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Abstract—Grid technology has been studied and developed
by numerous researchers in recent years. Data in conventional
grid environments are changed by using TCP/IP. However, as
long as the architecture is based on packet switching, highly
efficient computing is difficult to achieve. We thus propose a
new architecture, the � computing environment, where network
switches and computing nodes are connected to one another with
optical fibers, thereby offering high-performance computing by
establishing an optical wavelength path between shared memories
on computing nodes.

We established the lambda computing environment using the
AWG-STAR system, and designed a data-sharing structure for
the OpenMP library, which is a parallel-computing programming
language utilizing shared memory. Moreover, we evaluated its
performance against existing parallel computing in a PC-cluster
environment by executing OpenMP applications.

I. INTRODUCTION

The demand for large-scale computation such as that in-
volved in gene-information analysis, image processing, and
global-environment simulation that treats enormous volumes
of data has recently been increasing. Research into grid-
computing technology and high-speed data transmission have
been actively pursued to satisfy these demands. TCP/IP is usu-
ally used for communications in grid-computing environments
such as that in control messages and data exchanges between
computing nodes. However, TCP/IP has various detrimental
effects in these environments. For example, lost packets need
to be retransmitted as some may be lost along the route from
the source node to the destination node because of traffic
congestion caused by the volume of data that TCP/IP itself
transmits. Furthermore, the transmission bandwidth may be
decreased by controlling the congestion.

New technology that enables high-speed and highly reliable
communications is therefore needed to satisfy the demand
for grid computing. Research into Wavelength Division Mul-
tiplexing (WDM) technology has been the main target of
development, and IP over a WDM network has also been stud-
ied and developed to provide high-speed transmission on the
Internet based on WDM technology. Moreover, standardization
of the routing technology for the Internet, called GMPLS,
which is a communications technology that uses more optical
technologies for the lower layers than WDM technology, has
also been advanced by IETF [1]. Research into optical packet

switches based on optical technology has also begun, which
is aimed at attaining actual IP communications in a photonic
network.

However, many such technologies presuppose the current
Internet technology. That is, an IP packet is treated as infor-
mation units, and the target of research and development has
become on how to carry it at high speed along a network.
Therefore, as long as architecture based on packet-switching
technology is being focused on, high-quality communications
to all connections will be difficult to achieve and computing
throughput on the grid environment will remain low.

We thus propose a new architecture that we call the �

computing environment, which has wavelength paths between
computing nodes and optical switches to achieve high-speed
and highly reliable communications in grid-computing en-
vironments [2]–[5]. We can attain high-speed and highly
reliable data exchange or data sharing in the � computing
environment because computing nodes do not utilize the
conventional TCP/IP network but establish wavelength paths
as a communications channel in advance. We focus on the
data communication method using high-speed network, so we
target the single CPU machine as the computing node not but
the multiple CPU machine as a cluster PC in this paper.

Related work [2]–[5] has reported the evaluation of architec-
ture that has accomplished distributed-parallel computing in a
� computing environment. All these have presumed a shared-
memory architecture for sharing of data, which is required
for parallel computing. Nakamoto [3] proposed utilizing a
virtual optical ring as a shared memory, taking the coherence
between shared memory in the virtual ring and the caches of
all computing nodes into consideration. Taniguchi [5] analyzed
how the network topology and the method of controlling
cache coherency influenced performance, by using a semi-
Markov process. However, these studies only evaluated the
environment by simulation and modeling.

We previously implemented a Message Passing Interface
(MPI) library [6] and executed an MPI application, which is
a library specification to pass messages via a network, share
data, and synchronize processes. Although MPI is the de-facto
standard for parallel computation, it is a library for processors
that have no shared memories. However, there is another
model of parallel computation that assumes shared memory



between multiple processors. This model is more suited to the
� computing environment, because it can utilize the shared
memory that we have considered for this.

Our aim was to execute an OpenMP application utilizing
the shared memory in the � computing environment, and
implement the OpenMP library and data sharing structure.
OpenMP is a standard specification of parallel computation for
the shared-memory model [7]. We can parallelize programs
by inserting comment statements or pragma statements into
existing Fortran or C (C++) applications.

