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Abstract

In a P2P file-sharing system, a node finds and retrieves
its desired file. If multiple nodes cache the same file to pro-
vide others, we can achieve a file-sharing system with low
latency and high file availability. However, a node has to
spend costs, e.g., processing load or storage capacity, on
caching of a file. Consequently, a node may selfishly behave
and hesitate to cache a file. In such a case, there is a possi-
bility that unpopular files disappear from the system. In this
paper, we aim to accomplish effective caching in the whole
system that emerges from autonomous and selfish node be-
havior. We first discuss relationship between selfish node
behavior and system dynamics according to evolutionary
game theory. As a result, we show that a file-sharing system
can be robust to file disappearance depending on a cost and
demand model for caching even if nodes behave selfishly.

1. Introduction

In a Peer-to-Peer (P2P) file-sharing system, a node ex-
changes information and files with other nodes on a logical
network that the nodes construct by establishing a logical
link between two nodes. Each node caches its original or
retrieved files into a local storage to share them with other
nodes. If multiple nodes cooperatively cache an identical
file into their storages, a node can find it with higher prob-
ability and retrieve it more quickly. This leads to enhance
performance, availability, and reliability of the system [6,
11].

However, caching of a file incurs costs such as process-
ing load and storage capacity. A node consisting of the file-
sharing system selfishly behaves because it is primitively a
user terminal. As a result, some nodes may not be coopera-
tive to cache files [3]. In such a situation, there is a problem
that a node cannot use a file due to disappearance caused by
its unpopularity. It is difficult for a system administrator to

monitor and manage all nodes so that the system achieves
effective caching. Thus, it is desirable that selfish and au-
tonomous node behavior leads to effective caching in the
whole system.

Game theory can reveal how the selfish node behavior
affects dynamics of the whole system [5, 10]. In Ref. [5],
they assume that a node behaves to minimize its own costs
for using a file. The costs are storage capacity consumed by
caching and latency to retrieve a file from its correspond-
ing file holder, i.e., provider. Then, they prove that Nash
equilibria, namely stable states of a system, exist in such
a situation by using game theory. Furthermore, they show
an optimum state of the system is equal to one of the Nash
equilibria by introducing a payment model in which a node
can obtain payments to cache a file from other nodes that
retrieve the cache file. On the other hand, in Ref. [10], they
discuss cooperative node behavior in a file-sharing system
under the framework of Multi-Person Prisoner’s Dilemma.
If there is no incentive for caching a file, all nodes become
free-riders in a Nash equilibrium. Through analyses and
simulation evaluations, they present that a node intends to
contribute to caching if it can obtain payments or reputa-
tions from other nodes in compensation for caching a file.

Although these studies reveal how selfish node behav-
ior affects the system performance in a Nash equilibrium,
they insist that incentive mechanisms, e.g., payments or rep-
utations from other nodes, are essential to achieve coop-
erative caching. However, such incentive mechanisms are
not necessarily applied to a file-sharing system. For exam-
ple, there is a file-sharing system that hides a provider from
nodes requesting the corresponding file so as to improve the
anonymity among nodes. In such a system, it is difficult for
a provider to obtain payments from the requesting nodes.
In this paper, we focus on a more general file-sharing sys-
tem without such incentive mechanisms. We aim to accom-
plish effective caching in the whole system that emerges
from selfish and autonomous node behavior taking into ac-
count its demand and cost for caching. For this purpose,



we use evolutionary game theory to examine how local in-
teraction between selfish nodes affects the dynamics of the
whole system [7].

In a society of organisms, various individuals influence
each other. Evolutionary game theory originally tries to fig-
ure out a mechanism in which optimum behavior comes
down to offspring in evolutionary process of organisms by
using game theory. Suppose that individual behavior de-
fined by genes is a strategy of game theory and the number
of offspring following certain behavior is payoffs acquired
by the corresponding strategy. In such a case, various in-
dividuals are in strategically mutual dependence relation of
game theory. Thus, by using game theory, we can explain
the phenomenon that superior behavior spreads over a so-
ciety of organisms through inheritance from ancestors to
offspring. For example, many researchers focus on how
individual behavior that seems to be selfish and uncooper-
ative affects the emergence of cooperative phenomena in
the whole society [7, 9, 12]. We expect that evolutionary
game theory can also reveal how much selfish node behav-
ior based on local interaction has impact on caching condi-
tion in the whole system. In this paper, we derive the re-
lationship between node behavior and the number of cache
files in a stable state of the whole system by using replicator
dynamics and agent-based dynamics of evolutionary game
theory. Then, we examine effective caching in the whole
system that emerges from selfish node behavior. Replicator
dynamics and agent-based dynamics are models to derive a
strategy distribution in an evolutionary stable state.

