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Abstract— In this paper, we propose a new mechanism which
detects tampered-TCP connections at edge routers and protects
well-behaved TCP connections from the tampered-TCP connec-
tions, resulting in maintaining the fairness amongst TCP connec-
tions. The proposed mechanism monitors the TCP packets at an
edge router and estimates the window size or the throughput for
each TCP connection. By using estimation results, the proposed
mechanism assesses whether each TCP connection is tampered
or not and drops packets intentionally if necessary to improve
the fairness amongst TCP connections. From the results of
simulation experiments, we exhibit that the proposed mechanism
can accurately identify tampered-TCP connections. We also show
that the proposed mechanism can regulate throughput ratio
between tampered-TCP connections and competing TCP Reno
connections to about 1.

Keywords: Transmission Control Protocol (TCP),
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I. Introduction
Since Transmission Control Protocol (TCP) works at end
hosts, it is easy for users to modify its behavior. This is
especially the case for users with open source operating
systems such as Linux. Thus, there exists many kind of TCP
variants created by malicious users that allow for higher than
normal throughput [1, 2]. In this paper, such modified TCPs
are referred to as tampered-TCPs.

Generally, when modifications to TCP congestion control
mechanisms are proposed, the effects of these modifications
are compared with the original TCP Reno. Furthermore, for
assessing the deployment path of the proposed TCP, the per-
formance when the proposed TCP and TCP Reno connections
share the network bandwidth is evaluated [3, 4]. However, ma-
licious users can selfishly modify TCP behavior, focusing only
on increasing their own throughput. When the population of
tampered-TCP connections increases in a network, therefore,
these tampered-TCP connections may unfairly occupy network
bandwidth, causing normal TCP connections to suffer from
low throughput.

In [5], we evaluated the effects of the tampered-TCP on
a network shared with normal TCP Reno connections. We
focused on a tampered-TCP which changes the increase and
decrease ratio of the congestion window size during the
congestion avoidance phase without the SACK option [6] and
we presented that there exists little region where the tampered-
TCP without the SACK option can improve the throughput.
However, it is not a reasonable to assume that a malicious
user does not use the SACK option, and there are many
recent operating systems that enable the SACK option as
a default setting [7–9]. Thus, we also evaluate the effects
of tampered-TCP with the SACK option and show that it
works quite effectively in large network parameter region.
Since tampered-TCPs are TCP variants that are modified at the
end hosts, additional mechanisms are needed in the network
for protecting normal TCP Reno connections from tampered-
TCP connections. One such possible location could be on the

network routers.
In [10], the authors proposed a router mechanism that

controls UDP traffic to realize TCP-friendliness [11]. However,
this mechanism is not intended to control TCP traffic. Since
TCP traffic behaves adaptively in packet loss events, whereas
UDP traffic does not change its transmission speed against
the network congestion, a new mechanism for controlling
TCP traffic is necessary. In addition, the authors of [10]
do not specify how to estimate parameters used to calculate
estimated throughput. On the other hand, [12, 13] guarantee
quality of service (QoS) by dropping packets intentionally at
routes based on the class or hop-counting. However, these
mechanisms doesn’t consider the TCP behavior, therefore, they
can’t control connections adaptively depending on the TCP
implementation version.

In this paper, therefore, we propose a new mechanism
that maintains the fairness amongst TCP connections at edge
routers, which protects the normal TCP Reno connections from
tampered-TCP connections. There are two reasons why the
proposed mechanism should be located at the edge routers
and not at the core routers. The first reason is that the number
of TCP connections passing through edge routers is smaller
than through core routers, which results in lower processing
overhead to monitor and control TCP connections. The second
reason is that this prevents too many packets from tampered-
TCP connections from entering the network.

The proposed mechanism estimates a window size or an
average throughput for each TCP connection by monitoring
the TCP packets at an edge router, and assesses its tampering
property based on the estimation results. Then, the packets
belonging to a tampered-TCP connection are dropped inten-
tionally at the edge router with an appropriate probability
to regulate its throughput to the same value as TCP Reno
connections.

