
IEICE TRANS. COMMUN., VOL.E91–B, NO.1 JANUARY 2008
197

PAPER

New Methods for Maintaining Fairness between Well-Behaved TCP
Flows and Tampered-TCP Flows at Edge Routers

Junichi MARUYAMA†a), Nonmember, Go HASEGAWA††b), Member, and Masayuki MURATA†c), Fellow

SUMMARY In this paper, we propose new methods which detect
tampered-TCP connections at edge routers and protect well-behaved TCP
connections from tampered-TCP connections, which results in fairness
among TCP connections. The proposed methods monitor the TCP packets
at an edge router and estimate the window size or the throughput for each
TCP connection. By using estimation results, the proposed methods as-
sess whether each TCP connection is tampered or not and drop packets in-
tentionally if necessary to improve the fairness amongst TCP connections.
From the results of simulation experiments, we confirm that the proposed
methods can accurately identify tampered-TCP connections and regulate
throughput ratio between tampered-TCP connections and competing TCP
Reno connections to about 1.
key words: transmission control protocol (TCP), tampered-TCP, conges-
tion window, network monitoring, fairness

1. Introduction

Currently, most Internet traffic is carried by the Transmis-
sion Control Protocol (TCP) [1]. The congestion control
mechanism of TCP allows the Internet to provide fair and
unstoppable services without any collapse due to an extreme
traffic increase. The congestion control mechanism of TCP
is defined by the RFC [2], and its implementation in oper-
ating systems is based on this document. Therefore, if two
users with different operating systems should share a bottle-
neck link in the network, each user can obtain a roughly fair
throughput despite the minor implementation differences of
the protocol in the two operating systems.

However, since TCP works at end hosts, it is easy for
users to modify its behavior. This is especially the case for
users with open source operating systems such as Linux [3],
[4]. Thus, there exists many kind of TCP variants created by
malicious users that allow for higher than normal throughput
[5], [6]. In this paper, such modified TCPs are referred to as
tampered-TCPs.

Generally, when modifications to TCP congestion con-
trol mechanisms are proposed, the effects of these modifica-
tions are compared with the original TCP Reno. Further-
more, for assessing the deployment path of the proposed

Manuscript received March 22, 2007.
Manuscript revised July 31, 2007.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University, Toyonaka-shi, 560-0043
Japan.
††The author is with Cybermedia Center, Osaka University,

Toyonaka-shi, 560-0043 Japan.
a) E-mail: maruyama@ane.cmc.osaka-u.ac.jp
b) E-mail: hasegawa@cmc.osaka-u.ac.jp
c) E-mail: murata@ist.osaka-u.ac.jp

DOI: 10.1093/ietcom/e91–b.1.197

TCP, the performance when the proposed TCP and TCP
Reno connections share the network bandwidth is evaluated
[7], [8]. However, malicious users can selfishly modify TCP
behavior, focusing only on increasing their own through-
put. When the population of tampered-TCP connections in-
creases in a network, therefore, these tampered-TCP con-
nections may unfairly occupy network bandwidth, causing
normal TCP connections to suffer from low throughput.

On the other hand, such tampered-TCPs may not work
well in the actual Internet environment. For example, by
augmenting the increase ratio of the congestion window
size, the number of packets that are simultaneously injected
into the network increases rapidly. This results in increased
packet loss due to congestion within the network, which
leads to degraded throughput. Thus, a tampered-TCP may
self-destruct, when its behavior causes it to send data pack-
ets more aggressively than normal TCP Reno connections.

In [9], we evaluated the effects of the tampered-TCP
on a network shared with normal TCP Reno connections.
We focused on a tampered-TCP which changes the increase
and decrease ratio of the congestion window size during the
congestion avoidance phase without the SACK option [10]
and we presented that there exists little region where the
tampered-TCP without the SACK option can improve the
throughput. However, it is not a reasonable to assume that a
malicious user does not use the SACK option, and there are
many recent operating systems that enable the SACK op-
tion as a default setting [11]–[13]. Thus, in this paper, we
also evaluate the effects of tampered-TCP with the SACK
option and show that it works quite effectively in large net-
work parameter region. In other words, with SACK option,
the tampered-TCP connection can obtain high throughput
by depressing the throughput of competing TCP Reno con-
nections. Since tampered-TCPs are TCP variants that are
modified at the end hosts, additional mechanisms are needed
in the network for protecting normal TCP Reno connections
from tampered-TCP connections. One such possible loca-
tion could be on the network routers.

