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Abstract

In this paper we propose to analyze a peer-to-peer (P2Phfileéng system by means of a so-called
level-dependent Quasi-Birth-and-Death (QBD) process.cdfesider the dissemination of a single file
consisting of different segments and include a model for upwad queue management mechanism
with peers competing for bandwidth. By applying an efficierdtrix-analytic algorithm we evaluate the
performance of P2P file diffusion in terms of the correspogdixtinction probability, i.e., the probability
distribution that the sharing process ends.

Keywords: peer-to-peer, branching process, matrix analytic methlodarithmic-reduction algorithm.

I. INTRODUCTION

With the introduction ofpeer-to-peer(P2P) technology in networks for file-sharing and content dis-
tribution, the volume of transported traffic has recently remausly increased. The nodes participating
in the P2P network are callgaeersand form logical overlay structures on application layeoabthe
IP topology. One of the main advantages of using P2P netwarksdntent distribution is their higher
scalability to a growing number of file requests, especiailyhie presence of flash crowd arrivals [12].
Unlike conventional client/server architectures, all igegct simultaneously as clients and servers, thus,
shifting the load from a single server to several peers spaispecific file. Additionally, since the source
of a file is no longer stored at a single location, the P2P netirkore robust to failures.

However, there are also certain dangers on entirely relgimg2P networks for file distribution. Firstly,
the data is no longer kept at a single trusted source, as esmhwhich hosts the file may modify the
data willingly or unwillingly, thus, causing the distribah of corrupt information. This is referred to as
poisoningor pollution [3]. Secondly, the existence of a sharing peer in the netwarkmot be guaranteed
due tochurn, i.e., the process of peers entering and leaving the netWrdk sharing of files is controlled
by the peers’ behavior (willingness to share after downlugdpatience, etc.) and they may arbitrarily
join or leave the network at any instant. If the peer, which tiee last part of the file, leaves the network,
this information is lost and other peers can no longer negrithis data. For this reason, specific P2P
architectures like Chord [14] employ mechanisms to maingacertain number of replicas in the network.

In this work we study the probability that the diffusion of aefilill eventually come to a halt in
an unstructured P2P file sharing network, which we define agxtiactionof the file. We extend our
previous model in [5] where we used\arkovian Binary TredMBT) to model the file sharing network
and we formulated an algorithm to compute the extinctionbpbility. However, the previous model
only considered the sharing of entire files. In this paper, werel the model to include parts of the
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file being shared to show a more accurate sharing behavior.iF hishieved by using a level-dependent
Quasi-Birth-and-DeathHQBD) process. By adapting the logarithmic-reduction &t (see Latouche
and Ramaswami [7]), we actually compute the probability fihe diffusion ends due to the lack of peers
sharing a part of the file.

This paper is organized as follows. First, we will briefly suminarelated work on modeling of P2P
file sharing mechanisms for content distribution in SectioTHis is followed by the formulation of our
basic assumptions on the file sharing network in Section IllvWenot specifically focus on any existing
P2P protocol, but use a rather generic specification whichhlgugsembles the eDonkey protocol. In
Section IV we will formulate two analytical models corresgorg to two different systems in which
either the sharing process stops when the entire file is losiyhen any of the segments is missing.
Accordingly, we construct the corresponding level-degend)BD process and we develop algorithms
necessary to obtain the extinction probability in bothisg#t. Finally, we provide some numerical results
on the impact of the system parameters on the performandeedytstem in Section V.

I[l. RELATED WORK

Most studies on the evaluation of the performance of P2P mygstes content distribution networks
rely on measurements or simulations of existing P2P netwéisexample, Saroiat al. [13] conducted
measurement studies of content delivery systems that weressed by the University of Washington.
The authors distinguish between traffic from P2P, WWW, and thanddi content distribution network,
and they found that the majority of volume is transported ®&2P. Hol3felckt al. [6] provide a simulation
study of the well-known eDonkey network and examine the fifeusion properties under constant and
flash crowd arrivals.