We evaluate the proposed mechanism by simulation ex-
periments using ns-2 [14]. Based on the results of these
evaluations, it is shown that the proposed mechanism can
accurately identify tampered-TCP connections and regulate
the throughput ratio between tampered-TCP connections and
competing TCP Reno connections to about 1.

II. Effects of Tampered-TCP with SACK Option
In this section, we briefly demonstrate the effects of a
tampered-TCP with the SACK option.

Figure 1 depicts the network model that is used for simula-
tion experiments with ns-2 [14]. The network model consists
of sender and receiver hosts using TCP Reno connections,
sender and receiver hosts using tampered-TCP connections,
two routers (RA and RB) with a droptail buffer, and links
interconnecting the hosts and routers. The bandwidth of the
link between the router RA and the router RB is µ Mbps, the
buffer size at the router RA is B packets, the propagation delay
between the sender and receiver hosts is τ sec, the bandwidth
of the links between the tampered-TCP hosts and routers is



Fig. 1. Network model
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Fig. 2. Changes in the throughput of the tampered-TCP with SACK option
and TCP Reno connections

µT Mbps, and that between the TCP Reno hosts and the
routers is µR Mbps. There are nT tampered-TCP connections
and nR TCP Reno connections. It is assumed that the sender
hosts have an infinite amount of data to send and continue
transmitting as much data as is allowed by their congestion
window sizes.

We focus on a tampered-TCP with the SACk option which
changes the increase ratio α of the congestion window size and
keeps the decrease ratio β to 0.5. The network model shown
in Figure 1 is used with µR = µT = 100 Mbps, µ = 100
Mbps, τ = 20 msec, B = 667 packets, and the packet size is
1500 bytes. The simulation time is 60 seconds.

Figure 2 shows the change in the throughput as a function
of α when the number of TCP connections is set at 10 and
30. For each case, we plot the results of three situations: no
tampered-TCP connection, 10 % of all the TCP connections
are tampered-TCP without the SACK option, and 10 % of
all the TCP connections are tampered-TCP with the SACK
option. This figure shows that the fairness is kept in case of
no tampered-TCP connection. In addition, the tampered-TCP
connections without the SACK option cannot obtain much
higher throughput than competing TCP Reno connections.
However, the tampered-TCP connections with the SACK
option obtain quite a high throughput as α increases which
results in depressing the throughput of competing TCP Reno
connections.

The tampered-TCP is modified by malicious users at end
hosts. Therefore, a mechanism is needed to protect normal
TCP connections from tampered-TCP connections in the net-
work. Such a mechanism should be located on the network
routers.
III. Design of Proposed Mechanism
Figure 3 depicts the overall behavior of the proposed mech-
anism. By monitoring the TCP packets at an edge router,
the proposed mechanism detects tampered-TCP connections
using estimation results. To protect TCP Reno connections,
the proposed mechanism intentionally drops packets of the
tampered-TCP connections at an appropriate probability that
regulates its throughput to equal that of normal TCP Reno
connections.

Note that the proposed mechanism is not based on per-
flow queueing. It can be combined with Weighted RED
(WRED) mechanism which is equipped in many commercial

Fig. 3. Overview of the proposed mechanism

router products, since the proposed mechanism only sets the
packet discarding probabilities for tampered-TCP connections
to maintain fairness amongst connections. We also note that
the regulating mechanism for tampered-TCP connections is
only activated on congested routers.

