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Abstract—In this paper we discuss robustness issues of a
biologically inspired routing protocol for mobile ad hoc networks
and the influence it has on the Quality of Service (QoS) in the
system. Contrary to fixed network structures, ad hoc networks
are susceptible to frequent topology changes due to the mobility
and churn of the participating nodes. Our goal is therefore to
provide fast recovery from connectivity failures, as well as a fast
reaction to path changes due to node mobility or churn.

I. I NTRODUCTION

Mobile ad hoc networks (MANETs) have seen widespread
popularity due to their high flexibility in providing users
with network access. In contrast to conventional wired access
technologies, they do not require a fixed infrastructure, but by
using multi-hop communication, each node acts not only as
host, but also as router and forwards packets to a destination
node, see Fig. 1. However, this is the reason why MANETs
behave entirely different from conventional wired networks
when it comes to considerations ofquality of service(QoS)
issues. QoS can be briefly described as the set of service
requirements that need to be maintained or guaranteed by the
network while transmitting the packets of a flow from a source
node to a destination node [1]. As connections between nodes
are set up on demand and transmitted over volatile radio chan-
nels, conventional metrics such as guarantees of bandwidth
or packet loss rate are harder to maintain in MANETs than
in wired networks. In fact the topology is prone to changes
when the hosts are fully mobile or enter and leave the network
at a high rate, making resilience to failures and robustness
of the connections among the key issues. Additional aspects,
such as the hidden and exposed terminal problem or security
issues caused by transmissions over radio channels impose
further constraints on the seamless and secure operation of
the network.
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Fig. 1. Packet forwarding in MANET

In this paper we present a robust routing protocol for ad
hoc networks which is inspired by the attractor selection
mechanism found in gene expression in biological systems
[2]. Our goal is to be able to cope with sudden changes of the
network topology by using a simple and self-adaptive method.
While in previous work, we considered the application of
attractor selection for choosing appropriate overlay routes [3]
or the hops in ad hoc networks [4], our focus in this paper
lies on the robustness issues of the proposal. Especially, we
consider an application which requires a high packet delivery
ratio and where no retransmission mechanism is applied on
higher layer. A possible example application would be video
streaming over UDP.

The rest of this paper is organized as follows. In Section II
we discuss some important issues on QoS routing in ad hoc
networks and briefly review related work. Then, we present the
proposed model and its mathematical background in Section
III. This is followed by a description of how to apply the
mechanism within an ad hoc routing protocol in Section
IV and we evaluate its performance by some exemplary
simulation results which are presented in Section V. Finally,
the paper is concluded with a short outlook on possible future
extensions in Section VI.

II. I SSUES ONQOS IN MANET ROUTING

In general, there are three major routing concepts for ad
hoc networks [5]: table-driven (proactive), source-initiated
(reactive), orhybrid methods. Purely proactive methods have
a low latency when the connection between source and des-
tination node is set up, but requires a high overhead by con-
stantly updating the routing tables. Therefore, more methods in
MANETs focus on reactively setting up the connection when
it is required. Some well known examples aredynamic source
routing (DSR) [6],ad hoc on-demand distance vector(AODV)
[7], and thetemporally-ordered routing algorithm(TORA) [8].

In AODV, which is perhaps the most studied MANET
routing protocol, each node uses routing tables to maintainthe
information of forwarding nodes. The routing tables are setup
by flooding the network with probe packets. Several variants
of DSR and AODV have been proposed to consider multiple
paths between source and destination to increase transmission
reliability [9]. A comparison of the performance of different
multi-hop MANET routing protocols can be found in [10].
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In order to provide any QoS guarantees in MANETs,
we must make certain assumptions concerning the network
dynamics. At first, since nodes only have limited transmission
radius, a minimal node density must exist that connectivity
among the nodes can be made and the destination node
can be reached by some route from the source node. The
higher the mobility of the nodes is, the more difficult it is to
maintain connectivity. This is defined in [11] that the network
should becombinatorially stable, i.e., the changes in topology
occur sufficiently slowly to allow successful propagation of all
topology updates as necessary.