An analytical model for performance evaluation of a genieed P2P system is given by @&¢ al. [4].
On the other hand, other published work consider specifidiegimetwork types. For example, Qeat
al. [10] use a fluid model for BitTorrent and investigate the parfance in steady state. They studied the
effectiveness of the incentive mechanism in BitTorrent anave the existence of a Nash equilibrium.
Rubenstein and Sahu [12] mathematically show that unsteatta2P networks have good scalability and
are well suited to cope with flash crowd arrivals. A fluid-difites P2P model from statistical physics is
presented by Carofigliet al. [2]. Both, the user and the content dynamics are includatlthis is only
done on file level and without pollution. These studies show lilggproviding incentives to the peers for
sharing a file, the diffusion properties are improved. Yand da Veciana [15] investigate the service
capacity of P2P networks by considering two models, one ferttansient state with flash crowds and
one in steady state.

Christin et al. [3] measured content availability of popular P2P file shaniegworks and used this
measurement data for simulating different pollution and@oing strategies. They show that only a small
number of fake peers can seriously impact the user’s paorept content availability. In [8] a diffusion
model for modeling eDonkey-like P2P networks is presentasgdan a model from mathematical biology.
This model includes pollution and a peer patience threshioldhich it aborts its download attempt and
retries later again. It is shown that an evaluation of théudibn process is not accurate enough when
steady state is assumed or the model only considers therissisn of the complete file, especially in the
presence of flash crowd arrivals. That model is extended ing@nalytically compare the performance
of P2P file sharing networks to that of client/server systems.

I11. PEER-TO-PEERFILE SHARING MODEL

Let us now define the assumptions we make on the P2P file sharing mdties paper. We assume
an unstructured P2P network operating similar to the eDometywork. However, the model is not
restricted to eDonkey, but can in fact be applied to other filgrisng networks as well. The sharing of a



ASIA-PACIFIC SYMPOSIUM ON QUEUEING THEORY AND NETWORK APPICATIONS 2007 3

1 | i

chunk size 9.5MB e /'
phase 1 phase 3

segments 1 | j o num_segments

chunks

num_chunks

slze depends on ICH implementafié}{""'-—-:.‘._‘._‘.,_,,_»_» /
blocks 1 S k o num_blocks \»
block size 180kB phase 2

Fig. 1. File structure consisting of chunks, segments, and blocksFig. 2. Possible phases for downloading a chunk

file with size F' is performed in units othunks which is further split into smaller units calldalocks
see Figure 1. In eDonkey, a chunk has the size of 9.28 MB and ck li40180 kB. After each chunk
has been downloaded, it is checked for errors and if the haklevs incorrect, all blocks of the chunk
are discarded and downloaded again. After all chunks of a &le bbeen successfully downloaded, the
peer may decide if it keeps the file assaeederin the network for other peers to download or if it is
removed from sharingléecheror free rider. In this work, we assume that the file consists of a single
chunk, corresponding, for example, to a single mp3 audio di¢ethis is enough to capture the basic
characteristics of the diffusion behavior.

A. Upload Queue Management

In order to manage the bandwidth for other peers requestiadile, an upload queue mechanism is
maintained. A peer requests individual blocks from otheargpesharing the chunk containing the desired
block. All requests are appended to the waiting list of tharsty peer and a weighting mechanism
handles the scheduling of the upload queue requests fasntiasion. The detailed procedure of the
gueue management takes several features into account @épanhdl on the individual settings of the
sharing peer like upload bandwidth and number of simultasagloads.

In the original version of eDonkey, error detection is dofieraall blocks of a chunk have been received
and the complete chunk is discarded in the case of an erraretdw, this is not very effective and in more
recent versions of eDonkey clients, e.g. eMule, litelligent Corruption HandlingICH) mechanism is
implemented that performs the error detection on small&a daits than chunks and which we define in
the following assegmentsinstead of discarding the complete chunk when at least ometed block is
received, only all blocks of the damaged segment need to-bequeested. The specific size of a segment
depends on the settings of the ICH mechanism.

With the model for the upload queue mechanism and corrujbigmmling, it is sufficient to assume that
a chunk only needs to be modeled consisting of few segmesiisaid of individual blocks. In this study
we assume that a chunk consists of two segmentsyi.e- 2 and the size of a segmentis= 4.64 MB,
the sizeF' of the whole chunk being below or equal 328 MB.