We utilized the AWG-STAR system developed by NTT
Photonics Laboratory [8] as an instance of the � computing en-
vironment. The AWG-STAR system is an information-sharing
network based on WDM technology and data is transmitted
through an Array Waveguide Grating (AWG) router, which
processes wavelength routing. The AWG-STAR system offers
a unique feature where the Shared Memory Board (SMB) on
all nodes connected to the AWG router is provided as an
extended memory from the computing node, and the data is
automatically synchronized in nodes when the data is written
on the SMB. We implemented the OpenMP library to utilize
the SMB of the AWG-STAR system efficiently and evaluate
performance.

The rest of the paper is organized as follows. Section II
explains the � computing environment. Section III discusses
our design of the OpenMP implementation on the AWG-STAR
system, and our evaluations of the environment are given in
Section IV. We present our conclusion and directions for future
work in Section V.

II. � COMPUTING ENVIRONMENT: NEW DISTRIBUTED

COMPUTING ENVIRONMENT

We will first explain the � computing environment that we
propose as a new distributed-computing environment in this
section and then the AWG-STAR system that we utilized to
establish it. We will then describe how distributed and parallel
computation in the � computing environment are executed.

A. WDM Technology for � Computing Environment

The � computing environment is based on WDM tech-
nology. The computing nodes and optical switches that it is
composed of are connected with optical fibers. One hundred
or more wavelengths, which are expected to be 1000 or more
in the future, are multiplexed in an optical fiber by WDM
or DWDM (Dense WDM) technology and they provide a
broadband communications line for computing nodes. WDM
technology is usually considered to be a lower-layer technol-
ogy that attains GMPLS and IP over a WDM network. We
used WDM technology in this study to establish wavelength
paths and utilize these as an exclusive communications line.

We can therefore accomplish high-speed and highly reliable
data exchange or data sharing in a � computing environment
because the computing nodes do not utilize a conventional
TCP/IP network but establish wavelength paths as an exclu-
sive communications channel in advance. The details on the
established wavelength paths are shown in Fig. 1.
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Fig. 1. Established Wavelength Paths

TABLE I
ASSIGNMENT OF WAVELENGTHS IN I/O PORTS OF AWG ROUTER

�
�
�
�
�
�
�
�
��

Input
Output

Port 1 Port 2 Port 3

Port 1 56 58 60
Port 2 58 60 62
Port 3 60 62 64

B. AWG-STAR system

1) Brief Overview of AWG-STAR system: The AWG-STAR
system is a platform for an information-sharing network
accomplished by WDM technology and wavelength routing
using AWG routers. Computing nodes connected to the AWG
router physically configure a star topology, but are logically
a ring (see Fig. 2). The AWG router processes optical signals
without transforming them into electrical ones, which provides
high-speed transmission. All nodes are equipped with an
SMB, which has a shared memory that can contain identical
data at the same address over all nodes of the AWG-STAR
system. While conventional systems need apparent instructions
to transmit data, data in this system are automatically sent
to the optical ring network when they are written on the
SMB, and data on the other SMBs of all computing nodes are
updated in real time. Furthermore, they only need to access
their own SMBs to read data from the shared memory. This
system achieves high-speed data sharing because it runs in the
background at the hardware level.

2) Configuration of AWG-STAR System: The AWG router
can configure a wavelength path by dynamically changing the
wavelength of the optical signal. It has 32 input ports and 32
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Fig. 2. Network Topology in AWG-STAR System

output ports, and which output port each incoming signal uses
is determined by the wavelength. Table I shows a instance of
how wavelengths are assigned. We can see, for example, that
when wavelength 58 enters input port 2, the signal exits output
port 1. The figure for the wavelengths, however, is specific to
the AWG-STAR system.

3) Access to Shared Memory and Data Sharing: There are
two ways to access the shared memory. The first is Direct
Memory Access (DMA) using the SMB function, and the
second is addressing with a pointer. Shared memory is on
the SMB, which is connected to the computer with a PCI
local bus. It therefore requires time to transmit data through
the PCI bus, as well as to write to and read from the shared
memory. This leads to the delay time from the CPU to the
shared memory being slower than that to the local memory.
Data also have to go around the optical ring to be updated on
all the computing nodes’ SMBs .

One control token is on the optical ring and the computing
nodes share data by attaching the sending frame (address,
data, control code, and CRC) to the control token. There
are two patterns to update the shared memory; the first is
where computing nodes write to their own shared memory,
and the second is where they receive data updated from other
computing nodes.