Mohapatraet al. [1] discuss important issues of QoS in
MANETs and describe methods on enhancing QoS at different
layers of the protocol stack, for example, by using improved
channel techniques on physical layer or by using IEEE 802.11
DCF mode to overcome the hidden terminal problem. How-
ever, we will focus in the following on methods operating on
network layer. There are several proposals for QoS support,
e.g. [12], [13], [5], [14], which are built on methods for
estimating and reserving bandwidth or using a combination
of several metrics [15]. In our approach we will focus on
the packet delivery ratio as main metric which provides an
indication of how well the destination node can be reached
in the presence of topology changes. The idea is to use a
simple decision scheme for determining the next hop which
can quickly and autonomously overcome sudden connectivity
failures in the network.

III. A TTRACTOR SELECTION MODEL INSPIRED FROM

CELL BIOLOGY

Our proposed routing method is based on each network node
applying adaptive response by attractor selection(ARAS) to
select its next hop. ARAS is a biologically inspired method
for adaptively selecting one among several candidates which
best reflects the current situation in a dynamic environment.
ARAS is originally a model for its hostE. coli cells to
adapt to changes in the availability of a nutrient for which
no molecular machinery is available for signal transduction
from the environment to the DNA [2].

Two key principles are used in ARAS. The first is the
concept of attractors to describe the multiple states of gene
expression. Anattractor is the region to which the orbit of
a dynamic system recurrently returns regardless of the initial
conditions [16]. Even if a state is perturbed by fluctuations, the
system state will be drawn over time to an attractor. Therefore,
the second principle which is utilized in ARAS is to introduce
a small inherent noise termto the system which permits
adaptation to new states and increases the robustness of the
system to externally introduced fluctuations. In nature, noise
always exists and no process or entity is purely deterministic.
For example, if we consider cells of the same type, the values
of the quantities describing them will vary from cell to cell
and for a single cell, these values will also fluctuate over time
[16].

Basically, we can outline the attractor selection method as

Fig. 2. General concept of ARAS

follows. Using a set of differential equations of the form

dmi

dt
= f (m1, . . . ,mM ) × α + ηi i = 1, . . . ,M

we describe the dynamics of anM -dimensional system. Each
differential equation has a stochastic influence from an in-
herent Gaussian noise term. Additionally, we introduce an
activity α ∈ [0, 1] which changes the influences from the
noise terms. For example, ifα is large, the system behaves
rather deterministic and converges to attractor states defined
by the structure of the differential equations. However, for
small α the noise term dominates the behavior of the system
and essentially a random walk is performed. When the input
values (nutrients) require the system to react to the modified
environment conditions, activityα changes accordingly caus-
ing the system to search for a more suitable state, see Fig. 2.
This may involve thatα causes a previously stable attractor
to become unstable.

A. Mathematical Model

Consider a set ofM alternatives among which one will be
selected. Letmi be the proportion of selectingi asmi and

m = [m1, . . . ,mM ]
T

as the vector over allmi. The dynamic behavior of eachmi

is characterized by the stochastic differential equation system
given in Eqn. (1).

dm
dt

=
s(α)

1 + max(m)2 − m2
− d(α) m + η (1)

The functionss(α) andd(α) are the rate coefficients of mRNA
synthesis and degradation in the original biological model,
respectively. They are both functions ofα, which represents
cell activity or vigor.

s(α) = α [β αγ + ϕ∗] (2)

d(α) = α (3)

The parametersβ andγ in Eqn. (2) are factors which influence
the mapping of activity to the output probabilities and we use
β = 50 andγ = 3 throughout this study. The constantϕ∗ is a



special offset point which we will discuss below. For the sake
of simplicity we also define the effective growth rateϕ.