In [14], the authors proposed a router mechanism that
controls UDP traffic to realize TCP-friendliness [15]. How-
ever, this mechanism is not intended to control TCP traffic.
Since TCP traffic behaves adaptively in packet loss events,
whereas UDP traffic does not change its transmission speed
against the network congestion, a new mechanism for con-
trolling TCP traffic is necessary. In addition, the authors of
[14] do not specify how to estimate parameters used to cal-
culate estimated throughput.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

198
IEICE TRANS. COMMUN., VOL.E91–B, NO.1 JANUARY 2008

In this paper, therefore, we propose a new mechanism
that maintains the fairness amongst TCP connections at edge
routers, which protects the normal TCP Reno connections
from tampered-TCP connections. There are two reasons
why the proposed mechanism should be located at the edge
routers and not at the core routers. The first reason is that the
number of TCP connections passing through edge routers
is smaller than through core routers, which results in lower
processing overhead to monitor and control TCP connec-
tions. The second reason is that this prevents too many
packets from tampered-TCP connections from entering the
network.

The proposed mechanism estimates a window size or
an average throughput for each TCP connection by moni-
toring the TCP packets at an edge router, and assess its tam-
pering property based on the estimation results. In case of
estimating window size (we call cwnd-based method in this
paper), the increase ratio α and decrease ratio β of the con-
gestion window size during the congestion avoidance phase
are estimated. If the estimated α and β do not satisfy the
conditions for achieving similar throughput for the normal
TCP Reno connections, the TCP connection is assessed to
be a tampered-TCP. On the other hand, in case of estimat-
ing throughput (throughput-based method in this paper), we
obtain the average throughput of each TCP connection us-
ing the traditional per-flow network monitoring tools such as
sFlow [16] and NetFlow [17]. The packet loss rate, RTT, and
other parameters used for estimating a throughput when the
TCP connection would be a TCP Reno are monitored. If the
observed throughput is larger than the estimated throughput,
the TCP connection is considered to be a tampered-TCP.
For both methods, the packets belonging to a tampered-TCP
connection are dropped intentionally at the edge router with
an appropriate probability to regulate its throughput to the
same value as the TCP Reno connections.

The proposed mechanism is evaluated by simulation
experiments using ns-2 [18]. The throughput ratio is used as
a metric of the fairness amongst TCP Reno and tampered-
TCP connections. As well, the following three metrics are
used to examine the performance of the proposed mech-
anism: the false negative ratio, the detection time of the
tampered-TCP connections, and the false positive ratio.
Based on the results of these evaluations, it was shown that
the proposed mechanism can accurately identify tampered-
TCP connections and regulate the throughput ratio between
tampered-TCP connections and competing TCP Reno con-
nections to about 1.

The rest of this paper is organized as follows. In Sect. 2,
the effects of a tampered-TCP with SACK option is evalu-
ated using the simulation experiments. In Sect. 3, the de-
sign of the proposed mechanism that maintains the fairness
amongst TCP connections at edge routers is described. In
Sect. 4, the evaluation results of proposed mechanism by
simulation experiments are presented. Finally, in Sect. 5,
the conclusions and future works are presented.

2. Effects of Tampered-TCP

In this section, we briefly demonstrate the effects of a
tampered-TCP with the SACK option.

Figure 1 depicts the network model that is used for sim-
ulation experiments with ns-2 [18]. The network model con-
sists of sender and receiver hosts using TCP Reno connec-
tions, sender and receiver hosts using tampered-TCP con-
nections, two routers (RA and RB) with a droptail buffer, and
links interconnecting the hosts and routers. The bandwidth
of the link between the router RA and the router RB is µ
Mbps, the buffer size at the router RA is B packets, the prop-
agation delay between the sender and receiver hosts is τ sec,
the bandwidth of the links between the tampered-TCP hosts
and routers is µT Mbps, and that between the TCP Reno
hosts and the routers is µR Mbps. There are nT tampered-
TCP connections and nR TCP Reno connections. It is as-
sumed that the sender hosts have an infinite amount of data
to send and continue transmitting as much data as is allowed
by their congestion window sizes.