We propose two methods which differ in the metric for
assessing the tampering property of TCP connections: a con-
gestion window size and an average throughput. We refer to
them as cwnd-based method and throughput-based method, re-
spectively. In the following subsections, a detailed description
is given of each method, in terms of estimation mechanism of
the window size and the average throughput, conditions for as-
sessing the tampering property, and algorithms for determining
the target packet discarding probabilities.
A. Cwnd-based Method
The cwnd-based method monitors the TCP packets passing
through the edge router and continuously estimates the win-
dow size of each TCP connection. In addition, the increase ra-
tio α and decrease ratio β for the TCP connection for changing
the congestion window size during the congestion avoidance
phase are estimated based on changes in the estimated window
sizes. If the estimated α and β indicate that a TCP connection
unfairly obtains higher throughput than competing TCP Reno
connections, the TCP connection is assessed as a tampered-
TCP connection and its throughput is regulated using an
appropriate packet discarding probability.
1) Estimating the window size of a TCP connection
Generally, TCP sends packets in a window in bursty fashion.
Therefore, the interval between the last packet of a window
and the first packet of the next window is the longer than
intervals between packets in a burst. By detecting the boundary
of two windows divided by such a long interval, the proposed
mechanism counts the number of packets sent by the sender
TCP in each window and estimates the change in the window
size.

For that purpose, the proposed mechanism records the
arrival intervals of every two successive packets in a TCP
connection and observes the change in the arrival intervals. To
observe the change in the arrival intervals, algorithm presented
in [15], which proposes a general method to detect an abrupt
change in observed values is used. This algorithm can be
described with the following equation:

gk = (1 − δ)gk−1 + δ(yk − ȳ)2

This equation calculates the exponential moving average of the
squared value of difference between the latest observed value
yk and its average ȳ using a smoothing parameter δ (0 ≤ δ ≤
1). If this value is larger than a threshold h, an abrupt change
is said to occur. In the proposed mechanism, yk corresponds
to the k-th arrival interval and ȳ corresponds to the average
value of the arrival intervals. Detecting the abrupt change in
the arrival intervals, an estimated value of the window size
can be derived. Using this mechanism, we can obtain roughly
one estimation result of the window size of a TCP connection
per RTT.



2) Estimating α and β
If the window size of a TCP sender decreases after a packet
loss event, the estimated window size at the edge router also
decreases. Here, the interval from just after a decrease of the
estimated window size caused by a packet loss event to just
before the decrease of the estimated window size caused by
the next packet loss event is denoted as a cycle. The estimated
window size at the j-th RTT of the c-th cycle is denoted as
We(c, j).

To obtain α, we calculate αe(c, j), which is the difference
between two successive estimated window sizes as follows:

αe(c, j) = We(c, j) − We(c, j − 1)

At the end of each cycle, we derive the average value of
αe(c, j) as follows:

αe(c) =

∑l(c)
j=1 αe(c, j)

l(c)

where l(c) is the number of samples of the estimated window
size in the c-th cycle. For the current estimation value of α, we
derive the exponentially weighted moving average (EWMA)
of αe(c), which is denoted as αe, as follows:

αe = (1 − γα)αe + γααe(c)

where γα is a smoothing parameter.
For β, βe(c), which is the estimated value of β in the c-th

cycle, from the rate of decrease of the window size in a packet
loss event is calculated using:

βe(c) =
We(c, 1)

We(c − 1, l(c − 1))

Thus, the EWMA of βe(c) values is derived as a current value
of βe:

βe = (1 − γβ)βe + γββe(c)

where γβ is a smoothing parameter.
3) Estimating packet loss rate
The cwnd-based method estimates the packet loss rate using
the information administered by the Management Information
Base (MIB) [16] at the edge router. MIB normally stores the
number of packets passed through the router and the number
of dropped packets at the router. Therefore, by assuming
that the edge router implementing the proposed mechanism
is a bottleneck, the packet loss rate derived from the MIB
information is roughly the same as the packet loss rate
that the TCP connections passing through the router actually
experience. Note that when a different router in the network
is the bottleneck, this method underestimates the packet loss
rate of TCP connections. This lowers the accuracy of the
control mechanism proposed in this subsection. However, we
believe that the performance degradation is not so large since
we activate the proposed mechanism only when the router is
congested.

When tampered-TCP connections with larger increase ratio
of the congestion window size co-exist with normal TCP Reno
connections, the packet loss rate at the router increases. In
[5], we showed that the number of dropped packets in a
tampered-TCP connection is proportional to its increase ratio,
α, of the congestion window size. Therefore, the proposed
mechanism should estimate the packet loss rate when all the
TCP connections passing through the router are supposed to
be TCP Reno. Thus, the target packet discarding probability
for tampered-TCP connections can be determined.