ϕ(α) =
s(α)

d(α)
(4)

Furthermore, the vector given by

η = [η1, . . . , ηM ]
T

in Eqn. (1) consists of independent and identically distributed
Gaussian random variables which represent the inherent noise
found in gene expression.

When we define the functionss(α) and d(α) as given in
Eqn. (2), we obtainM equilibrium solutionsm̄(k) of Eqn. (1)
in the form of

m̄
(k) =

[

m̄
(k)
1 , . . . , m̄

(k)
M

]T

k = 1, . . . ,M

with componentsm̄(k)
i , see Eqn. (5).

m̄
(k)
i =

{

ϕ(α) i = k (H value)
1
2

[

√

4 + ϕ(α)2 − ϕ(α)
]

i 6= k (L values)

(5)

The interpretation of the constant term

ϕ∗ =
1√
2

can be given as follows. Forϕ(α) = ϕ∗ the high and low
values are equal, and therefore there is no preference for any
solution in particular. This occurs, however, whenα = 0, so all
mi will be nearly equal and the adaptation toward a solution
is done by random walk.

In summary, the general behavior of ARAS can be described
as follows. The system in Eqn. (1) converges to solutions
which have a single high value (H) and all other values are low
(L). The dynamics of activityα influences the selected values.
When α is high, the high valueH also approaches 1.0, i.e.,
the selection becomes more deterministic. On the other hand,
for small α, H andL become equal and the probabilities for
selecting the next hop is controlled by the noise term, see
Fig. 3.

B. Activity Dynamics

In the original biological model, activity performs a map-
ping of the availability of the nutrients to a single real value.
Thus, it controls the influence of the noise termsηi on the
dynamic behavior of the system. Ifα ≈ 0, the equations are
dominated byηi and the system essentially performs a random
walk. On the other hand, forα ≈ 1, the random influence
recedes and the system converges to an attractor. In this paper,
we use thepacket delivery ratioof a flow measured at the
destination node as activity, although other types of mappings
are also feasible, e.g., number of hops, path length, available
bandwidth, or combinations of several factors [4].

Fig. 3. Influence ofα on output probabilities

IV. A D-HOC ROUTING WITH ATTRACTOR-SELECTION

So far we only discussed about the basic properties of
attractor selection model to choose the next hop among the
neighboring nodes and to react to updates of the network
topology. Now, we will elaborate on how the selection method
can be implemented within a stable and robust ad hoc routing
protocol.

A. AODV-like Reference Model

Basically, the main focus of our mechanism is to operate in a
fully self-adaptive way while reducing the amount of overhead
from flooding the network with probe packets to find new
routes. We use an AODV-like method [17] as reference model
in order to compare the efficiency of our proposed mechanism.
This reference method operates as follows. When a new
connection from a source node to an unknown destination
node is requested, it broadcastsroute request packets(RREQ)
to its neighbors. On receiving a RREQ, a node responds to it
with a route reply(RREP) if it has a route to the destination
in its routing table, otherwise it rebroadcasts the RREQ to its
neighbors. A node only processes the first RREQ and discards
all subsequent RREQ of the same flooding attempt. This whole
process is repeated until the destination node is found which
then replies with a RREP to the source node along the reverse
path. Upon reception of a RREP, all intermediate node store
the next hop for that destination in their routing table.

In case that one of the forwarding nodes becomes un-
available, the previous hop node responds with a route error
(RERR) to the source node, which then initiates another
flooding attempt like described above.

B. Route Setup Phase of Proposal

In our proposed method we want to limit the number of
broadcasts and keep a simple method for selecting the next
hop node in case a route breaks. Initially, the source needs to
find the destination node, which is done in the exact way as
described above for the AODV mechanism. However, instead
of keeping routing table entries, noden now maintains a vector



Fig. 4. Decision of next hop with ARAS

of hop probabilities to each of its neighbors

pn = [pn,1, . . . , pn,M ] (6)

when noden hasM neighboring nodes. Probing neighboring
nodes can be done by exchanging HELLO messages as in
other routing protocols and the entries of neighbors which do
not reply for a given period are removed and new neighbors are
added when they appear within the transmission range. These
probabilities are maintained for each connection between a
source and destination pair and set up reactively when a route
is requested. We choose the same route setup mechanism as
in AODV. When the destination node sends a route reply
(RREP) message back to the source on the reverse path and
an intermediate noden receives a RREP, it sets uppn with
pn,k = 1 if the next hop ofn toward the destination is node
k andpn,i = 0 for all i 6= k.