B. Download Bandwidth

Let us define the upload and download rates,aandr,, respectively. For the sake of simplicity, we
use the same assumption as in [8] with homogeneous userd\REL connections, resulting in rates of
r, = 128 kbps andr; = 768 kbps. Further let us denote the number of peers sharing a certginese
as S and the peers downloading it & Since eDonkey employs a fair share mechanism for the upload
rates, there are on avera§¢D sharing peers for a single downloading peer and we multiply alue
with »,, which gives us the bandwidth on the uplink. However, sin@ dbwnload bandwidth could be
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the limiting factor, the resulting effective transitiont&aconsists of the minimum of both terms divided
by the size of a segmet. In the case ofVy = 2 segments, this results in the rajesand u2 given in
Equation (1).

1 . (S 1 . [S
w1 (S, D) = 7 mm{Dru,'rd} w2 (S, D) = T min {Dru,rd} D)

IV. ANALYTICAL P2P MoDEL

Let us consider a chunk to be made up of two segments: segmerd ¢egment 2. This provides a
three-phases system. A peer will be in phase 1 or 2 if it hag seyyment 1 or 2, respectively. If the
peer has both segments (i.e. the complete chunk), it willhbghiase 3, see Figure 2. New peers appear
at random time in the system determined by an exponentialoranvariable whose rate is defined by
Equation (1) and by the current state of the system which isesspd by the number of pees$s in
each phase. For the sake of simplicity we can assume that the rates athahipeer stops sharing a
segment is independent of the segment number, and is eqdal to

Let us now define the stochastic procd$X (¢), ¢(t))}, where X (¢) represents the total number of
peers with segments 1 or/and 2 present in the system attfiene p(t) = (p1(t), p2(t), p3(t)) denotes
the number of peers in each phase present in the system at,timith ()1 = X (¢). Here,1 denotes
a vector with ones.

We consider two views to measure the extinction probabdftyhe file sharing process, aptimistic
and apessimisticview. In the optimistic view, we assume that the sharing gsscends when no more
segments are available in the system. In the pessimisté; tas file sharing process ends as soon as one
of the two segments is missing. We call this evertagastrophe We now differentiate the two models
corresponding to the two views described above.

A. Level-Dependent QBD

In this first setting, recall that the sharing process endsnwthere is no more segment available in
the system. The stochastic proc€$X (¢), ¢(t))} is anabsorbing level-dependent quasi-birth and-death
process of which the generatof) can be written as in Equation (2).

0o 0 0 0 0 0
A AW AP 0 0 0

o= |0 AP AP AP 0 o
0 o AP AP 4P o

This process has been extensively studied in the past (seedt@@and Ramaswami [7] and references
therein). In this setting, time to extinction of the systesnclearly equal to the time until absorption.
In the remainder of this section, we first elaborate on the ezdnof theAZ(.]) matrices and then give
the algorithmic procedure in order to compute the absamptime in this level-dependent QBD with
generatorq).

1) Level-Dependent QBD Generator Descriptidret us recall that the states;, So, S3) means that
we haveS; peers in phase 1 (with only segment %), peers in phase 2 (with only segment 2), afd
peers in phase 3 (with the complete file). We define the statesgatel (k) as

L(k) = {(S1,52,53) : 51> 0,5 > 0,53 > 0; S1 + Sa+ S3 =k},
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which gives all states of the system at levelthat is whenk peers are present in the system and its
cardinality is

L(k)| = 5 (k +2)(k + 1)

In the following, we take the lexicographic order to enunberthe states of each level.

When the system contains a single peer (that is, when its &ah (1)), the peer may stop sharing
the one segment it possesses with e another peer may start downloading the segment. Thig latte
occurs at a rate given by the matmf)l). The transition matrices from the first Ievﬂél) and A(()l) are
given by

d
AV = |a
d
(11(1,8+1) 0 0 0 0 0
Al = 0 0 0 (1,8 + 1) 0 0.
i 0 0 wi(1,5+S2+1) 0 (1,81 +S2+1) 0

For example, if the system is in stafe, 1,0), only a new peer with segment 2 may appear, i.e., the
system is in stat€0, 2,0). This happens at a raje;(1, S; + 1), see Equation (1).