Computing Nodes Write to Own Shared Memory: Here, the
computing nodes first write the data to be shared on their
own SMBs. They next receive the control token and attach the
sending frame to the end of the series of frames attached to the
token. After that, the computing node passes the control token
to the next node. When the token has finished going around the
optical ring and all the other computing nodes have received
the updated data, the node deletes the data from the control
token. Figure 3 shows the model for this.

Computing Nodes Receive Data for Updating: A computing
node checks if there are data to update that are attached to the
control token after it is received. If there are, it reads the data
and updates its own SMB and passes the control token to the
next computing node. Figure 4 shows the model for this.

Figure 5 summarizes the operation to update data in the
shared memory. One computing node writes on the shared
memory and updates the data. It waits for the control token
that the data are attached to. Other computing nodes receive
the data attached to the control token and update their own
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Fig. 3. Write Data to Shared Memory
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Fig. 5. Operation to Update Data

SMBs. The data are deleted when they are passed around the
ring.

4) Access Delay Time for AWG-STAR System: The access
delay time from the CPU to the shared memory is slower
than that to the local memory, because of the delay time to
pass through the PCI bus and to share data. Table II lists the
specifications for the SMB and the access speed via the PCI
bus. The data-sharing time consists of two factors: the first



TABLE II
SPECIFICATIONS FOR SMB

Transmission speed of optical ring 2.152 Gbps
Data size for every transmission 1 KByte
Processing time for frame transmission 500 ns
Maximum transmission rate to SMB 64 MBytes/s
Maximum transmission rate from SMB 80 MBytes/s

is the time to treat the control token, and the second is the
propagation delay. The series for treating the control token
(add/delete the sending frame and update the SMB) takes
about 500 ns. The propagation delay in the optic fiber is 5
ns/m.

C. Distributed Parallel Computing and OpenMP

Distributed parallel computing models can be classified into
two categories based on whether the computing environment
has a shared memory. That is, the first model is distributed
parallel computing with a distributed memory, and the second
is that with a shared memory. Representative of the distributed-
memory programming model is the Message Passing Interface
(MPI), whose processes share and synchronize data with
message passing. This means programmers must design when
and which data are exchanged. OpenMP, on the other hand,
which is representative of the shared-memory programming
model, presupposes all CPU has a shared memory. Therefore,
processes with the OpenMP application can exchange and
share data without distributed-memory aware programming.
Our research group has already implemented the MPI library
for the � computing environment [6]. Our aim was to execute
the OpenMP application in the � computing environment in
this research.

OpenMP is one of the application programming interface
(API) standards for shared-memory parallel programming,
which supports multi-platforms in C/C++ and Fortran lan-
guage. It consists of a set of compiler directives, library
routines, and environmental variables that influences run-time
behavior.

Programmers using OpenMP develop a parallel program by
inserting compiler directives called OpenMP directives into the
source code. An OpenMP directive is an instruction to express
parallelism and data sharing and programmers tell the compiler
to parallelize a specified part of the program through these
directives. Therefore, they do not need to write the detailed
behavior of a parallel program in the source code. Figure 6
shows a simple example of the OpenMP source code. The
statement “pragma” on the 2nd line is an OpenMP directive.
The loop part from the 3rd line is executed in parallel. All the
other parts without any directives are executed sequentially.

The generation of the executable object of the parallel
program by the OpenMP compiler consists of approximately
two stages (see Fig. 7). The first involves transformation
of the source code to an intermediate code. The OpenMP
compiler interprets the OpenMP directive in the source code,
and generates the intermediate code based on the information

double pi = 0.0;
#pragma omp parallel for reduction(+:pi)
for (i = 0; i < N; i++) {

double x = (i + 0.5) * w;
pi += 4.0 / (1.0 + x * x);

}

Fig. 6. Example of OpenMP Source Code
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Fig. 7. Overview of OpenMP Compiler

provided with the directives. The intermediate code contains
the specific code required for parallel processing. For example,
library function calls for communications and synchronization
are inserted. The second stage is the source-code compilation.
The intermediate code is converted to an executable object
with machine language.

As was previously discussed, programmers can develop
their programs to parallelize easily because the compiler
converts them according to their directives. In addition, there
are no codes that depend on a specific computing environment
in the source code of the parallel program. However, the
OpenMP compiler must be implemented so that it is dedicated
to each computing environment because the intermediate code
depends on a specific computing environment including the
hardware, OS, and communication library.