We focus on a tampered-TCP with the SACK option
which changes the increase ratio α of the congestion win-
dow size and keeps the decrease ratio β to 0.5. The network
model shown in Fig. 1 is used with µR = µT = 100 Mbps,
µ = 100 Mbps, τ = 20 msec, B = 667 packets, and the
packet size is 1500 bytes. We have done extensive simula-
tion experiments with various network parameters, and we
have confirmed that the overall characteristics of tampered
TCP remains unchanged in other network conditions than
those shown in this Section. The simulation time is 60 sec-
onds.

Figure 2 shows the change in the absolute value of the

Fig. 1 Network model.

(a) 10 connections. (b) 30 connections.

Fig. 2 Changes in the throughput of the tampered-TCP with SACK
option and TCP Reno connections.

MARUYAMA et al.: NEW METHODS FOR MAINTAINING FAIRNESS BETWEEN WELL-BEHAVED TCP FLOWS AND TAMPERED-TCP FLOWS AT EDGE ROUTERS
199

throughput as a function of α when the number of TCP con-
nections is set at 10 and 30. For each case, we plot the results
of three situations: no tampered-TCP connection, 10% of all
the TCP connections are tampered-TCP without the SACK
option, and 10% of all the TCP connections are tampered-
TCP with the SACK option. This figure shows that the fair-
ness is kept in case of no tampered-TCP connection. In addi-
tion, the tampered-TCP connections without the SACK op-
tion cannot obtain much higher throughput than competing
TCP Reno connections. However, the tampered-TCP con-
nections with the SACK option obtain quite a high through-
put as α increases which results in depressing the throughput
of competing TCP Reno connections.

The tampered-TCP is modified by malicious users at
end hosts. Therefore, a mechanism is needed to protect nor-
mal TCP connections from tampered-TCP connections in
the network. Such a mechanism should be located on the
network routers.

3. Design of Proposed Mechanism

Figure 3 depicts the overall behavior of the proposed mech-
anism. By monitoring the TCP packets at an edge router,
the proposed mechanism detects tampered-TCP connections
using estimation results. To protect TCP Reno connec-
tions, the proposed mechanism intentionally drops packets
of the tampered-TCP connections at an appropriate proba-
bility that regulates its throughput to equal that of normal
TCP Reno connections in time of congestion.

Note that the proposed mechanism is not based on per-
flow queueing. It can be combined with Weighted RED
(WRED) mechanism which is equipped in many commer-
cial router products, since the proposed mechanism only sets
the packet discarding probabilities for tampered-TCP con-
nections to maintain fairness amongst connections. We also
note that the regulating mechanism for tampered-TCP con-
nections is only activated on congested routers.

We propose two methods which differ in the metric
for assessing the tampering property of TCP connections: a
window size and an average throughput. We refer to them as
cwnd-based method and throughput-based method, respec-
tively. In the following subsections, a detailed description is
given of each method, in terms of estimation mechanism of
the window size and the average throughput, conditions for
assessing the tampering property, and algorithms for deter-
mining the target packet discarding probabilities.

3.1 Cwnd-Based Method

The cwnd-based method monitors the TCP packets passing
through the edge router and continuously estimates the win-
dow size of each TCP connection. In addition, the increase
ratio α and decrease ratio β for the TCP connection for
changing the congestion window size during the congestion
avoidance phase are estimated based on changes in the esti-
mated window sizes. If the estimated α and β indicate that
a TCP connection unfairly obtains higher throughput than

Fig. 3 Overview of the proposed mechanism.

competing TCP Reno connections, the TCP connection is
assessed as a tampered-TCP connection and its throughput
is regulated using an appropriate packet discarding proba-
bility.

3.1.1 Estimating the Window Size of a TCP Connection

Generally, TCP sends packets in a window in bursty fash-
ion. Therefore, the interval between the last packet of a
window and the first packet of the next window is the longer
than intervals between packets in a burst. By detecting the
boundary of two windows divided by such a long interval,
the proposed mechanism counts the number of packets sent
by the sender TCP in each window and estimates the change
in the window size.

For that purpose, the proposed mechanism records the
arrival intervals of every two successive packets in a TCP
connection and observes the change in the arrival intervals.
To observe the change in the arrival intervals, algorithm pre-
sented in [19], which proposes a general method to detect
an abrupt change in observed values is used. This algorithm
can be described with the following equation:

gk = (1 − δ)gk−1 + δ(yk − ȳ)2

This equation calculates the exponential moving average of
the squared value of difference between the latest observed
value yk and its average ȳ using a smoothing parameter δ
(0 ≤ δ ≤ 1). If this value is larger than a threshold h, an
abrupt change is said to occur. In the proposed mechanism,
yk corresponds to the k-th arrival interval and ȳ corresponds
to the average value of the arrival intervals. Detecting the
abrupt change in the arrival intervals, an estimated value of
the window size can be derived. Using this mechanism, we
can obtain roughly one estimation result of the window size
of a TCP connection per RTT.