Usually, a peer may also change its phase (from 1 to 3 or from 2.t Such a transition keeps the
level at 1 since no new peer arrives in the system. However,pgéer in phase 1 (or phase 2) is alone
in the system, it will not be able to download the missing segimand to change into phase 3. Thus,
the transition rate from phase 1 (or from phase 2) to phaseu3(s1) = 0 for : = 1,2. The diagonal
elements ongl) (and of allAgk), k > 2) are such tha)1 = 0.

The possible transitions from a statg;, S», S3) € L(k) with k£ > 2 are described below:

Ag“): The system may lose a peer in phasegith rate d multiplied by the number of peers in phase
1, that is S; with 1 = 1,2, 3.
. The two possible transitions listed in the table below majnkerpreted with a similar argument.
For the first transition, two events may happen: either the pesy was downloading the segment
1 from one of theS; peers, or it received it from one of thg; peers.
Transitions Rates
(Sl, SQ, Sg) — (Sl +1, SQ, 53) S1 ,ul(l, Sy + 1) + S3 ul(l, S1+ S+ 1)
(51, 52, Sg) — (51, Sy + 1, 53) Sy Mg(l, S+ 1) + 53 ,ug(l, S1+ S+ 1)

. A peer in phase 1 changes into a peer in phase 3 with theusé + S3, S1), sinceS; peers
are competing for théS, + S3) x r,, available bandwidth. The same argument holds for a peer
in phase 2 changing into a peer in phase 3. Let us recall thadifgonal elements are such
that Q1 = 0.

Transitions

Rates

(S1,82,83) = (S1—1,52,53+1)
(S1,852,53) — (51,52 —1,53+1)

p2(S2 + Ss, S1)
p1(S1 + Ss, S2)

Diagonal element

Parameter of the exponential

(S1,52,53) — (S1, 52, 53)

—kd— 51 ul(l,SQ + 1) — S5 /,LQ(l,Sl + 1)
—S3p1(1,81 4+ S2+1) — Sz pa(1,S51 + S22+ 1)
—p2(S2 + S3,51) — 1 (S1 + 53, 52)

2) Probability of Extinction: Our interest lies in computing the probability that the shguprocess in
the particular system setting described in the previousaewill terminate at some point. Let(0) be
the first time the system is in level 0, i.e., no more segmemsaaailable. Lek; be a unit vector with a
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1 at thei-th entry and O elsewhere. We defi(@'), as the probability that the system, starting in level
1 with ¢(0) = e;, will eventually reach level 0, that is

(G1); = P[1(0) < 00| p(0) = ei =123

It was proven in [11] that this vector is explicitly given by

-1 '
[Tvs:

1=0

[e.e]

Gi=)_

=0

D}, 3)

where the matriceéf,i and DﬁC are given by the following recursive equations.

e () ’
(a0 o
vl = [1- Ul Dih - D] vt o1 ©
D} = [1- U Dl - D] DD 151 @

We use the logarithmic-reduction algorithm, adapted foelelependent QBD in [11]. A nice inter-
pretation of this algorithm, as presented in [11], exist the now recall. The matricds:; and Dlzl in
(3) may be interpreted as

Uy = P [y(27) < 4(0) A o(v(2771)) | X(0) = 27]
Dl = P [1(0) < 7(2*) A ¢(3(0)) | X(0) = 2]

where~(k) is the first passage time to levk) that isy(k) = inf{t > 0 : X(¢t) = k} with £ > 0. So,
the [-th term of the sum in (3) has the following interpretation.

-1
[0
=0

We clearly see that summing Equation (8) fot 0 to infinity gives us the vecto6,.

DYy = P[y(2") < v(0) < 7(2") A ¢((0)) | X(0) = 1] (8)

B. Level-Dependent QBD with Catastrophes

The model in the previous section considered that the file wiigsdion terminates when no more
segments are available for sharing in the system. Howeweagadlity when only an individual segment
or an incomplete file remains in the network, no peer is ablectopetely retrieve the file anymore.
Therefore, we now consider that a file is not available for sigagis soon as one of the segments is lost.
In this case, the process ends in an absorbing state betpt@ievel L(0) which is defined in this new
setting as:

L(0) ={(0,0,0),(n,0,0),(0,n,0); n € INo}

where N is the set of natural numbers. We propose to gather all ofetlséstes{(n,0,0); n € Ny}
and {(0,n,0); n € Ny}, respectively, into one state each labelgd0,0) and (0, k,0), respectively.
The sub-spacd.(0) is thus composed of three states, that(8,0,0), (k,0,0), (0,%,0)}. Other level
state-spaces are

L(k) = {(Z7]7l) ’Zaj €]N7l € ]N()}U{(Z,j,())‘l,j GNO} k > 1
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wherei + j + [ = k. The time to extinction is thus equal to the time to absorptad the generator of
this new level-dependent QBD is given in Equation (9).