III. DESIGN OF OPENMP

We had to design an OpenMP compiler generating an
intermediate code for the AWG-STAR system to implement
OpenMP in the � computing environment. OpenMP was
originally designed for a shared-memory system such as that in
a symmetric multiple processor (SMP), which shares a single
memory with multiple processors in a computer. However, the
AWG-STAR system has a different scheme for shared mem-
ory. That is, as multiple-computing nodes are interconnected
via a network and the memory of each computing node is
independent in the AWG-STAR system, their memories are
treated as a single memory with specific functions.

We utilized distributed shared-memory (DSM) technology
that enables all or part of the memory in computing nodes to
be shared to construct a shared-memory system in a distributed



system in which computing nodes are generally connected via
a network. Most existing DSM technology uses a software-
distributed shared memory (SDSM) that controls memories
in all computing nodes as a single shared memory through
software. The AWG-STAR system used in our study, on the
other hand, has a DSM system that maintains the consistency
of memories through hardware.

Our implementation of the OpenMP compiler was based
on an existing OpenMP compiler called OMPi [9] for the
SMP environment. We chose this compiler because its source
code was available and the general idea behind it was simple.
We needed to design it for the AWG-STAR system since
OMPi was for the SMP environment. However, as the AWG-
STAR system has a local memory in each computing node
and a shared memory on the SMB, this configuration is
similar to an SDSM system sharing part of the local memory
of computing nodes. A related study on the implementation
of OpenMP using an SDSM [10] was therefore useful for
our own implementation regarding the issue of porting the
environment from the SMP to the cluster.

When we implemented OpenMP on the AWG-STAR sys-
tem, we needed to establish:

1) The execution mechanism for the parallel-execution sec-
tion,

2) The data-sharing scheme, and
3) The synchronization primitives.

The methods we used to accomplish all three on the AWG-
STAR system will be described in the sections that follow.

A. Execution Mechanism for Parallel Execution Section

It is necessary to achieve parallel processing utilizing
multiple-computing nodes to use OpenMP on the AWG-STAR
system.

There are sequential-execution and parallel-execution sec-
tions in OpenMP programs. Our method of implementation
clearly distinguishes between a computing node called the
master, which executes both sequential sections and parallel
sections, from other computing nodes called workers, which
execute parallel sections. That is, workers receiving a request
from the master begin executing the parallel-execution section.

Both the master and workers in our method execute an
identical executable object. However, as soon as the program
is executed, the workers immediately go on standby, and wait
while the master completes executing a sequential-execution
section. When the master has finished executing the sequential-
execution section, it requests the workers to start executing
the parallel-execution section by utilizing barrier synchroniza-
tion. Computing is accomplished in parallel with multiple-
computing nodes. After the parallel-execution section has been
executed, barrier synchronization is again conducted, and the
workers again return to standby; the master then executes the
sequential-execution section (see Fig. 8).

Barrier synchronization is a mechanism that synchronizes
more than two computing nodes at the same time. The details
on barrier synchronization are described in Section III-C.
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Fig. 8. Execution Sequence Model for OpenMP (Example of Application
Processes in Sec. IV-C)

B. Data-sharing Scheme

The data sharing in OpenMP means the values of variables
in the program are shared. In other words, it is possible to
read from and write to variables between computing nodes ex-
ecuting parallel computing. In OpenMP, all variables declared
on the outside of the parallel-execution region are implicitly
shared. For example, the code in Fig. 6 shares variable pi
between computing nodes while parallel processing is being
executed.

A variable is shared with the SMB that the AWG-STAR
system offers. In other words, this is achieved by allocating the
memory area of variables to the shared memory on the SMB.
Variable content is therefore automatically shared between
computing nodes due to the features of the AWG-STAR
system. The compiler replaces all references to the variables
in the source code with the references of pointer variables, and
sets the address of the memory area allocated on the shared
memory to that of the pointer. Figure 9 shows an example of
transformed variable references. The memory areas for the
shared global variables are statically allocated at the start
of the program. However, the memory areas for the shared
local variables are dynamically allocated before the parallel-
execution region has started execution, and released after
execution has finished. Therefore, a mechanism to manage the
dynamic allocation of memory is required.

We utilized a rule of our OpenMP compiler that frees the
variables in reverse sequential order of allocation to implement
this dynamic memory. That is, we reserved enough memory
area in advance, and allocated it from the top. This implemen-
tation made it easy to control the allocation and de-allocation
of memory because we could use the shared memory as a
stack.