C. Route Maintenance Phase

Once the route has been set up, data packets are transmitted
over this route from the source to destination. Each interme-
diate noden chooses its next hop according to the probability
vector pn. Whenever, the destination node receives a packet,
it evaluates the current quality of this connection in termsof
the activity termα and piggybacks this information on the
acknowledgment packets back to the source. All intermediate
nodes update their hop probability vector according to the
new activity. Basically, this means that the proposed method
operates at first similarly to AODV and remains this way as
long as the packet delivery ratio is near one. However, having
a node disappear along the path causes that the delivery ratio
drops and the lower it becomes, the more randomly the next
hop selection is done. Nodes which receive data packets for
a connection for the first time, set up the vectorpn. This
will cause that in the event of a route failure, many nodes
will be setting up these vectors. In order to eliminate the
unnecessary overhead of keeping unused routing vectors with
stale connections in memory, the ARAS state levelsmi decay
over time at a rateδ.

dmi

dt
= δ (0 − mi) i = 1, . . . ,M (7)

If all entries remain below a threshold for a certain period
of time, the node has not been used for this connection and the
vector is removed from memory. The vectorpn evolves over
time and is obtained from the system in (1) after normalization.
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Fig. 5. Flowchart of basic ARAS-based routing mechanism

The reason for using a decay instead of a simple timeout is
that this can be seamlessly integrated in the calculation ofthe
ARAS state values.

The performance of this method can be further improved if
the neighboring nodes are considered in two sets, aneighbor
set Nn and a candidate setCn of nodes which lie in the
direction toward the destination, see Fig. 4. This, however,
requires either some kind of position information obtained
through GPS or the information of the relative position of
a node to the destination, which can be obtained by additional
signaling. In this work, we assume that the candidate set can
be identified within the neighbor set. This can be done for
example by considering the hop level at which a RREQ packet
is received from the source node in the initial flooding stage.
Nodes with a higher hop level than their neighbors are thus
more likely to lie closer toward the destination.

We can now summarize the basic algorithm for packet
forwarding with MARAS when noden receives a packet for
destination nodedest, see Fig. 5. After receiving the packet,
the node checks if it is the intended destination. In this case, it
determines the new activityα (in our case the packet delivery
ratio) which is then propagated to all nodes in the reverse
direction along the path. If the node is not the destination,it
queries its neighboring nodes and obtains from the replies the
neighbor setNn and candidate setCn. With this knowledge
the noden can see if the destination can be directly reached,
i.e., the destination node lies in the candidate set. Otherwise,
the candidate set, if not empty, is chosen as the set on which
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Fig. 6. State model of node activity

ARAS operates. However, due to the irregularity of the node
distribution, it may occur that no suitable candidate exists in
the direction to the destination. In order to avoid getting stuck
in dead ends, the requirement of the next hop being nearer to
the destination is relaxed and the entire neighbor set is used
for ARAS. The ARAS equation in (1) is continually computed
over time and based on the current state valuesmi at a packet
arrival, the selection algorithm is performed on the current set
of available neighboring nodes. Finally, the resulting ARAS
state vector is normalized to yield a probability distribution and
the next hop is selected randomly following this probability
distribution and the packet is forwarded to its next hop.