0 0 0 0 0 0 ..
1 1 1
A AW AP 0 0 0
o= |40 4P 4D 4D o ©
AP 0 AP AP 4D o

The rates of catastrophe, determinedm_g?), are given by the transitions and corresponding rates.

Transitions Rates
So>0: (0 S, ) (O,k,O) d
Sy >0:(1,5,0) — (0,k,0) | d
S1>0: (5,0, )—>(k,0,0) d
S1>0: (Sl, R )—>(/{7,0,0) d

(0,0,1) — (0,0,0) d

Accordingly, matrixAgk) becomes as shown below.

Transitions | Rates
Sl>1 or Sg>0:(Sl,Sg,Sg)H(Sl—l,SQ,S;g) Sld
Sy > 1 or Sg>02(51,52,5'3)%(5’1,52—1,53) Sy d

(Sl >0 anng > 0) or 53 >1: (Sl,SQ,SQ,) — (Sl,SQ,Sg — 1) Sgd

The other transitions described in matricegc) and Agk) stay the same as previously described in
Section IV-Al for the first model.

The probability of absorption can now be computed by extendive results in [1]. LeIGék) be a
matrix whose(i, j)-th element is the probability that the process reached &ver the first time in
phasej, given that the process starts in phasaf level £ > 1 and levels 1 tdk — 1 are taboo. LeGy,
be the matrix whoséi, j)-th element is the probability that the process reached fevel for the first
time in phasej given that the process starts in phasef level & > 1. The absorption probability is
then given byG; which is here also equal tGél) by definition of this quantity. Moreover, we have for
k > 2 that G, is given by

Gy = (A§’“>)_1 AP 4+ (Ag’“)_l AW Gl Gy (10)

Starting from levelk, the QBD may directly move to levél — 1 with probability ((Agk))*1 Ag“), or
it may move up to levek + 1 with probability (Ag'“))_1 A(()k). Upon arrival in levelk + 1, it eventually
returns to levelk with probability G, and then to levek — 1, with probability G,. However, the
equation forG, is slightly different and is given by

-1 -1
G = (") a4+ (al) 4l @6+ 6]
Indeed, if the process moves up to leRethe second term in this sum), then to reach level 0, it may

first return to level 1, with probabilityG,, and then move to level 0 with probabili;. It may also
be directly absorbed in level 0 this time without returniglével 1 first. This happens with probability
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G(Q) Thus, to comput&;, we need to know=, and G( ). More generalIyG(()k) satisfies the following
recursive equation.

G = (Ag’“)_l AP 4 (Ag’”)_l A |G G+ G| (11)

Its interpretation follows directly from the definition Gék) using the same argument as used before.
Thus, writing ng) = (—Agk))*1 Agk), we have explicitly

G() [I Qo Gk+1}7 [Q3 +Qo kH)}- (12)

This implies that to obtairG(()2) we needG((f’), and so on. So, we have to truncate the QBD after
some levelM to be able to start the recursion. We may compGtg with the logarithmic-reduction
algorithm as described in [11], that is
-1

H Ufwuzi] Dl 1y (13)
=0

[e.e]

GM:Z

=0

where the matriceéf,i andD§C are given by Equations (4-7). Accordingly, we obtain the matG;_1,
Gp—2, ..., Gy with Equation (10). Using Equation (12), we finally end up witle flollowing system
which provides us the absorption probabili .

G = Q™ (14)
-1
GéMfl) {I Q(M 1) } [QSM 1) +Q(MA) G(()M)} (15)
—1
G =|r-e G| o +o 6| (16)

By truncating the QBD at leved, we actually compute the absorbing probability under th®daof
level M + 1, but a sufficiently largel/ will provide us a good approximation of absorption probiapil

V. NUMERICAL EVALUATION

Let us now consider some numerical evaluation of the proposedels, starting with the analysis
of the optimistic case. We assume that initially there isralsi source sharing both segments in the
network, so the system starts at stéie0, 1). The accuracy of our proposed algorithm for computing
the extinction probabilities in Section IV-A depends on thent/, at which the infinite sum in Equation
(3) is truncated. Experiments show that in our case the acgdos [ = 3 is already sufficient.

