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Abstract

Taking into account requirements of sensor networks,
we need fully-distributed and self-organizing control mech-
anisms which are scalable to the size of a network, ro-
bust to failures of sensor nodes, and adaptive to different
and dynamically changing topology and changes in wire-
less communication environment. To accomplish this goal,
our research group focuses on behavior of biological sys-
tems, which inherently are scalable, adaptive, and robust.
In this paper, we first verify the practicality of control mech-
anisms adopting a reaction diffusion equation, which ex-
plains emergence of patterns on the surface of body of fishes
and mammals, and then propose two methods for faster pat-
tern generation to save energy consumption. From simula-
tion and practical experiments on a prototype, it was shown
that a stable pattern could be generated in a wireless sensor
network in several minutes, even when packets were lost for
collisions in wireless communication.

1 Introduction

Wireless sensor network is one of the most promising
and key technologies for safe, secure, and comfortable so-
ciety. By distributing a large number of sensor nodes and
organizing a network through wired / wireless communica-
tion, one can obtain detailed information about surround-
ings, remote region, entities, and objects. Because of a
large number of sensor nodes, random or unplanned de-
ployment, and dynamic topology changes due to addition,
movement, and removal of sensor nodes, control mecha-

nisms for a wireless sensor network must be scalable, adap-
tive, and robust. In addition, due to difficulty in managing a
large number of nodes in a centralized fashion, mechanisms
must be fully distributed and self-organizing.

To establish control mechanisms with the above men-
tioned features, we focus on behavior of biological sys-
tems, which inherently are scalable, adaptive, and robust.
For example, in [1], we applied a pulse-coupled oscillator
model, which explains emergence of synchronized behav-
iors in a group of flashing fireflies and chirping crickets,
to energy-efficient data gathering. Other examples of bio-
logical mechanisms applicable to sensor networks include
foraging behavior of ants [2, 3] and bees [4], regulation of
blood pressure [5], and so on.

A reaction-diffusion equation is also viable as a key al-
gorithm for autonomous control mechanisms. It was firstly
proposed by Alan Turing [6] as a mathematical model for
pattern generation on the surface of body of fishes and
mammals. Autonomously generated patterns on a sensor
network can be used for routing, clustering, scheduling, and
topology control. There are some researches adopting a
reaction-diffusion equation to establish an autonomous and
self-organizing mechanism [7–9]. For example, RDMAC
[8] is a reaction-diffusion based MAC protocol, where they
noticed the similarity among a scheduling pattern of spa-
tial TDMA and a spot pattern of leopards. A node inhibits
packet emission of neighboring nodes in its range of radio
signals while encouraging nodes out of the range to send
packets for better spatial use of a wireless channel.

Although these works show the potential applicability of
a reaction-diffusion equation to a control mechanism of a
wireless sensor network, they only evaluated the proposal
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Figure 1. Pattern generation

through simulation experiments under ideal condition. In
this paper, we conducts both of simulation and practical
experiments to verify the practicality of reaction-diffusion
based pattern generation. In addition, to have an energy-
efficient control, we propose two methods to reduce the
number of message exchanges required for pattern gener-
ation. We further evaluate the influence of packet loss con-
sidering a practical scenario.

The rest of the paper is organized as follows. In Section
2, we introduce a reaction-diffusion equation that our paper
is based on. Next in Section 3, we describe our reaction-
diffusion based control mechanism for a wireless sensor
network. In Section 4, we then show and discuss results of
simulation and practical experiments. Finally, we conclude
the paper in Section 5.

2 Reaction-diffusion equation

A reaction-diffusion equation of two morphogens, i.e.,
activator and inhibitor, can be written as

∂u

∂t
= F (u, v) + Du∇2u,

∂v

∂t
= G(u, v) + Dv∇2v,

(1)

where u and v are the concentrations of activator and in-
hibitor, respectively. The first term of the right-hand side is
a reaction team and the second term is a diffusion term. F
and G are nonlinear functions for chemical reactions. Du

and Dv are the diffusion rate of activator and inhibitor, re-
spectively. ∇2 is the Laplacian operator.

