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Abstract

In this paper we investigate the performance of a video delivery serviceusing the OnlineTVRecorder.com service in
Germany as an example. We show that the request arrivals for file downloads play an important role and the system reacts
differently when the arrivals are time-dependent. We consider two simpleanalytical models: a steady state Markov chain
analysis for constant arrivals and a fluid model to capture flash crowdeffects. Furthermore, our analytical approach also
takes the distribution of the offered files into account, as well as the users’impatience which leads to aborted downloads.

1 Introduction

Recently, new services have emerged which utilize the Internet as a delivery mechanism for multimedia content. With the
advent of broadband accesses, more users are willing to download large volume content from servers, such as video files of
TV shows. While some popular video services (e.g. YouTube.com) or some broadcasting companies (e.g. ABC.com) use
streaming data with Flash technology, some media distributors (e.g. iTunes) offer entire TV shows for download. In this
study, we investigate the performance of the German site OnlineTVRecorder.com (OTR), which acts as an online video
cassette recorder (VCR) where users can program their favorite shows over a web interface and download the recorded
files from a server or its mirrors. These files are offered in different formats and can consist of several hundred megabytes
up to 1 GB or more depending on the length of the TV show as well as the encoding format. OTR can, thus, be seen as an
example for a server-based content distribution system with large data files.

However, as these server farms are often overloaded, new requests are queued when the provided download slots are
full. The restriction to a maximum number of simultaneous downloads guarantees a minimal download bandwidth for
each user. Additionally, the service offers premium users prioritized access to downloading. The download duration itself
depends on the total capacity of the server and the number of users sharing this capacity. On the other hand, users who
might encounter slow downloads may abort their downloadingattempt if their patience is exceeded.

In this paper, we discuss the impact of the user’s impatienceon the performance of such an OTR server with different
file size distributions. The paper is organized as follows. After describing the problem and formulating simple analytical
models, we provide numerical results and compare their performance in terms of download duration and success ratio.
Especially, we address the question of how to properly dimension the number of simultaneous downloads at a server in
order to optimize the performance of the system and to maximize the user’s satisfaction.

2 Problem Formulation and Analytical Model

Let us consider the following system. User requests arrive at the server with an arrival rateλ. While we will at first
consider a fixed arrival rate in order to evaluate a steady state Markov model, we will also consider later a non-stationary
arrival rateλ(t). This is a more realistic scenario when looking at individual files, since the popularity of a TV show
highly depends on the time it was recorded. Once a show becomes outdated, the interest for this file decreases. This
phenomenon is usually referred to asflash crowd arrivals[1]. However, since a server may offer several different files,
the overall arrival rate may remain nearly constant. The superposition of time-dependent arrival processes with different
starting points can be modeled as stationary Poisson process for a sufficiently large number of offered files per server.

When a request arrives and there are free download slots, the client may proceed with the download. We assume that
the server system has a total fixed capacityC which is shared among all simultaneously downloading clientsD(t) at time
t. The maximum number of users served in parallel is restricted ton. Thus, the time-dependent download rateµ(t) is

µ(t) =
1

fs

min

{

C

min {D(t), n}
, R

}

(1)

for a file sizefs and the download rate is limited by the physical rateR of each client.
As we need the distribution of the file sizes to compute the download rateµ(t), we investigated the actual file sizes of

video files offered at OTR. The measurements which were made in April 2007 show that the actual file size distribution
over 11563 file samples from 19 different TV channels has a mean of 368.31 MB and standard deviation of 196.82 MB. It
can be well fitted by an Erlang-k distribution withk = 3.34 phases and an average volume ofB =107.67 MB per phase,
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i.e., it is the sum of⌊k⌋ independent identically distributed random variables each having an exponential distribution with
meanB and an exponential distribution with mean(k − ⌊k⌋)B.

2.1 Discussion of the Model

In general, with a slight abuse of the Kendall notation for queuing systems, the model as described above can be expressed
as M(t)/GI/1n-PS with user impatienceθ, an unlimited waiting queue, and a server capacity which is shared amongn users
at maximum. Thus, the service rate is influenced byµ andθ and depends on the number of currently served users.