Replicator dynamics is a mathematical model in which
a strategy increases when it can yield more payoffs than
average payoffs of all strategies. Note that replicator dy-
namics can be applicable when the number of individuals
composed of the society is relatively large and the network
among the individuals is mean-field like. As a result, we
can obtain the system characteristics in the case that a node
selfishly behaves in accordance with global information on
caching condition in a full mesh network. On the other
hand, agent-based dynamics models a phenomenon that a
superior strategy spreads over the network in a hop-by-hop
manner. In agent-based dynamics, an individual plays a
game once with all neighboring individuals, determines su-
periority of its own strategy based on the game results, and
finally decides the next strategy. Consequently, we can find
out the system characteristics in the case that a node self-
ishly behaves based on its local information in various net-
work topologies.

In this paper, we first make modeling a file-sharing sys-
tem as a game taking into account cost and demand for
caching. Then, we theoretically derive the number of cache
files in the whole system by replicator dynamics when a
node can obtain global information. Furthermore, through
simulation experiments based on agent-based dynamics, we

Table 1. payoff matrix (general)
XXXXXXXXXXplayer 1

player 2
cooperator defector

cooperator (R,R) (S, T )
defector (T, S) (P, P )

evaluate the number of cache files and distance from a node
to a provider in the case that a node behaves according to
its local information. Finally, we describe an appropriate
caching model to achieve effective caching from the analy-
ses and simulation results.

The rest of the paper is organized as follows. In sec-
tion 2, we describe models of caching games with which
we deal in this paper. Then, we evaluate the system charac-
teristics by replicator dynamics in section 3 and by agent-
based dynamics in section 4. From the results, we examine
whether the models are suited to effective caching. Finally,
section 5 gives conclusions and future work.

2. Caching Game

In evolutionary game theory, a game between two ar-
bitrary players is defined as a pay-off matrix as shown in
Tab. 1. A defector exploiting a cooperator getsT and the
exploited cooperator receivesS. Both players receivesR
(P ) when they cooperate (defect) each other. Prisoner’s
Dilemma Game (T > R > P > S) and SnowDrift Game
(T > R > S > P ) are examples of well-known games.

In this paper, we first model caching in a file-sharing sys-
tem as a caching game between two neighboring nodes. If
there is no capacity limit on nodes that results in no com-
petition of storage capacity among different files, we can
assume that the caching is composed of multiple separated
caching games each of which deals with a single file. In
what follows, we define caching games for a single file for
sake of simplicity. For the single file caching, each node has
two strategies: caching or no caching. Since a node satis-
fies its demand to the file by leveraging the file, we regard
the benefit obtained by the use of the file as its demandb.
On the other hand, a node has to spend a cost on caching a
file. In this paper, we investigate two kinds of costs: pro-
cessing loadcl caused by self or other node’s access to a
file and storage capacitycs consumed by caching a file. As
future work, we plan to consider dynamic costs, e.g., net-
work bandwidth or delay required to retrieve a file from a
provider. We do not consider the incentive mechanisms for
caching [5, 10] because we assume a general file-sharing
system in this paper.