On the other hand, [20] proposes a mechanism to es-
timate the RTT of TCP connections at routers in the net-
work. By estimating the RTT using this mechanism, a router
counts the number of arriving packets in an RTT and es-
timates the window size of each TCP connection. This
method seems to be useful for network situations where the
boundary of the window of TCP connections is hard to de-
tect because of short RTTs or large window sizes. How-
ever, this method was not used in this paper, since it requires
knowing a precise RTT value for each TCP connection. One

200
IEICE TRANS. COMMUN., VOL.E91–B, NO.1 JANUARY 2008

of the advantages of the cwnd-based method that is proposed
here is that there is no need to estimate the RTT for each
TCP connection.

3.1.2 Estimating α and β

If the window size of a TCP sender decreases after a packet
loss event, the estimated window size at the edge router also
decreases. Here, the interval from just after a decrease of
the estimated window size caused by a packet loss event to
just before the decrease of the estimated window size caused
by the next packet loss event is denoted as a cycle. The
estimated window size at the j-th RTT of the c-th cycle is
denoted as We(c, j).

To obtain α, we calculate αe(c, j), which is the differ-
ence between two successive estimated window sizes as fol-
lows:

αe(c, j) = We(c, j) −We(c, j − 1)

At the end of each cycle, the average value of αe(c, j) is
derived as follows:

αe(c) =

∑l(c)
j=1 αe(c, j)

l(c)

where l(c) is the number of samples of the estimated window
size in the c-th cycle. For the current estimation value of
α, the exponentially weighted moving average (EWMA) of
αe(c), which is denoted as αe, is derived as follows:

αe = (1 − γα)αe + γααe(c)

where γα is a smoothing parameter.
For β, βe(c), which is the estimated value of β in the

c-th cycle, from the rate of decrease of the window size in a
packet loss event is calculated using:

βe(c) =
We(c, 1)

We(c − 1, l(c − 1))

Thus, for the current estimation value of β, the EWMA of
βe(c), which is denoted as βe, is derived as follows:

βe = (1 − γβ)βe + γββe(c)

where γβ is a smoothing parameter.

3.1.3 Estimating Packet Loss Rate

The cwnd-based method estimates the packet loss rate us-
ing the information administered by the Management Infor-
mation Base (MIB) [21] at the edge router. MIB normally
stores the number of packets passed through the router and
the number of dropped packets at the router. Therefore, by
assuming that the edge router implementing the proposed
mechanism is a bottleneck, the packet loss rate derived from
the MIB information is roughly the same as the packet loss
rate that TCP connections passing through the router actu-
ally experience. Note that when a different router in the

network is the bottleneck, this method underestimates the
packet loss rate of TCP connections. This lowers the accu-
racy of the control mechanism proposed in this subsection.
In this case, a different method, such as that proposed in
[22], for estimating a packet loss rate for each TCP connec-
tion should be deployed, whereas we utilize the MIB-based
method for its simplicity. For future work, we plan to com-
pare the MIB-based method and the method in [22] based
on the estimation accuracy and the processing overhead.

When tampered-TCP connections with larger increase
ratio of the congestion window size co-exist with normal
TCP Reno connections, the packet loss rate at the router
increases. In [9], we showed that the number of dropped
packets in a tampered-TCP connection is proportional to its
increase ratio, α, of the congestion window size. Therefore,
the proposed mechanism should estimate the packet loss rate
when all the TCP connections passing through the router are
supposed to be TCP Reno. Thus, the target packet discard-
ing probability for tampered-TCP connections can be deter-
mined.

The number of dropped packets at the router is denoted
as nd, the number of all the packets which passed through
the router is denoted as na, and the average value of αe for all
the TCP connections passing through the router is denoted
as Ae. Thus, the packet loss rate, p, can be estimated as
follows:

p =
nd

na

Ae

p can be averaged, using the following EWMA calculations:

p = (1 − γd)p + γd p

where γd is a smoothing parameter. Note new values for
p and p̄ are calculated whenever a new value for the target
packet discarding probability is determined.