In a reaction-diffusion mechanism, the following condi-
tions must be satisfied to generate patterns; 1) The activa-
tor activates itself and the inhibitor, whereas the inhibitor
restraints the activator, and 2) The inhibitor diffuses faster
than the activator (Dv > Du). A mechanism of pattern gen-
eration can be explained as follows. In Fig. 1, those hypo-
thetical chemicals are arranged in a line on the x-axis. The
y-axis corresponds to the concentrations of activator and in-
hibitor. Now, consider that the concentration of activator
has a peak at the center by a slight perturbation. The con-
centrations of activator and inhibitor are increased around

the peak by self-activation. The generated inhibitor diffuses
faster than the activator and restrains generation of activator
at further regions. On the other hand at the peak, the con-
centration of activator is kept higher than that of inhibitor
for different rates of diffusion. Consequently, the diver-
sity in the concentration of activator emerges and a pattern
appears. For example, when we color a point where the
concentration of activator exceeds a certain threshold with
white and others with black, we can see a black-white-black
pattern shown at the bottom of Fig. 1.

In this paper, we use the equations below for F and G,
which model pattern generation on an emperor angelfish po-
macanthus imperator [10].

{
F (u, v)= max

{
0, min

{
au− bv+ c,M

}}
− du,

G(u, v)= max
{
0, min

{
eu+ f,N

}}
− gv,

(2)

where a and e correspond to the rate of activation and b is
for that of inhibition. c and f are parameters for synthesis
or increase of morphogens per unit time. d and g are for
decomposition or decrease of morphogens per unit time. M
and N are constants of limit. In order to generate patterns,
the parameters must satisfy Turing conditions shown below.

a − d − g < 0, (3)

eb − (a − d)g > 0, (4)

Dv(a − d) − Dug > 0, (5)

(Dv(a − d) − Dug)2 − 4DuDv(eb − (a − d)g) > 0. (6)

As far as these conditions are satisfied, the space will have
the spatial heterogeneity in terms of the concentration of
morphogens and a variety of patterns such as spots, stripes,
and maze can be generated.

If the initial concentrations of activator and inhibitor are
both larger than zero, u and v have the upper limit umax =
r/d and vmax = s/g, respectively. The lower limits are
umin = vmin = 0. Although the derivation is not shown in
the paper due to the space limitation, by regarding F (u, v)
as (a−d)u−bv+c and G(u, v) as eu−gv+f , wavelength
l of a generated pattern can be derived as,

l = 2π 4

√
DuDv

eb − (a − d)g
. (7)

3 Reaction-diffusion based control mecha-
nism

To verify the practicality of a reaction-diffusion based
mechanism, we consider a simple and general mechanism
described as follows.



Nodes are arranged in a grid network topology, where
a node can communicate with four direct neighbors in up,
right, down, and left directions. Nodes at a corner have
two neighbors and nodes at an edge have three neighbors.
At regular intervals, a node calculates the reaction-diffusion
equation by using information about morphogen concentra-
tions of neighbors, which it has received after the previous
control timing. Then, it broadcasts information about its
morphogen concentrations to the neighbors. If a node did
not receive concentration information from a neighbor in
this interval, it uses the latest information it received in-
stead. Nodes behave in an asynchronous manner. It means
that timing of message emission and reaction-diffusion cal-
culation are different among nodes.

Since the arrangement of nodes and exchange of infor-
mation are discrete in space and time, we first discretize Eq.
(1) as follows.

ut+1 = ut+ ∆t{
F (ut, vt)+ Du

(un
t + ue

t + us
t + uw

t − 4ut)
∆h2

}
,

vt+1 = vt+ ∆t{
G(ut, vt)+ Dv

(vn
t + ve

t + vs
t + vw

t − 4vt)
∆h2

}
.

(8)

At the t-th control timing, a node calculates the reaction-
diffusion equation to obtain its morphogen concentrations
ut+1 and vt+1, based on which a node decides its behavior,
e.g., color, in the next control interval. A set of un

t , ue
t , us

t ,
and uw

t and a set of vn
t , ve

t , vs
t , and vw

t correspond to neigh-
boring nodes’ concentrations of activator and inhibitor that
a node uses for calculation at the t-th control timing, respec-
tively. ∆h and ∆t correspond to the distance between nodes
and the discrete step interval of time, respectively. There is
the range of ∆t for the equation reaches convergence,

0 < ∆t < min
{ 2

d + 4Du(∆x−2 + ∆y−2)
,

2
g + 4Dv(∆x−2 + ∆y−2)

}
. (9)

As far as the degree of temporal discretization is within this
range, the same pattern is generated for the same set of pa-
rameters.

Since a sensor node has the limited computational capa-
bility, integer arithmetic is preferred for high speed opera-
tion. However, integer arithmetic introduces several prob-
lems such as truncation error, cancellation error, loss of
trailing digit, and overflow. When the number of significant
digits is insufficient, a generated pattern becomes different
from that obtained by real number computation or a pat-
tern does not converge. In this paper, we set the number of
significant digits as four. Since concentrations of activator
and inhibitor range from 0 to M and N and they are set at

Table 1. Parameter setting
parameter value parameter value

a′ 80 D′
u 2

b′ 80 D′
v 50

c′ 20 M ′ 200000
d′ 30 N ′ 500000
e′ 100 ∆T 1
f ′ -150 ∆h 1
g′ 60

0.2 and 0.5, respectively, we multiply the concentrations by
103 to have four-significant-digit numbers. We confirmed
this was sufficient from simulation experiments.