V. NUMERICAL EVALUATION

In this section, we investigate the performance of the pro-
posed method using ARAS for routing by simulation experi-
ments. In order to focus on the behavior of the routing method,
we assume idealized conditions for the MAC and PHY layer,
i.e., no collisions, hidden nodes, etc. As a reference we usethe
AODV model as described in Section IV-A for comparison.
Nodes are randomly distributed in a windowW of unit size
according to a homogeneous spatial Poisson process [18] with
densityλ. This means that on average there will beλ nodes in
W . Obviously, the relationship betweenλ and the transmission
ranger of each node impacts the connectivity of the system.
So, if there are too few nodes, the probability of being able to
reach the destination and hence obtaining a sufficient packet
delivery ratio will be very low, regardless of the considered
routing mechanism. A brief theoretical discussion of this issue
can be found in [4]. We user = 0.2 for all of our experiments
and each simulation runs for a duration of 10000 time steps
and is repeated 1000 times with a new random layout over
which average values are taken.

In order to investigate the robustness and the reactive be-
havior of the routing method, each node has an active state of
operation and an inactive (sleeping) state at which it is unable
to forward any incoming packets. For the sake of simplicity,
we consider discrete time steps, and the node activity is
characterized by a probabilityq with which it remains in
its current state at each time step, see Fig. 6. Thus, the
active and inactive phases are characterized by geometrically
distributed random variables. Note that since initially the same
flooding mechanism is used to find the destination node in both
methods, the results forq = 1 (no activity change) would be
nearly equal in both cases. In the following, we will consider
the two valuesq = 0.9995 and q = 0.995, which correspond
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Fig. 7. Trace of packet delivery ratio from single run
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Fig. 8. Packet delivery ratio

to mean activity/inactivity durations of about 2000 and 200
time steps, respectively.

A. Efficiency of Packet Delivery

At first we compare the efficiency of the routing method
with ARAS to that of AODV in terms of the packet delivery
ratio. We assume that no retransmissions of erroneous packets
are made, so the effective packet delivery ratio may be higher
when a retransmission mechanism on a higher layer (e.g. TCP)
is applied.

In Fig. 7 the trace of the packet delivery ratio is depicted
over time for an individual simulation run with identical
conditions for both routing methods. We can see that when
nodes become inactive along the path, the delivery ratio with
AODV drops step-like over time. On the other hand, the
proposed method shows a good, nearly constant behavior. The
parameters used in this run were a node density ofλ = 120,
q = 0.995, and radiusr = 0.2 with the same node layout and
activity behavior of each node.

Fig. 8 shows the packet delivery ratio of both methods
for q = 0.9995. We can see whenq is high, both methods
have nearly equal results. For smallerq which leads to shorter
sojourn times in the activity/inactivity phases, the difference
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Fig. 9. Overhead from probe packets

between routing with ARAS and AODV becomes more evi-
dent. In both cases, the packet delivery ratio can be improved
compared to AODV.

B. Overhead from Probe Packets

When we look at the overhead due to probe packets until the
path is found, we can see in Fig. 9 that the proposed method
with ARAS shows a significantly better performance than
the flooding based AODV. When the node density increases,
AODV can find a path faster than when there are only few
nodes. Note, however, that for AODV only those probe packets
are considered until a path is found. Therefore, in an actual
network, the total number of probe packets in AODV is much
higher at large densities.

We can further see from Fig. 9 that the difference in node
activity has hardly any influence on the number of probe
packets needed for routing with the proposed method. In fact,
the absolute number of packets can be further reduced since
in this experiment the current neighborhood is evaluated at
every time step. This is a kind of a worst case assumption.
In practice, updating the neighbor set only at a certain time
interval is sufficient enough. This would further reduce the
number of probe packets in ARAS.

VI. CONCLUSION

In this paper we presented a simple, yet efficient routing
mechanism which is very robust to routing failures. It is based
on the biological attractor selection mechanism and uses the
concept of attractors to select among all candidate next hop
nodes the one which is best in terms of a metric, in our
case the packet delivery ratio. Our focus lies on robustness,
but numerical results showed that the method also performs
similarly well as the AODV reference model used in the
simulations. However, when the node activity is subject to
frequent changes due to their duty cycle, churn, or mobility,
the number of required broadcasts can be reduced compared
to AODV.