The number of dropped packets at the router is denoted as
nd, the number of all the packets which passed through the
router is denoted as na, and the average value of αe for all

the TCP connections passing through the router is denoted as
Āe. Thus, the packet loss rate, p, can be estimated as follows:

p =
nd

na

Āe

p can be averaged, using the following EWMA calculations:

p = (1 − γd)p + γdp

where γd is a smoothing parameter. Note new values for p and
p̄ are calculated whenever a new value for the target packet
discarding probability is determined.
4) Assessing the tampering property
In [3], the authors extended the equation in [17] for an average
throughput of a TCP connection for arbitrary values of α
and β. They also showed that when the following equation
is satisfied, the TCP connection obtains the same throughput
as a normal TCP Reno connections:

α =
4(1 − β2)

3
By using the above equation, a TCP connection is said to
be a tampered-TCP when its αe and βe satisfy the following
equation:

4(1 − βe
2
)

3αe
< (1 − γw) (1)

where γw (0 < γw < 1) is a parameter that takes into
consideration the estimation error of αe and βe. Note that
the above assessment of the tampering property of the TCP
connection is repeated whenever rw packets of the TCP
connection arrives at the router. rw is given by rw = kw

p
where kw is a positive integer parameter.
5) Setting the target packet discarding probability
The proposed mechanism sets a target packet discarding
probability p′ for each TCP connection assessed as a tampered-
TCP to regulate its throughput to roughly the same as TCP
Reno connections. In setting p′, the focus is on the change
in the congestion window size of a TCP Reno connection in
the situation where all the TCP connections passing through
the router are supposed to be TCP Reno. Here, the TCP
Reno connection in such a situation is called a pseudo TCP
Reno connection. The p′ is determined so as to equalize the
throughput of the pseudo TCP Reno connection with that of
the regulated tampered-TCP connection.

Figure 4 shows the typical changes in the congestion
window sizes of the pseudo TCP Reno connection and the
tampered-TCP connection with the target packet discarding
probability. The number of packets that a pseudo TCP Reno
sender sends in a cycle is 1

p . Because this value is equal to the
shaded area in Figure 4(a), the following equation is satisfied:

1
2
· (WR +

1
2
WR) · 1

2
WR =

1
p

(2)

where WR is the estimated window size of the pseudo TCP
Reno connection at the beginning of the cycle. For the
tampered-TCP connection, a similar equation is satisfied:

1
2
· (WT + βeWT ) · (1 − βe)

αe
WT =

1
p′

(3)

where WT is the estimated window size of the tampered-TCP
connection at the beginning of the cycle. Therefore, when
the throughput of the tampered-TCP connection is identical
to the pseudo TCP Reno connection, we obtain the following
equation:

1
p̄

1
2WR

=
1
p′

(1−βe)
αe

WT

(4)



Fig. 4. Setting the target packet discarding probability in the cwnd-based
method

From Equations (2)-(4), the target packet discarding proba-
bility can be obtained as follows:

p′ =
(1 + βe)
3(1 − βe)

αep̄

Note that the target packet discarding probability is calculated
whenever uw packets of the TCP connection arrive at the
router. uw is given by uw = 1

p′ .
B. Throughput-based Method
The throughput-based method monitors the throughput of each
TCP connection and regulates the tampered-TCP connections
at regular intervals. This interval is called as the control
interval. In each control interval, an observed throughput
is derived based on the information from traditional traffic
monitoring tools like sFlow [18] and NetFlow [19].