Taking into account this, we use the following equations
in place of Eqs. (2) and (8).

104 × u′
t+1 = 104 × u′

t+ ∆T

{
F ′(u′

t, v
′
t)

+D′
u

un
t
′+ ue

t
′+ us

t
′+ uw

t
′− 4u′

t

∆h2

}
,

104 × v′t+1 = 104 × v′
t+ ∆T

{
G′(u′

t, v
′
t)

+D′
v

vn
t
′+ ve

t
′+ vs

t
′+ vw

t
′− 4v′

t

∆h2

}
,

(10)

and

F ′(u′
t, v

′
t)=

max
{
0, min

{
a′u′

t− b′v′
t+ c′,M ′}}

− d′u′
t,

G′(u′
t, v

′
t)=

max
{
0, min

{
e′u′

t + f ′, N ′}}
− g′v′t,

(11)

where parameters with prime are multiples of correspond-
ing parameters by 103 except that M ′ and N ′ are multiples
of M and N by 106, respectively. ∆T is a multiple of ∆t
by 10.

4 Simulation and practical experiments

In this section, we show results of simulation and practi-
cal experiments and discuss the practicality and applicabil-
ity of the reaction-diffusion based mechanism.

4.1 Simulation experiments

First, we verify the appropriateness of our spatial dis-
cretization of the reaction-diffusion equation. Basic param-
eters are summarized in Table 1, which satisfy the Turing
conditions. Nodes are arranged in a 100 × 100 grid net-
work. At the beginning of a simulation run, the concentra-
tions of activator and inhibitor of the node at (50,50) are set
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Figure 2. Comparison of simulation and analysis: wavelength

Figure 3. Generated
pattern by simulation
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Figure 4. Simulation result of method (a)

at 5000 and 3000, respectively. The concentrations at the
other nodes are all set at 3000. Some results of comparison
among simulation and analysis is illustrated in Fig. 2 for
the wavelength of generated patterns. The wavelength of
a pattern generated by simulation is obtained by averaging
the sum of widths of black and white stripes over stripes.
As shown in the figures, the results match among simula-
tion and analysis. With the finer spatial discretization with
a smaller ∆h, results become closer. We also evaluated the
upper limit of temporal discretization ∆T and simulation
and analysis had good matches, but results are not shown in
the paper due to the space limitation.

Figure 3 illustrates a stable pattern generated on a 5 × 5
grid network with a set of parameters in Table 1. A white
square corresponds to a node with the concentration of ac-
tivator higher than 3000. A black square is for a node with
the concentration of activator smaller than 3000. Since we
set a peak of the concentration of activator at the center, a
generated pattern forms concentric circles.

Pattern generation normally takes time and requires a
considerable number of calculations. It further corresponds
to the number of communication and the energy consump-
tion. Therefore, we need to accelerate pattern generation
for energy-efficient and adaptive controls. We propose two
methods, (a) to have a larger discrete step ∆T and (b) to cal-
culate the reaction-diffusion equation for K times at each
control timing.

Figure 4 show results of changing ∆T to 1, 10, and 40
by using the method (a). The other parameters are set based

on Table 1. The theoretical upper limit of ∆T is 43.5. Gen-
erated patterns are the same among all. The left figure of
Fig. 4 illustrates the transition of concentration of activator
at the node at the upper left corner against the number of
communication and calculations. The number of communi-
cation corresponds to the number of messages that a node
emits and it is equivalent to the number of control intervals.
Since a node calculates the reaction-diffusion equation once
per control interval, the number of communication and the
number of calculations are identical for the method (a). As
shown in the left figure of Fig. 4, the number of communi-
cation and calculations required for the convergence of con-
centration of activator can be decreased by increasing ∆T .
However, the faster convergence is achieved at the sacri-
fice of the accuracy of calculation. The right figure of Fig. 4
shows the transition of concentration of activator against the
elapsed time in reaction diffusion calculation. The elapsed
time is derived by multiplying ∆T by the number of com-
munication or calculations. We can see that a larger ∆T
leads to larger fluctuation, because the accuracy of calcu-
lation becomes lower with a larger ∆T for discretization.
However, in our simulation experiments, all ∆T within the
range of Eq. (9) result in the same stable pattern illustrated
in Fig. 3.