We had to hold the value that showed the last address of the
allocated memory in adopting this stack structure. To achieve
this, we used a rule of the OpenMP compiler where only the
master requests the shared memory to be allocated or freed.



Local Variables
double x; �� double (*x);
int y[10]; �� int (*y)[10];

Global Variables
double x; �� double (* G x);
int y[10]; �� int (* G y)[10];

Fig. 9. Example of Variable References Transformed by OpenMP Compiler

The master increases or decreases the value of the tail address
of the stack when functions for allocation or de-allocation are
called in a program.

C. Synchronization Primitives

Shared data in a parallel program that is read and written
by multiple-computing processes during parallel processing
must be access-controlled by locks to prevent inconsistencies.
A function for barrier synchronization is also required to
guarantee the order of execution of dependent processing. It
is necessary to provide these functions to achieve OpenMP.
These are called synchronization primitives because they are
not provided by the AWG-STAR system.

We therefore implemented a synchronization primitive on
the AWG-STAR system. Synchronization between computing
processes in the OpenMP program was achieved by calling
our synchronization primitives from the intermediate code.

1) Lock Control Function: Programmers have to use a
lock (exclusive) control function to maintain coherency in
the shared variables. The critical sections in an OpenMP
program are determined by OpenMP directives, and then ex-
clusively controlled. Programmers label these critical sections
to distinguish between them if there are more than one in
a program. Our OpenMP compiler converts the labels into
positive integers (�� �� � � � ) in intermediate code. We called
the integers lock numbers, and distinguished between critical
sections by using these.

One method of implementing the lock-control function was
by preparing an index of lock status in the shared memory.
That is, “unlocked” or “process � locked” was shown in the
index in order of lock number. When process � was to lock a
section, it first confirmed that the status of the lock number
was “unlocked”, and it next updated the status to “process �

locked”, which meant process � had locked the section.
This method has a drawback, however, because the lock

steps in critical sections are not atomic and more than one
process may enter one critical section at the same time. We
adopted the master-worker approach to control the index that
is in the shared memory to avoid this problem. Worker process
� first confirms that the status of the lock number is “unlocked”
to lock a section, and then requests the master process to lock
it. When the master process receives the request, it reconfirms
the index and changes the status to “process � locked”. Last,
the worker process obtains a locking acknowledgment from
the master process. Up to one process can execute a section
because processes enter a critical section in order of arrival of
the requests.

Master process

Worker process iWorker process i +1

2. Lock request

4. Acknowledgment

Index for lock

Unlockedn +1

Unlockedn

Unlockedn +1

Unlockedn

1. Confirm status of 

index and write request

Information-exchanging area

Request to lock 

section n

Request to lock 

section n

Shared memory

Memory allocation area

3. Read  request

and update  index

Fig. 10. Lock-control Function

We needed a function to transmit requests between master
and worker processes to adopt this approach. We then utilized
a signal function that the AWG-STAR system offers and part of
the shared memory as an information-exchange area between
processes. When worker process � makes a request to the
master process, it writes the request to the �th information-
exchange area and sends a signal to the master. As the
master process receives the signal and notices that there is a
request from process �, it reads the request from the �th area.
Acknowledgments from the master to the worker are done in
reverse order. This function is outlined in Fig. 10.

Processes leaving a critical section have to unlock it. They
execute the same action as that of the lock to do this. That
is, a worker process requests the master process to unlock the
critical section, and the master updates the index in the shared
memory.

To implement these, we prepared three threads in the master
process, i.e., the “main thread”, which executes the OpenMP
application program, the “control thread”, which controls the
index in the shared memory, and the “signal-waiting thread”,
which receives signals from the worker processes. We adopted
this approach because these three threads have to be computed
in parallel. As the process generates the control thread when
it starts, it is divided into the main and control threads. The
signal-waiting thread is generated from the control thread. We
will now describe the operation of the control and the signal-
waiting threads (see Fig. 11).