In addition, network parameters, such as RTT, packet loss
ratio, and so on, are estimated in order to determine the
throughput, assuming that the TCP connection is a TCP Reno.
This estimated throughput is called an estimated throughput. If
the observed throughput is larger than the estimated through-
put, then the TCP connection is said to be not TCP Reno, but
a tampered-TCP, and its throughput is regulated based on a
target packet discarding probability.
1) Setting the control interval
The control interval is the time for nI(i) packets arriving at
the router. nI(i) is derived as follows:

nI(i) =
kt

p(i)

where p(i) is an estimated packet loss rate at the beginning of
the i-th control interval and kt is a positive integer parameter.
2) Calculating the observed throughput
Traffic monitoring tools generally store the total bytes of
packets passed through the router and the traffic monitoring
time for each flow passing through the router. The total number
of bytes in the i-th control interval is denoted as b(i), the
length of the i-th control interval is denoted as t(i) and the
observed throughput in the i-th control interval is denoted as
To(i). Then To(i) is given by the following equation:

To(i) =
b(i)
t(i)

3) Calculating the estimated throughput
The equation proposed in [17] which estimates the throughput
of a TCP connection uses the following parameters: packet
size, delayed ACK option value, RTT, retransmission timeout,
and packet loss rate. To calculate the estimated throughput if it
is assumed that the TCP connection is a TCP Reno connection,
all the parameters are estimated as follows:

• Packet size
The traffic monitoring tools store the amount of traffic
that arrives at the router in both units of packets and bytes.
The total number of packets in the i-th control interval is

denoted as n(i), and the estimated packet size is denoted
as se(i). Then se(i) can be calculated as follows:

se(i) =
b(i)
n(i)

• The delayed ACK option value
The ACK sequence number of the j-th ACK packet is
denoted as a(i, j). Using the difference between these
two ACK sequence numbers, the estimated value of the
delayed ACK option dele(i, j) is given by:

dele(i, j) = a(i, j) − a(i, j − 1)

The average number of the dele(i, j) in the i-th control
interval is denoted as dele(i). dele(i) is derived as
follows:

dele(i) =

∑nb

j=1 dele(i, j)
nb

where nb is the number of samples of the estimated
delayed ACK option values in the i-th control interval.
Here, all duplicate ACK packets and ACK packets just
after the duplicate ACK packets are ignored in the calcu-
lation, because the ACK sequence numbers of such ACK
packets are not appropriate for determining the delayed
ACK option value.

• RTT
Though many different kinds of mechanisms have been
proposed to estimate the RTT in past papers [20–22],
the mechanism proposed in [23], which utilizes TCP’s
timestamp option [24], is used in this paper. This mecha-
nism estimates the RTT as follows. The sender transmits
a TCP data packet dp1 with timestamp ts1. It arrives
at the router at time m1. The receiver responds with an
ACK packet ap1 with timestamp ts2 and the echo ts1.
The router recognizes ts1 in both the packet dp1 and
ap1, then makes an association between the two packets.
On receiving the ACK packet ap1, the sender transmits
a new data packet dp2 with timestamp ts3 and the echo
ts2. The router receives the packet dp2 at time m2 and
recognizes ts2 in both the packet ap1 and dp2, then makes
an association between the packet ap1 and dp2. With
three associated packets, the router estimates the RTT
using m1 and m2. The j-th estimated RTT in the i-th
control interval rtte(i, j) is given by:

rtte(i, j) = m2 − m1

The average value of the rtte(i, j) in the i-th control
interval is derived as follows:

rtte(i) =

∑nr

j=1 rtte(i, j)
nr

where nr is the number of samples of the estimated RTTs
in the i-th control interval.

• Retransmission timeout
[25] recommends that 4 times of the RTT be used as
an estimated value of the retransmission timeout. In this
paper, this method is used to estimate the retransmission
timeout rtoe(i) as:

rtoe(i) = 4rtte(i)

• Packet loss rate
The estimated packet loss rate is derived in a manner
similar to the cwnd-based method. However, because the
throughput-based method does not estimate the increase
ratio α of the congestion window size of each TCP
connection, the packet loss rate observed when all the
TCP connections passing through the router are supposed
to be TCP Reno can not be estimated. Thus, packet loss
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Fig. 5. Changes in the throughput ratio when using the proposed mechanism

rate p(i) is simply calculated from nd(i) and na(i) as
follows:

p(i) =
nd(i)
na(i)