Next, we evaluate the method (b). Figure 5 shows re-
sults of changing K as 1, 10, and 40. The other param-
eters are set as Table 1. Generated patterns are the same
among all independently of K. In the case of the method
(b), at regular control timing, a node calculates the reaction-
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Figure 8. Prototype
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diffusion equation for K times by using the same concen-
tration values for neighboring nodes, and then broadcasts
the result. Therefore, the number of calculations is K times
larger than the number of communication. In the left fig-
ure of Fig. 5, the transition of concentration of activator is
depicted against the number of communication for different
setting of K. As shown, a larger K decreases the number
of communication required for convergence. Since a larger
K spoils the accuracy of reaction-diffusion calculation as a
larger ∆T does, the transitions of concentration of activa-
tor against the number of communication are similar among
the right figures of Fig. 4 and Fig. 5. K also has the limi-
tation on the effective range to generate a pattern. When K
is greater than 130, the concentration of activator does not
converge and a pattern becomes unstable. In the range of
40 < K < 130, the number of communication required to
reach a stable pattern does not change. Therefore, the effec-
tive range of K is from 0 to 40. Figure 6 illustrates compari-
son among the methods, where K = 1 and ∆T = 10 for the
method (a) and K = 10 and ∆T = 1 for the method (b).
As shown in the figure, those methods show quite similar
behavior.

Although the proposed methods can effectively reduce
the number of communication, it sacrifices the robustness
against information loss. Figure 7 shows the probability of
successful pattern generation against the information loss

rate. We assume that the information about concentrations
is lost at random at the information loss rate. The proba-
bility of successful pattern generation is defined as the ratio
of simulation runs which reach the same stable pattern that
is generated for the case without loss of information to all
1000 simulation runs. As shown in Fig. 7, our accelera-
tion methods can generate a stable pattern under random
information loss of 4%, whereas a normal mechanism with-
out acceleration can tolerate up to 23% random information
loss. Therefore, we need an additional mechanism, such
as retransmission, to generate patterns under unstable and
unreliable radio conditions.

4.2 Practical experiments

We implement the reaction-diffusion based mechanism
using off-the-shelf nodes of OKI Electric Industry (Fig. 8).
We added a board with large LEDs for better visualization
of pattern generation. 25 nodes are arranged in a 5 × 5 grid
network. All nodes use the same reaction-diffusion equa-
tion of the same parameter setting in Table 1 and adopt the
method (a) with ∆T = 10. A node uses IEEE 802.15.4
non-beacon mode MAC protocol. 32 bit signed integer is
used for calculation. All nodes are in the range of radio sig-
nals of each other. Therefore, to restrict nodes to communi-
cate among direct neighbors, we introduce a MAC address-



based filter. A node maintains a list of MAC addresses of
neighboring nodes to communicate with, and it only re-
ceives packets originated from nodes in the list. A packet
broadcast by a node is of 32 bytes including a header, the
concentrations of activator and inhibitor, the total number
of calculations it has conducted, and the total number of
packets it has not received. The last two are for logging and
debugging purpose.

We determine the control interval to keep the average
loss rate less than 4%. If the control interval is too short,
nodes behave in synchrony and the loss rate becomes high
for collision and congestion. We conducted preliminary ex-
periments by changing the control interval and found that
the control interval must be larger than about 700 msec to
keep the loss rate below 4%. Therefore, we empirically set
the control interval as 1400 msec taking into account dy-
namic changes in wireless communication environment.

In Fig. 8, nodes with a LED on are indicated by circles.
A node turns on its LED when the concentration of activator
is higher than 3000. In comparison to Fig. 3, it is verified
that the prototype can generate the same pattern as in sim-
ulation. Figure 9 shows the detailed comparison. There is
no loss of information in simulation, whereas the average
packet loss rate is about 3% on the prototype. Neverthe-
less, transitions of concentration of activator are almost the
same among the prototype and simulation. Therefore, We
can conclude that the reaction-diffusion based pattern gen-
eration works on an actual wireless sensor network and the
number of communication, i.e., the amount of energy con-
sumption, can be reduced by our acceleration methods with
appropriately chosen parameters.

5 Conclusion

In this paper, we verified the practicality of reaction-
diffusion based control mechanisms for wireless sensor net-
works by simulation and practical experiments. We also
proposed two method to accelerate pattern generation for
energy-efficiency. We plan to consider a system which can
generate an application-oriented pattern under conditions of
random node layout, dynamic changes in topology, and a
larger number of nodes.
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