In the case that the cost is the processing load, the pa-
rameters of payoff matrix becomeR = b − cl, T = b, S =
b − 2cl, P = 0 (Tab. 2). Note thatb − 2cl is greater than
0. Since the relationship among parameters of Tab. 2 sat-



Table 2. payoff matrix (caching game, cost:
load)

XXXXXXXXXXplayer 1
player 2

caching no caching

caching (b− cl, b− cl) (b− 2cl, b)
no caching (b, b− 2cl) (0,0)

Table 3. payoff matrix (caching game, cost:
storage)

XXXXXXXXXXplayer 1
player 2

caching no caching

caching (b− cs, b− cs) (b− cs, b)
no caching (b, b− cs) (0,0)

isfiesT > R > S > P , Tab. 2 is the same as SnowDrift
Game. On the contrary, we obtainR = b − cl, T = b, S =
b− cl, P = 0 in the case that the cost is the storage capacity
(Tab. 3). Note thatb − cs is greater than 0. Tab. 3 holds
T > R = S > P and does not correspond to any kind of
existing games.

In the succeeding sections, we explore how the number
of nodes caching a file, that is the number of nodes taking
the strategy “caching”, changes in accordance with the pa-
rameters of payoff matrix and examine the realization of a
file-sharing system with high file availability.

3. Theoretical Analysis by Replicator Dynam-
ics

In this section, we theoretically derive the relationship
between the parameter settings in Tabs. 2 and 3 and the
number of nodes caching a file in a stable state of a file-
sharing system by replicator dynamics [7]. If the payoff ma-
trix can enforce more nodes to take the strategy “caching,”
we can enhance the file availability of the file-sharing sys-
tem composed of nodes that selfishly behave based on the
payoff matrix.

3.1. Replicator Dynamics

The basic concept of replicator dynamics is that the
growth rate of nodes taking a strategy is proportional to
the payoff acquired by the strategy. Thus, the strategy that
yields more payoff than average payoff of the whole system
increases, and vice versa. Note that replicator dynamics as-
sumes that an node plays a game with all other nodes.

In what follows, we explain the derivation process of
replicator dynamics in a general game described as Tab. 1.
Suppose that the ratio of cooperators at a certain time isx
and that of defectors is1− x. The average payoff of coop-

erators becomes

Rx + S(1− x). (1)

On the contrary, that of defectors is

Tx + P (1− x). (2)

Consequently, the average payoff of the whole nodes can be
derived as follows:

x(Rx + S(1− x)) + (1− x)(Tx + P (1− x)). (3)

The payoff difference between the average payoff of coop-
erators and that of the whole nodes is expressed as

{Rx + S(1− x)}
−{x(Rx + S(1− x)) + (1− x)(Tx + P (1− x))}

= {(R + P − T − S)x + S − P}(1− x). (4)

Finally, replicator dynamicṡx that indicates the transition
of x is defined as follows:

ẋ = {(R + P − T − S)x + S − P}(1− x)x. (5)

3.2. The Number of Cache Files in a Stable
State

The equilibria ofx that satisfyẋ = 0 are 0, 1, and
P−S

R+P−T−S . Next, we describe the stability of their equi-
libria. In Eq. (5), (1 − x)x is constantly over zero for
0 ≤ x ≤ 1. The remaining part(R+P −T −S)x+S−P
becomes positive forx < P−S

R+P−T−S and negative for

x > P−S
R+P−T−S because of the definition of games in sec-

tion 2. As a result,x approaches to P−S
R+P−T−S indepen-

dently of the initial value ofx. Thus, the stable equilibrium
is

x =
P − S

R + P − T − S
. (6)

Eq. (6) indicates that the ratio of cooperators at a sta-
ble state depends on the parameters of the payoff matrix.
Based on Refs. [9, 12, 8], we first definer as the cost-to-
benefit ratio of mutual cooperation.r means a risk that a
node should take when it behaves as a cooperator.r ranges
(0,1]. The smaller value ofr indicates that cooperators in-
crease. In this paper,r is determined byb andcl or byb and
cs. Therefore,r can be regarded as the ratio of demand to
cost for caching.

If the cost is the processing load, from Eq. (6) and Tab. 2,
the ratiox of cooperators at a stable state becomes

x =
b− 2cl

b− cl
. (7)

On the other hand, the cost-to-benefit ratio of mutual coop-
erationr is as follows:

r =
cl

b− cl
. (8)



Finally, the relationship betweenx andr satisfies

x = 1− r. (9)

We can also derive the relationship betweenx andr in the
case where the cost is the storage capacity as follows:

x =
1

1 + r
. (10)

From Eqs. (9) and (10), the ratiox of cooperators dete-
riorates with the increase of ther, namely the decrease of
the demandb to the file, independently of the cost models.
In this paper, we aim to achieve a file-sharing system with
high file-availability that is robust to file disappearance. If
the cost is the processing load, Eq. (9) denotes that a file
disappears from the system whenr is close to 1 that means
the demand to the file is low. On the other hand, the cost
model of the storage capacity enhances the file availability
by preventingx falling in 0 even ifr is 1.