When the number of co-existing TCP connections is
small, this equation overestimates the packet loss rate of
TCP connections. However, the number of TCP connec-
tions passing through the router increases and the ratio
of tampered-TCP connections relatively decreases, the
effect of the overestimation becomes small. The estimated
packet loss rate is smoothed according to the following
EWMA calculation:

p(i) = (1 − γl)p(i − 1) + γlp(i)

Finally, the estimated throughput Te(i) in the i-th control
interval is given by:

Te(i)=
se(i)

rtte(i)

√
2dele(i)p(i)

3 +rtoe(i)min

(
1,3

√
3dele(i)p(i)

8

)
p(i)(1+32p(i)2)

4) Assessing the tampering property
The throughput-based method assesses a TCP connection as
tampered-TCP if its To(i) and Te(i) in the i-th control interval
satisfy the following equation:

To(i)
Te(i)

> (1 + γt) (5)

where γt (0 < γt) is a parameter that accounts for error in
estimating To(i) and Te(i). Note that the above assessment of
the tampering property of the TCP connection is repeated for
every control interval, which reduces the effect of assessment
misses.
5) Setting the target packet discarding probability
Since the throughput of a TCP connection is proportional to
the inverse of the square root of the packet loss rate [11],
this can be used to determine the target packet discarding
probability p′(i) in the i-th control interval. Based on this
property, p′(i) is given by:

p′(i) =
(

To(i − 1)
Te(i − 1)

)2

p′(i − 1)

IV. Simulation Experiments of Proposed Mech-
anism
In this section, the simulation results to evaluate the perfor-
mance of the proposed mechanism described in Section III are
presented. The control parameters for the cwnd-based method
are set as δ = 0.5, h = 0.0001, γα = 0.6, γβ = 0.6,
γd = 0.6, γw = 0.1, and kw = 4. The control parameters
for the throughput-based method are set as γl = 0.6, γt = 2,
and kt = 6. The simulation model is shown in Figure 1 where
µR = µT = 100 Mbps, µ = 50 Mbps, τ = 20 msec, B = 333
packets, nT = 1, nR = 20, and the packet size is set to
1500 bytes. The simulation time is 70 seconds. In first 10
seconds, only TCP Reno connections transmit data, and after
10 seconds, the tampered-TCP connection starts transmission.
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Fig. 6. False negative ratio for tampered-TCP connections
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Fig. 7. Detection time for tampered-TCP connections

We use the average values of the evaluation metrics of the last
60 seconds. The performance of the proposed mechanism is
evaluated when α, the increase ratio of the congestion window
size of the tampered-TCP connections, takes values in the
interval [1,20] while β, the decrease ratio of the congestion
window size of the tampered-TCP connection, takes values
in the interval [0.5,1.0]. The throughput ratio is used as an
evaluation metric. It is defined as:

Throughput ratio =
(Throughput of tampered-TCP)

(Throughput of TCP Reno)
(6)

In addition, following three metrics are used to examine
the performance of the proposed mechanism: false negative
ratio, detection time of tampered-TCP connections, and false
positive ratio. The detection time is defined as the time
that the proposed mechanism takes to detect tampered-TCP
connections.
A. Throughput Ratio
Figure 5 plots the change in the throughput ratio of the cwnd-
based method and the throughput-based method. Figure 5(a)
shows that the cwnd-based method keeps the throughput ratio
about 1 for almost all the parameters. Figure 5(b) shows
that when using the throughput-based method, the throughput
ratio is larger than 1 around the point (α, β) = (1, 0.5),
where the tampering property of tampered-TCP connections is
weak. This is because the parameter γt is used to account for
the estimation error in Equation (5), which causes tampered-
TCP connections in this region to occasionally be assessed as
normal TCP Reno connections. However, the throughput ratio
is kept about 1 in other region.
B. False Negative Ratio and Detection Time
Figures 6 and 7 show changes in the false negative ratio and
the detection time for the cwnd-based method and throughput-
based method. In the region around (α, β) = (1, 0.5), which
corresponds to TCP Reno’s increase and decrease ratio of the
congestion window size, the false negative ratio in the cwnd-
based method is nearly 1. This means that the cwnd-based
method does not assess a normal TCP Reno connection as
a tampered-TCP connection. In addition, in the region where
the tampering property of the tampered-TCP connections is
weak, the false negative ratio becomes high. This is because
the parameter γw is used to account for the estimation error in
Equations (1), which causes the tampered-TCP connections in
this region to occasionally be assessed as normal TCP Reno
connections. In case of the throughput-based method, the false
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Fig. 8. False positive ratio for TCP Reno connections

