If the tight link is the upper link of the bottleneck link, with 
the same observations as the above case, we can go to the 
following results (Figure 13). 

• When A < Rin < C0, the result of ICIM-cap Cout is equal 
to C1 (Cout = C1) 

• When C0 ≤ Rin, the result of ICIM-cap Cout is included 
in the range: Rout ≤ Cout ≤ C1. 

Figure 13 The case when the bottleneck link is the upper link of 
the tight link 

 

4.6 Interpretation of the results 

When a tight link and bottleneck link are not identical, 
ICIM-cap’s measurement result can overestimate, but  
the measurement never gets higher than the capacity  
of the tight link. In fact, a link with a large capacity  
does not often become a tight link, so the overestimation 
will not be very large. The measurement results can  
be an underestimation, however, the result is never  
smaller than Rout, which is the measurement result of 
enhanced Pathrate. Thus, the measurement results for  
ICIM-cap may not be correct when the supposition of  
the tight link and bottleneck link is not true, but the error  
is not large. 

5 Experiment in a real environment 

In this section, we present the experiment result in a real 
environment to validate the burst-based measurement 
algorithm. We implement the basic algorithm, ICIM-abw,  
in a FreeBSD system and use the simple network  
shown in Figure 14 to examine whether the algorithm  
works well. This network consists of two switches  
equipped with 1-Gbps Ethernet ports; all links are 1-Gbps. 
Table 4 shows the specifications of the PCs. The cross 
traffic is made up of UDP traffic sent by Iperf. One TCP 
connection is established between the sender and the 
receiver. In the TCP sender program, the ICIM-abw 
program is implemented. In this case, the link  
connecting the two switches becomes the bottleneck  
link. We control the Iperf flows so that the available 
bandwidth on the bottleneck link is 600 Mbps from 0 s  
to 50 s, 300 Mbps from 50 s to 100 s and 500 Mbps from 
100 s to 150 s. Both NICs of the sender and the receiver 
enable IC; the RxAbsIntDelay parameter of IC is set to 
0.1312 ms. 

Figure 14 Network topology 

 

Table 4 Specifications of the PCs in the experiment 

 Sender Receiver 

CPU Intel P4 3.0 GHz Intel P4 3.4 GHz 
Mem. 1,024 MB 1,024 MB 
OS Free BSD 4.10 FedoraCore 4 
NIC Int. PRO/1000 Adapter Int. PRO/1000 Adapter 
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In Figure 15, we plot the correct values of the available 
bandwidth. The measurement results for ICIM-abw and the 
search ranges are shown in the same figure. We can see that 
ICIM-abw can suitably measure the available bandwidth in 
this experimental network. Moreover, the measurement 
accuracy is as high as the evaluation of the simulation 
experiments in Section 3. As future studies, we will perform 
an experiment on ICIM algorithms in a large-scale network 
as well as on the internet. 

Figure 15 Changes of the available bandwidth and the 
measurement results 

 

6 Conclusion and future studies 

In the present paper, we introduced ICIM-abw and  
ICIM-cap the methods that can measure the available 
bandwidth and capacity on a 1-Gbps or higher network path. 
The proposed measurement algorithms do not require 
regulation of packet transmission intervals and work well 
with IC. The simulation experiments showed that the 
proposed measurement algorithm works well in networks as 
high or higher than 1-Gbps. 

At present, we are evaluating the performance of ICIM 
in a real internet environment. We are also testing the 
performance of the congestion control mechanism proposed 
by Hasegawa and Murata (2006) when ICIM is used for 
bandwidth estimation, in the real network environments. 
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Appendix: List of acronyms 

ImTCP Inline measurement TCP 
IC Interrupt Coalescence 
ICIM Interrupt Coalescence-aware Inline Measurement 
ICIM-abw Interrupt Coalescence-aware Inline Measurement 

for available bandwidth 
ICIM-cap Interrupt Coalescence-aware Inline Measurement 

for capacity 

 