The control and signal-waiting threads share information
on the number of the process that sent a signal to the master
process. The process number is stored in the variable Re-
questProcess. The signal-waiting thread constantly awaits
signals from worker processes and updates the value of Re-
questProcess when it receives them. When the control
thread notices that the value of RequestProcess has been
updated, it reads data from the information-exchange area of
that process. Data written in the information-exchange area
of one process consists of two 32-bit data. The first 32 bits



contains the kind of request. The written data is 0x0000FF00 if
a lock is requested, and 0x0000FFF0 if an unlock is requested.
The second 32 bits in the information-exchange area contains
the lock number that the process wants to lock/unlock.

The control thread confirms the index where the request is
to secure lock-number � from process �. The actual imple-
mentation of the index is an array of integers. Lock number
� is unlocked when the �th integer is ��, and when it is an
integer larger than zero, the process number for that figure
is locked. Therefore, if the �th integer of the array is ��, it
is changed to the number for �, which means the section is
locked by process �, and the control thread sends a signal to
that process. If critical-section � is not unlocked, the request
is enqueued to the waiting list. This queue is a one-way list
for each lock number, and one element on the lists includes
the process number and the pointer for the next element. The
head pointer of the list points to NULL if no process is waiting
to be locked.

The control thread confirms from the queue of lock-number
� whether there are any processes waiting to be locked where
the request is to unlock lock-number � from process �. The
control thread changes the index to “unlocked” if no processes
are waiting. If there are, it enqueues the first process and
changes the index to the number of that process. Last, it sends
a signal to the process that is waiting for it.

It is too time consuming to send signals to the master
process itself like other worker processes do when the main
thread of the master process executing an OpenMP application
wants to lock and unlock critical sections. To avoid this, the
main-thread directory calls the series of functions described
above except for sending signals when the master process
locks/unlocks the critical section.

2) Method of Barrier Synchronization: Barrier are synchro-
nized when a process needs to wait until all the processes
reach the same break point. As previously described, this
synchronization is not only called when the programmer writes
it into the program, but it is also automatically inserted into
the intermediate code.

We adopted the master-worker approach for synchronizing
barriers as well as the lock function. When a process arrives
at a barrier, it writes a notice of arrival to the information-
exchange area, sends a signal to the master process, and enters
the waiting state. After the master process receives signals
from all worker processes, it sends signals back to them to
release them from the waiting state. The worker processes that
receive these signals resume execution.

We also implemented a method of controlling barrier syn-
chronization in the control thread (see also Fig. 11) of the
master process. When the control thread detects an update
with a value of RequestProcess, and the data written
in the information-exchange area is 0xFF000000, this means
that the process that sent the signal has arrived at the barrier.
The control thread manages the process that has arrived at the
barrier with a local variable. If the variable indicates that all
processes have arrived at the barrier, the control thread sends
signals to all the worker processes. If there are processes that

Set request
process

Lock
request

Unlocked Locked

Wait for 
signal

Receive

Read  information-
exchage area

Check if request
process is updated
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Fig. 11. Scheme for Lock Control and Barrier Synchronization

are not yet at the barrier, it only updates the variable. It is too
time consuming to send a signal to the master process itself
as well as the lock-control function. We therefore prepared
a barrier flag to share information between the main and
control threads. When the main thread executing an OpenMP
application arrived at the barrier, it directly performed the
series of functions previously described. If the master process
was not the last process to arrive, it set the flag to true, which
was changed to false when all the processes arrived.

IV. EVALUATION OF PERFORMANCE

We evaluated the performance of our OpenMP implementa-
tion in the � computing environment by executing benchmark
programs and the OpenMP application.

A. Environment for Evaluation

Table III lists the specifications for the computing nodes we
used for evaluation. We use from one computing nodes to four
ones, and all nodes have the same specifications. We changed
the length of the optical ring depending on the number of
computing nodes. That is, if we let the number of computing
nodes be � , the length of the optical ring is ���m. We
executed one OpenMP process in one computing node. This
is because the AWG-STAR system does not enable multiple
processes to be executed in a computing node.

We used cluster middleware called SCore [11] for compar-
ison, which can accomplish parallel computing with OpenMP
in an Ethernet environment. SCore offers an SDSM system
called SCASH, achieving a shared memory virtualy in the
distributed memory environment, and a dedicated OpenMP



TABLE III
SPECIFICATIONS FOR COMPUTING NODES

CPU Xeon 3.06 GHz
Main memory 512 MB
Level-one cache 20 KB
Level-two cache 512 KB
NIC Intel PRO/1000
PCI bus 64 bit/66 MHz
PCI transmission speed 533 MBytes/sec
OS Redhat Linux 7.3
Compiler gcc 2.96

TABLE IV
EXECUTION TIME FOR NPB 2.3 BT CLASS W

Environment # of Nodes Execution Time (s)
Speed-up

Ratio
1 47930 1.00

AWG-STAR 2 27322 1.75
4 17172 2.79
1 25 1.00

SCore 2 357 0.07
4 430 0.06

compiler called Omni/SCASH [10]. We used a 1-Gbps Ether-
net and each Ethernet cable was 10-m long.