TABLE I
THROUGHPUT AND THROUGHPUT RATIO OF MISASSESSED TCP RENO

AND SUCCESSFULLY-ASSESSED TCP RENO CONNECTIONS

Cwnd-based method
α β Misassessed Reno Throughput

Reno (Mbps) (Mbps) ratio
10 0.7 2.117 2.399 0.882
20 0.9 2.233 2.377 0.939

Throughput-based method
α β Misassessed Reno Throughput

Reno (Mbps) (Mbps) ratio
10 0.7 2.548 2.401 1.061
20 0.9 2.175 2.431 0.895

negative ratio around (α, β) = (1, 0.5) is nearly 0. This is
because a normal TCP connection during the slow start phase
is sometimes misassessed as a tampered-TCP. However, the
effects of the misassessment are small as we will mention
later. One of the solutions to this problem is setting a longer
control interval than the other ones for the first assessment of
the tampering property of each TCP connection. In the other
region, tampered-TCP connections are detected at almost 100
% for both methods.

Figure 7 shows that both methods take about 2 seconds
to detect the tampered-TCP connections. Currently, when ISP
monitors and detects connections that use large bandwidth,
the MIB information is mainly used, and the typical update
interval of the MIB information is 5 minutes. Thus, it can
be said that the proposed mechanism detects tampered-TCP
connections much faster.
C. False Positive Ratio
Figure 8 depicts the false positive ratio for the cwnd-based
method and throughput-based method. This figure shows that
the false positive ratio of both methods increases as the
tampering property of tampered-TCP connections becomes
stronger. This can be explained as follows. The tampered-
TCP modeled in this paper increases its congestion window
size rapidly as its tampering property becomes stronger, which
leads to unstable changes in the congestion window size and in
the throughput of the competing TCP Reno connections. This
causes an estimation error for α and β in the cwnd-based
method, and for the observed throughput and the estimated
throughput in the throughput-based method.

However, in the case of false positive errors, the through-
put of misassessed TCP Reno connection does not decrease
so largely. This is shown by Table I, which presents the
throughput and throughput ratio of misassessed TCP Reno
connections and successfully-assessed TCP Reno connections.
This result means that the proposed mechanism sets the target
packet discarding probability so as to adapt the too aggres-
sive/conservative control of the previous interval. Therefore, a
temporary misassessment of normal TCP connections would
be fixed in the following intervals, even when some control
parameters and monitored parameters are changed.

By these results, it can be said that the proposed mechanism
sometimes misassesses TCP Reno connections as tampered-
TCP. However, the effects of this misassessment are small.

V. Conclusion
In this paper, we proposed a new mechanism at edge routers
to protect normal TCP connections from tampered-TCP con-
nections. The proposed mechanism estimates a window size
or an average throughput of each TCP connection passing
through the edge router by monitoring TCP packets, and
assesses its tampering property based on the estimation results
and regulates the throughput of tampered-TCP connections by
dropping incoming packets at an appropriate probability. By
results of the simulation experiments, we presented that the
proposed mechanism regulates the throughput ratio about 1
and achieve the fairness amongst TCP connections. For future
work, we will evaluate the router overhead of the proposed
mechanism in various network condition. We also plan to
investigate the performance of the proposed mechanism in the
actual Internet environment. In addition, we areinterested in
using another TCP variant, which is compound TCP included
in Windows Vista, as a well-behaved TCP.
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