The experiments in this paper dealt only with static nodes,
yet the method is also applicable when the nodes are mobile.

However, in this case the selection of the candidate set must
be performed differently. In the future we wish to find more
robust methods on limiting the set of candidate nodes among
the neighbors which works well in mobile environments.

ACKNOWLEDGMENTS

This research work was supported by “Special Coordination
Funds for Promoting Science and Technology:Yuragi Project”
and a Grant-in-Aid for Scientific Research (A)(2) 16200003
of the Ministry of Education, Culture, Sports, Science and
Technology in Japan.

REFERENCES

[1] P. Mohapatra, J. Li, and C. Gui, “QoS in mobile ad hoc networks,” IEEE
Wireless Communications, vol. 10, no. 3, pp. 44–52, June 2003.

[2] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo, “Adaptive response
of a gene network to environmental changes by fitness-inducedattractor
selection,”PLoS ONE, vol. 1, no. 1, p. e49, 2006.

[3] K. Leibnitz, N. Wakamiya, and M. Murata, “Biologically inspired
self-adaptive multi-path routing in overlay networks,”Commun. ACM,
vol. 49, no. 3, pp. 62–67, 2006.

[4] ——, “Self-adaptive ad-hoc/sensor network routing withattractor-
selection,” inProc. of IEEE GLOBECOM, San Francisco, CA, Novem-
ber 2006.

[5] Q. Xue and A. Ganz, “Ad hoc QoS on-demand routing (aqor) in mobile
ad hoc networks,”J. Parallel Distrib. Comput., vol. 63, no. 2, pp. 154–
165, 2003.

[6] D. Johnson, Y. Hu, and D. Maltz, “The dynamic source routing protocol
(DSR) for mobile ad hoc networks for IPv4,” IETF Network Working
Group, RFC 4728, February 2007.

[7] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV) routing,” IETF Network Working Group, RFC 3561,
July 2003.

[8] V. Park and S. Corson, “Temporally-ordered routing algorithm (TORA)
version 1, functional specification,” IETF MANET Working Group,
Internet Draft, July 2001.

[9] S. Mueller, R. P. Tsang, and D. Ghosal, “Multipath routing in mobile
ad hoc networks: Issues and challenges,”Lecture Notes in Computer
Science, vol. 2965, pp. 209–234, Jan. 2004.

[10] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” inProc. of ACM/IEEE MobiCom ’98, New York, NY, 1998,
pp. 85–97.

[11] S. Chakrabarti and A. Mishra, “QoS issues in ad hoc wireless networks,”
IEEE Communications Magazine, vol. 39, no. 2, pp. 142–148, 2001.

[12] C. R. Lin and J.-S. Liu, “QoS routing in ad hoc wireless networks,”
IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp.
1426–1438, August 1999.

[13] C. Zhu and M. S. Corson, “QoS routing for mobile ad hoc networks,”
in Prof. of IEEE INFOCOM, New York, June 2002, pp. 958–967.

[14] L. Chen and W. B. Heinzelman, “QoS-aware routing based onbandwidth
estimation for mobile ad hoc networks,”IEEE Journal on Selected Areas
in Communications, vol. 23, no. 3, pp. 561–572, March 2005.

[15] S. R. Medidi and K.-H. Vik, “QoS-aware source initiatedad-hoc
routing,” in Proc. of IEEE SECON, Santa Clara, CA, October 2004,
pp. 108–117.

[16] K. Kaneko,Life: An Introduction to Complex Systems Biology. Berlin:
Springer, 2006.

[17] C. Perkins and E. Royer, “Ad hoc on-demand distance vector routing,”
in 2nd IEEE Workshop on Mobile Computing System and Applications,
New Orleans, LA, Feb. 1999.

[18] J. Kingman,Poisson Processes, ser. Oxford Studies in Probability. New
York: Oxford University Press, 1993, vol. 3.