B. Evaluation with Benchmarks

We selected BT and EP benchmarks from the NAS Parallel
Benchmarks (NPB) 2.3 [12] and the Himeno benchmark [13]
for our evaluation. We used the OpenMP C version of NPB
2.3 [14] which is ported by RWCP (Real World Computing
Project). The size of the problem is XS (���������) on the
Himeno benchmark and Class W (BT: �������� �� (BEP:
���) on the NPB 2.3. The frequency with which NPB 2.3 EP
accesses the shared data is low, but the Himeno benchmark
and NPB 2.3 BT access it relatively frequently.

Table IV and Fig. 12 show the results for the BT and EP
of the NPB 2.3 and Table V shows the results for the Himeno
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TABLE V
RESULTS FOR HIMENO BENCHMARK

Environment # of Nodes MFLOPS Speed-up Ratio
1 0.1074 1.000

AWG-STAR 2 0.2073 1.930
4 0.3760 3.501
1 393.9016 1.000

SCore 2 5.8346 0.015
4 4.0228 0.010

benchmark. Table IV and Fig. 12 show the execution time for
the benchmark program, and Table V lists the performance in
MFLOPS. SCore outperforms the AWG-STAR system, which
did not achieve sufficiently high performance, in these tables
and the figure. However, there was a tendency for performance
to improve as the number of computing nodes increased. The
problem with access to the shared memory may be why the
AWG-STAR system performed poorly.

SCASH as a SDSM system attains a shared memory virtualy
by exchanging the content of local memory between comput-
ing nodes via the network. SCASH acquires the latest data by
communicating with computing nodes and copies these to the
local memory if the data has been updated by other computing
nodes when they access data on the shared memory. SCASH
maintains the consistency of its data between computing nodes
in this way. Although it takes a long time to acquire data,
access to data that has already been acquired is fast.

On the other hand, the hardware keeps the data written in the
shared memory of the AWG-STAR system the same. However,
as we have to access this shared memory via the PCI bus from
the CPU, we cannot read or write sufficiently fast with the
current AWG-STAR system. Although access from the CPU
to the local memory is possible at about 2 GB/s, the maximum
access speed to the shared memory is only about 80 MB/s. All
access to the shared data is slow since all shared data are read
and written against the memory on the SMB.

Therefore, memory is a bottleneck in the AWG-STAR
system and may affect general computing. The difference in
performance in the experimental results with SCore was about
20-fold with four nodes in the NPB 2.3 EP, but it was about 40-
fold in the NPB 2.3 BT. The difference in performance with
SCore in the benchmark with high-access frequency to the
shared data was greater than the difference in the benchmark
with low-access frequency. The difference in performance with
the Himeno benchmark was smaller than the others because
of its wide range of memory access. Parallel programs on
SDSM without data locality generally perform poorly because
of frequent node-to-node communications.

C. Evaluation with OpenMP Application

We utilized a Mandelbrot set as a parallel-processing appli-
cation and a GUI window to check the progress of executions.

1) Calculation of Mandelbrot set: The Mandelbrot set is
defined as a set of all points of complex parameter � such that
the sequence, �� � �, ���� � ��

�
� � �� � �� �� � � � 	, does

not escape to infinity. Mathematically, the Mandelbrot set is



Fig. 13. Window Displaying Image of Mandelbrot Set
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Fig. 14. State Transition Diagram for Drawing Mandelbrot-set Image

just a set of complex numbers. A given complex number, �,
either belongs to � or it does not. A picture of the Mandelbrot
set can be made by coloring all the points, �, that belong to
� black, and all the other points white. The more colorful
pictures that are usually seen are generated by coloring points
not in the set according to how quickly or slowly the sequence,
�	�
�
��	�, diverges to infinity.