The resulting extinction probability as function over theatterate is illustrated in Figure 3 for file
sizes of F = 9.28 MB and F' = 6.8 MB, with Z = 4.64 MB as defined earlier being the size of the
first segment. We can see that when the death rate approachies éxtinction probability increases
drastically to 1. The smaller file size has the effect that theoise segment is transmitted faster and
thus more copies of it exist in the network, which reducesadwerall extinction probability slightly. In
general, this result can be interpreted as follows. The geedath ratel corresponds to the reciprocal
of the average sharing time of a peer in the system in secdinls, in order for the content provider
to keep a low extinction probability of about 0.01, he shopidvide incentives that peers stay in the
system for at least 100s.

We now look at the more pessimistic case that the disseraimatbps when at least one segment is no
longer available for sharing. This is shown in Figure 4 for= 9.28 MB and a fixed death rai¢= 102.
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Fig. 5. Extinction probabilities with catastrophe¥®/ (= 5) Fig. 6. Influence of file sizé" on extinction probabilities

For the probability that none of both segments are left indysem, i.e., cas@,0,0), we can see that
all probabilities are identical and are not affected by ti@dation leveld/. However, a slight difference
can be seen when we compare the probabilities where only imedf segment becomes extinct. In
fact, Figure 4 shows that a value of abaut = 5 proves to be accurate enough, so in the following
evaluations we will use this truncation point.

If we show the extinction probabilities from the second modith catastrophes over the death rate,
we can recognize in Figure 5 that the probabilities f0r0,0) lie above the two curveék,0,0) and
(0,k,0). The reason why they are larger can be interpreted as follmimlly, the system starts at state
(0,0,1), i.e., with exactly a single sharing peer. In order to redehabsorbing stat@, 0, 0), this peer
may either make a direct transition by leaving the systenmdndirect path, by first giving birth to other
peers which then all leave after time. On the other hand, deroto reach one of the other absorbing
states(k, 0,0) or (0, k,0) at least one birth must take place to incremgntor S,, respectively. Thus,
a direct transition from(0,0, 1) to an absorbing state of that type does not exist in this cassing a
reduction in the weight of the probability.

Additionally, when looking at the shape of the curves, we arognize that both curves fok;, 0, 0)
and(0, k£, 0) are identical when we consider equal segment sizes andabalgility for finding and sharing
both segments is equal. Whén= 6.8 MB the second segment is only half in size of the first, which
results in a higher extinction probability of the first segmérhe curves lie below the corresponding
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curves forF = 9.28 MB when the death raté is small. However, in both cases we can see that when
the death rate exceed8~' the extinction probabilities drop again. At this point itisore likely that the
sharing process will stop before any segment is actuallynttmeded at all, i.e.d > uq(1,1) + u2(1,1),
where (1, 1) + u2(1,1) corresponds to the rate of observing a first new peer with aeyabrihe two
segments.

The influence of the file sizé” and, thus, the different size of the second segment is rifitesd in
Figure 6. We can recognize that for a death raté ef 10~2 the extinction probabilities increase with the
file size and that when the second segment is small, the differbetween the extinction probabilities
of states(k,0,0) and (0, k,0) is large. As expected, when both sizes are equal, both capesach
the same value.

VI. CONCLUSION

We provided in this work an algorithmically tractable arsdyof a level-dependent QBD process with
and without catastrophe, in terms of absorbing probabiig showed its applicability to the modeling
of file diffusion in unstructured P2P file sharing networks. Nuo# results have confirmed that there is
a need for the content provider to offer incentives to thergpée encourage sharing and a long sojourn
time in the system in order to maintain a sufficiently low estion probability.

In the future we will use this model to analytically deriverther performance measures, especially
transient ones such as the distribution of the number ofsppersent in the system. Furthermore, we
would like to enhance the model to consider a more sophisticaeer behavior by including, e.qg., their
willingness to share, impatient peers, and pollution.
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