Admission control to the system can be taken into account by restricting the size of the waiting queue. However, in
this paper we use the number of download slotsn to guarantee the bandwidth per user and only investigate theimpact
of the user’s impatience on the system’s performance. Whilerenegingis considered with an i.i.d. random variableθ,
balking, i.e., taking back the download request if the waiting queueis too long, is neglected in this paper. We focus on the
effect of wasted capacity due to users’ impatience regardless of whether they are being served or not, and the impact of
variability of the file size distribution, which is expressed by the service rate. Our findings show that the ratio of successful
downloads increases with the variability of service time.

Basically, there are several approaches on how to analytically evaluate such a system depending on the number of
available download slotsn. If n ≤ ⌊C

R
⌋, the user’s access bandwidth limits the download rate. Thiseffectively results in a

M(t)/GI/n-FCFS system with independent service rates, sinceθ is an i.i.d. r.v. andµ is constant. An analytical evaluation
is provided in [2]. Forn > ⌊C

R
⌋, the download rate and therefore the service rates depend onthe current state of the

system. On the other hand, if the downlink of a user is not the limiting factor, i.e., a user can always utilize the offered
bandwidth of the server (C < R), the system approaches a real processor sharing system with increasingn, which is
investigated in [3, 4].

In order to emphasize the effects of the system, we consider in this paper only very simple models which are easily
analytically tractable. It is well known that for systems oftype M/GI/n only approximative evaluations can be performed
for metrics of interest [5]. Several problems arise when an evaluation is performed at a higher level of detail. Firstly,this is
because we consider time-dependent flash crowds arrivals requiring a transient analysis as described later in Section 2.3.
Furthermore, several (virtual) service units (n > 1) with general service time and general impatience make it difficult to
provide an exact analysis.

2.2 Steady State Analysis with Markov Model

We now consider a steady state analysis for evaluating the performance of the server system with aborted downloads due
to impatience. We assume homogeneous users with equal access bandwidthsR and generally independent patience time
θ. In our model,θ is the time threshold after which a user aborts his download attempt if the download time1 takes longer
than that. However, this GI assumption is not an accurate model for the actual users’ behavior. In reality, a user will have
a state-dependent patience, since he is more willing to waitif the file is nearly completed, cf. [6]. However, in order to
make the model analytically tractable, we consider an exponentially distributedθ. The model will be denoted M/M/1n-PS.
Thus, we have a homogeneous Poisson arrival process, exponential service time, a single server unit which services up to
n clients and operates with the processor sharing regime. Note that bandwidth restrictions of the users’ downlink capacity
are taken into account. The queue length for waiting users isassumed to be infinite.

The model itself is a simple birth-death process where only transitions between neighboring states are possible. The
service ratesµi are dependent on statei and are expressed in (2). With the resulting state probabilities the waiting time,
sojourn time, and success ratio can be obtained.

µi =
i

θ
+ min {i, n}

1

fs

min

{

C

min{i, n}
, R

}

i = 1, 2, . . . (2)

2.3 Time-Dynamic Evaluation with Fluid Model

The Markov model described in the previous section only allows to investigate the steady state behavior. In order to also
consider the flash crowd arrivals mentioned above, we use a fluid analysis technique, see (3).

Ẇ =

{

0 if D < n

λ−Dµ− ν W otherwise
Ḋ =

{

λ−Dµ if D < n

0 otherwise
Ȧ = Dpµ+ ν W Ḟ = D (1 − p) µ (3)

Arrivals enter the waiting populationW with rateλ or directly the downloading populationD, if the number of slots
n is not full. If the slots are full, waiting users simply proceed to the downloading state with rateµD. After entering state

1In this work the sojourn time of a user in the system, i.e., the sum of the waiting and the service time, is referred to as download time.
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D, the client remains in this state until he either fully downloads the file and enters the finished stateF or he aborts the
download when the download duration exceeds his patience thresholdθ. The latter is expressed by entering abort stateA.
In both cases the transitions are performed at rateµ multiplied with a probabilityp (when the download fails) or1 − p in
the case of success. The probabilityp can be interpreted in the following way. An abort occurs whenthe patience of the
downloading user is exceeded either during downloading or waiting. The patience in this model is characterized by the
exponential random variableθ with rateν = 1/E [θ] and the downloading time is exponentially distributed as well with

rateψ = C(t)
E[fs] . The variableC(t) denotes the time-dependent capacity per user, i.e.,C(t) = min

{

C
min{D(t),n} , R

}

, and

E [fs] is the mean file size. Thus, the probability that the patienceis exceeded at timet can be expressed as

p(t) =
ν

ν + ψ
=

E [fs]

E [fs] + C(t) E [θ]
. (4)

Note that in the case of a single downloading stateD, exponential file sizesfs and thus exponentially distributed
ratesµ are assumed. If we consider Erlang-k distributed file sizes as obtained in our measurements, the stateD must be
expanded to several intermediate statesD0,D1, . . . ,Dk. Fork → ∞ this approaches deterministic values.