4. Simulation-based Analysis by Agent-based
Dynamics

Agent-based dynamics [7] can reveal how much caching
based on local interaction among neighboring nodes has
impact on the number of cache files in the whole system.
Moreover, we can evaluate search latency for a file since we
can obtain the strategies of all nodes, namely the locations
of cache files.

4.1. Agent-based Dynamics

In agent-based dynamics, a node determines its strategy
by comparing its own payoff with that of a neighboring
node. A node initially selects a strategy at random. The ini-
tial ratio of cooperators and that of defectors are fifty-fifty
in Refs. [8, 9, 12]. Once a nodei determines its strategy, it
plays a game once with all neighboring nodes. This is one
generation. At the end of the generation, the nodei calcu-
lates averageAi of payoffs acquired, then determines the
strategy of the next generation as follows.

Step 1: Selection of a neighboring node for comparison of
payoffs

The nodei randomly chooses a nodej from neigh-
boring nodes.

Step 2: Decision of the next strategy based on the compar-
ison of average payoffs

If Aj > Ai is satisfied, the nodei imitates the strat-
egy of nodej with the following probability:

PA(i, j) =
Aj −Ai

T − P
. (11)

Otherwise, it does not change its strategy. The node
i tends to imitate the strategy of a node that obtained

Table 4. maximum hop count between two ar-
bitrary nodes

m = 2 m = 4
scale-free network 7.4 5
random network 8.7 6

more payoffs than it. In addition,PA increases in pro-
portion to the payoff difference.

In an actual system, we should consider the overheads in-
curred by playing games and exchanging payoff with neigh-
boring nodes. We expect that these processes can be real-
ized by applying the keep-alive messaging as in Gnutella
with slight modifications.

4.2. Simulation Experiments

Through several simulation experiments, we evaluate
how node behavior based on the payoff matrix affects file
availability and search latency of the whole system in scale-
free and random networks. We evaluate the file availability
by the ratiox of nodes taking the strategy “caching.” In the
case of single-file caching, the number of cache files is the
same as the product ofx and the number of nodes. On the
other hand, we define the search latency as the average hop
count between a node to its closest provider including itself.
Note that we alternatively use the maximum hop count be-
tween two arbitrary nodes when a file disappears from the
system.

4.2.1. Simulation Model.We used NetLogo [2] in our sim-
ulation experiments. Based on Refs. [8, 9, 12], we set sim-
ulation configurations as follows. We generated scale-free
and random networks of 1000 nodes by using the topology
generator BRITE [1]. The scale-free network was based
on Barab́asi-Albert (BA) model [4] and the random net-
work followed waxman algorithm [13] withα = 0.15 and
β = 0.2. We also set the numberm of connections that
a newly participating node established to 2 and 4. Table 4
represents the average of maximum hop count between two
arbitrary nodes in twenty networks. We set the caching
costscl andcs to 1, respectively. Thus, independently of
the cost models,b = 1+r

r was derived. We configured that
the initial ratio of strategy “caching” and that of strategy “no
caching” were fifty-fifty. To investigate the system charac-
teristics in a stable state, we show results when 1000 gen-
erations passed. The following results indicate the average
of twenty simulations. We abbreviate replicator dynamics
to RD, agent-based dynamics to AD, scale-free to SF, and
random to RND in the following figures.