Simple parallelizing of the Mandelbrot set is done by
dividing the complex plane into the number of processes,
and each process calculates the area. Each computation is
independent and only the calculation results at the end need
to be collected. This means that the application is suitable for
parallel computation as well as the � computing environment
because the overhead for data sharing/transmission is slight.

Figure 13 shows a window displaying the image of a
Mandelbrot-set zoom sequence. Labels X and Y indicate the
range of calculation (maximum and minimum), and the label
density indicates the difference between each complex number.
The image is redrawn by changing the number of the label
and pressing the “Redraw” button. The window also shows
the computation time.

Figure 14 is a state transition diagram of the application
for drawing the Mandelbrot-set image. When the range of
calculation is set on the Java GUI, it generates OpenMP
processes that execute the Mandelbrot set. They calculate the
Mandelbrot set and send the results to the Java process through
a socket. The Java process draws the image after the results
have been received to show the progress of calculation.
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The Java process generates both master and worker
OpenMP processes (see Fig. 8). The master OpenMP process
starts sequential execution and the worker processes immedi-
ately call barrier synchronization. When the master process
reaches the break point of the barrier method, which means
that sequential execution has finished, all the processes start
successive parallel executions. The Mandelbrot set is executed
in the parallel executions, and barrier synchronization is also
called at the end of the parallel executions. After that, the
master process returns to sequential execution and sends the
result to the socket.

2) Performance Evaluation with Execution Time: Figure 15
plots the execution time to calculate the Mandelbrot set in the
AWG-STAR system and SCore. We used the total execution
time of applications for the evaluation unlike the benchmark
results in Section IV-B. We let the data size of the complex-
number set to be calculated be 
 � �, and executed it when
the size was 
 � �. The horizontal axis of the figure indicates
the value of 
.

The execution time is shorter with few processes in the
AWG-STAR system when there is a small amount of data.
However, as the amount of data increases, the execution time
shortens with many processes. This is a characteristic result
with parallel computing. The time for an initial setting takes
from 10 to 50 sec according to the number of computing nodes
in SCore. The execution time not involving the initial setting
is shorter than that for the AWG-STAR system, and there is
little difference between the number of computing nodes.

3) Evaluation of Performance with CPU Usage: Figures
16 and 17 show the CPU usage during calculation with the
four computing nodes. As these measurements are on a time
scale of seconds, there are time lags between the computing
nodes. The first 7 sec are spent in sequential execution by the
master process. The master process during this time writes
the array into the shared memory to initialize the array that
stores the calculation results. Parallel execution by all the
processes, including the worker processes, starts after the first
sequential execution. They compute the Mandelbrot set in the
parallel execution, and worker processes account for nearly
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100% of CPU usage. The CPU usage by the main process
remains at around 90%, which is not only that for the OpenMP
process but also that for the Java process. The threads for the
synchronization primitives are running in that node.

When the size of the data is 
��� � 
���, the calcula-
tion is divided into multiple computations because we set
the size of the array to ���� � 
��� in the program. The
CPU usage for this is shown in Fig. 17. We can see that
sequential execution takes a long time. The master process
reads the calculation results from the shared memory during
the sequential execution and sends them to the socket. The
Java process receives the results from the master process of the
OpenMP application, and draws an image of the Mandelbrot
set. The overhead incurred for this series of processes is
thought to be low access speed to the shared memory. The
observed speed to read data from the shared memory is less
than 1 Mbps. However, because the SCore utilizes software-
distributed shared memory, there is no difference between
the speed to read from the shared memory and that of local
memory. This decreases the performance overhead, and the
delay to treat a large volume of data remains short. The
memory read time ratio to the execution time is 87% – 97% in
these cases, so if the access speed to the shared memory will
be improved, the execution time for applications is expected
to become shorter.

V. CONCLUSION

We proposed a new architecture for distributed parallel-
computing environments in this paper, the � computing envi-
ronment, which utilizes optical wavelength paths to intercon-
nect shared-memory systems. We established the � computing
environment with the AWG-STAR system, and implemented
the OpenMP shared-memory parallel programming standard
on it. We found our environment was not able to achieve
sufficiently high performance by evaluating it against bench-
mark programs and applying the Mandelbrot set to it. This is
because the access speed for the memory of the AWG-STAR
system was too slow.
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NTT are currently developing the next version of the AWG-
STAR system to improve its method of memory access to
reach that of a shared memory. As we should then be able
to access with almost the same speed as a local memory, we
should be able to achieve better performance.
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