With the computation of the population dynamics of the downloading users, we obtain the dynamics of the download
rates from Eqn. (1). In particular, for a starting timet0 the durationd(t0) can be computed by integratingµ over time,

i.e.,
∫ d(t0)

t0
µ(t) dt = 1.

3 Numerical Results
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Figure 1: Population changes with fluid model

Due to the space limitations we focus on the flash crowd scenario with
the fluid model. We assume an exponentially decreasing arrival rate
λ(t) = βe−αt with β = 1 andα = 10−3. Thus, the total number of
arriving users in the system is limited tolimt→∞ λ(t)dt = β

α
= 1000.

Fig. 1 shows the time-dynamic evolution of the population size in the
flash crowd scenario. We compare the population sizes from several
simulation runs with the numerical solution of the differential equation
system (3).

In the following we look at the different behavior of the system when
there are constant and flash crowd arrivals. In order to compare systems
with both types of arrivals, we match the arrival rate for theconstant case
to get the same number of arrivals as in the case of flash crowds. Here,
we use the parametersβ = 1, α = 10−4, as well as the server capacity
C = 100Mb/s, user bandwidthR = 2Mb/s and patience threshold
θ = 200min, and the file size distribution is taken from measurement

values, as well asn = ⌊C/R⌋ download slots.
Fig. 2 and Fig. 3 depict the two measures of interest to us, thedownload time and success ratio for two exemplary

simulation runs. We take a look at the temporal evolution using a moving average with a window size of 100. Both figures
show that there is a significant difference when constant or time-dependent arrivals are considered. With a constant arrival
rate, after an initial transient phase, both the download duration and the success ratio become constant. With flash crowds,
there is a higher variation of both values as the arrivals rapidly decrease over time from which later arrivals benefit. The
figures show that it is very important to consider if the arrivals are time-dependent or not, as they yield quite different
results.
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Figure 2: Sojourn times for flash crowd / Poisson arrivals
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Figure 3: Moving average of success ratio
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Figure 4: Success ratio for different file size distributions
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Figure 5: Goodput depending on file size variation

The next investigation aims at the optimal dimensioning of the number of download slotsn for different file size
distributions. We focus on the flash crowd scenario with the same parameters as above except forα = 10−3. While Fig. 4
shows the success ratio when the file size is distributed either deterministic, exponential, Erlang, or lognormal, Fig.5
depicts the average goodput in kbps depending on the maximumnumbern of simultaneously served users. Both figures
illustrate the influence of the coefficient of variance on thesystem behavior. What is remarkable is that for deterministic
and Erlang-distributed file sizes a maximum success ratio exists, whereas for exponential and lognormal the success ratio
remains nearly constant whenn is larger than the optimal valuen = ⌊C/R⌋. However, this is caused by the fact that
in systems with higher coefficients of variation smaller files are downloaded more often. In all four cases the goodput is
highest at this value, as can be seen from Fig. 5. The goodput is defined as the ratio of the file size and the download time
for successful downloads. For largern the system capacity is wasted due to longer download times caused by capacity
sharing and the aborting of a download due to the user’s impatience.

4 Conclusion and Outlook

In this paper we discussed the performance of an online TV recording service for distributing large-volume video files.
The user behavior was characterized with an impatience threshold after which the client aborts the download. We derived
two simple analytical models, a stationary and a transient fluid flow model and compared their performance in terms of
the mean download duration and success ratio.

In the future, we wish to perform a more detailed analysis which can be used for comparison to other content distri-
bution methods, e.g. using peer-to-peer networks [7]. By utilizing the benefits of distributed serving nodes as in P2P with
optimal strategies for caching contents, our goal is to design better content distribution networks with a higher reliability
and scalability.
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