4.2.2. Impact of Payoff Matrix. Figure 1(a) illustrates that
the relationship betweenr and the ratiox of nodes taking
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Figure 1. payoff matrix vs. file availability and search latency (scale-free: m=4)

the strategy “caching” that is derived by agent-based dy-
namics in a scale-free network withm = 4. We discover
that x deteriorates with the increase ofr, namely the de-
crease of demand, regardless of the cost models. In addi-
tion, the cost model of processing load causes the disap-
pearance of files with largerr. On the other hand, the file
availability is enhanced by using the cost model of storage
capacity even ifr is 1. Next, Fig. 1(a) also showsx derived
by replicator dynamics. If the cost is the processing load,x
of agent-based dynamics is lower than that of replicator dy-
namics excluding the case of smallerr. On the contrary, the
cost model of storage capacity enhances the file availability
asx of agent-based dynamics achieves almost the same as
that of replicator dynamics.

Figure 1(b) depicts that the search latency increases with
the growth ofr, independently of the cost models. This
is because the number of providers decreases as shown in
Fig. 1(a). In the case that the cost is the storage capacity,x
is higher than 0.4 even for a low-demand file. Consequently,
a node can reduce the search latency by finding out a closer
provider.

4.2.3. Impact of Network Structure. Figure 2 illustratesx
and the search latency in scale-free networks withm = 2, 4.
Since the average degree is2m, largerm makes a network
dense. Figure 2(a) shows that smallerm promotes to in-
crease high-demand files, independently of the cost models.
This is due to the effect of high degree nodes. A high degree
node tends to acquire more payoffs than other nodes and be
chosen for comparison of payoffs by its neighboring nodes.
As a result, the strategy of a high degree node is likely to
spread over the network. The impact of high degree nodes
is accelerated in a network with smallm where low degree
nodes frequently exist.

On the other hand, Fig. 2(b) presents that the search la-

tency ofm = 2 is lower than that ofm = 4 if r is smaller
than 0.3 in the cost model of processing load and 0.5 in the
cost model of storage capacity. This is because files with
smallerr are more cached in the case ofm = 2 as shown in
Fig. 2(a). Since the increase ofr results in the decrease of
providers, the search latency ofm = 4 becomes superior to
that ofm = 2. Note that there is slight difference between
m = 2 andm = 4 in the cost model of storage capacity.

Figure 2 also shows thatx and the search latency in the
random network withm = 4. We find thatx in the scale-
free network is mainly larger than that in the random net-
work as shown in Fig. 2(a). Contrary to our expectation,
Fig. 2(b) presents that the search latency in the scale-free
network is not so superior to that in the random network
despite of its lower diameter of the network (Tab. 4). This
is because files tend to be cached at regular nodes rather
than high degree nodes in the scale-free network. In other
words, we can alleviate load concentration on high degree
nodes while suppressing the search latency. Note that the
difference of degree distribution does not so much affect to
the search latency if the cost is the storage capacity.

In summary, we can accomplish a file-sharing system
with high file-availability and low search-latency by using
the cost model of storage capacity independently of the net-
work structures.

5. Conclusions

In this paper, we revealed the relationship between node
behavior and effective caching in the whole system by evo-
lutionary game theory so as to accomplish a file-sharing
system with high file availability and low search latency
even if nodes behaved selfishly and autonomously. We
first made modeling a file-sharing system as two kinds of
caching games between two neighboring nodes. Then, we
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Figure 2. impact of network structure (m=2 vs. m=4, scale-free vs. random)

showed the basic characteristics of the models by analyti-
cally deriving the number of cache files in the system based
on replicator dynamics. Furthermore, through simulation
experiments based on agent-based dynamics, we evaluated
how much local node behavior had impact on the system
performance. Simulation results showed that modeling the
cost for caching as the storage capacity made a file-sharing
system robust to fie disappearance independently of the net-
work structures even if nodes behave selfishly.

As future research work, we should examine a caching
game that takes into account combination of multiple costs
including dynamic costs, e.g., delay and bandwidth. Fur-
thermore, we plan to analyze the dynamics of information
networks other than the file-sharing system and propose
control mechanisms based on the analysis. For example,
information travels along a chain of intermediate nodes to-
ward its destination in the following information systems:
information distribution on an overlay network, e.g., appli-
cation level multicast, and information diffusion and gath-
ering on a sensor network. Since forwarding information
takes costs, such as network bandwidth and electricity con-
sumption, an effective forwarding mechanism taking into
account the significance of information is needed. Evolu-
tionary game theory can reveal node behavior suitable for
such effective information transfer.
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