3.1.4 Assessing the Tampering Property

In [7], the authors extended the equation in [23] for an aver-
age throughput of a TCP connection for arbitrary values of
α and β. They also showed that when the following equation
is satisfied, the TCP connection obtains the same throughput
as a normal TCP Reno connections:

α =
4(1 − β2)

3

By using the above equation, a TCP connection is said to
be a tampered-TCP when its αe and βe satisfy the following
equation:

4(1 − βe
2
)

3αe
< (1 − γw) (1)

where γw (0 < γw < 1) is a parameter that takes into consid-
eration the estimation error of αe and βe. Note that the above
assessment of the tampering property of the TCP connection

MARUYAMA et al.: NEW METHODS FOR MAINTAINING FAIRNESS BETWEEN WELL-BEHAVED TCP FLOWS AND TAMPERED-TCP FLOWS AT EDGE ROUTERS
201

(a) Pseudo TCP Reno. (b) Tampered-TCP.

Fig. 4 Setting the target packet discarding probability in the cwnd-based
method.

is repeated whenever rw packets of the TCP connection ar-
rives at the router. rw is given by rw =

kw
p where kw is a

positive integer parameter.

3.1.5 Setting the Target Packet Discarding Probability

The proposed mechanism sets a target packet discard-
ing probability p′ for each TCP connection assessed as
a tampered-TCP to regulate its throughput to roughly the
same as TCP Reno connections. In setting p′, the focus is
on the change in the congestion window size of a TCP Reno
connection in the situation where all the TCP connections
passing through the router are supposed to be TCP Reno.
Here, the TCP Reno connection in such a situation is called
a pseudo TCP Reno connection. The p′ is determined so as
to equalize the throughput of the regulated tampered-TCP
connection with that of the pseudo TCP Reno connection.

Figure 4 shows the typical changes in the congestion
window sizes of the pseudo TCP Reno connection and the
tampered-TCP connection with the target packet discarding
probability. The number of packets that a pseudo TCP Reno
sender sends in a cycle is 1

p . Because this value is equal to
the shaded area in Fig. 4(a), the following equation is satis-
fied:

1
2
·
(
WR +

1
2

WR

)
· 1

2
WR =

1
p

(2)

where WR is the estimated window size of the pseudo TCP
Reno connection at the beginning of the cycle. For the
tampered-TCP connection, a similar equation is satisfied:

1
2
·
(
WT + βeWT

)
· (1 − βe)
αe

WT =
1
p′

(3)

where WT is the estimated window size of the tampered-
TCP connection at the beginning of the cycle. Therefore,
when the throughput of the tampered-TCP connection is
identical to the pseudo TCP Reno connection, we obtain the
following equation:

1
p̄

1
2 WR

=

1
p′

(1−βe)
αe

WT

(4)

From Eqs. (2)–(4), the target packet discarding proba-
bility can be obtained as follows:

p′ =
(1 + βe)

3(1 − βe)
αe p̄

Note that the target packet discarding probability is calcu-
lated whenever uw packets of the TCP connection arrive at
the router. uw is given by uw = 1

p′ .

3.2 Throughput-Based Method

The throughput-based method monitors the throughput of
each TCP connection and regulates the tampered-TCP con-
nections at regular intervals. This interval is called as
the control interval. In each control interval, an observed
throughput is derived based on the information from tradi-
tional traffic monitoring tools like sFlow [16] and NetFlow
[17].

In addition, network parameters, such as RTT, packet
loss ratio, and so on, are estimated in order to determine
the throughput, assuming that the TCP connection is a TCP
Reno. This estimated throughput is called as an estimated
throughput. If the observed throughput is larger than the
estimated throughput, then the TCP connection is said to be
not TCP Reno, but a tampered-TCP, and its throughput is
regulated based on a target packet discarding probability.

3.2.1 Setting the Control Interval

The control interval is the time for nI(i) packets arriving at
the router. nI(i) is derived as follows:

nI(i) =
kt

p(i)

where p(i) is an estimated packet loss rate at the beginning
of the i-th control interval and kt is a positive integer param-
eter.

3.2.2 Calculating the Observed Throughput

Traffic monitoring tools generally store the total bytes of
packets passed through the router and the traffic monitor-
ing time for each flow passing through the router. The total
number of bytes in the i-th control interval is denoted as
b(i), the length of the i-th control interval is denoted as t(i)
and the observed throughput in the i-th control interval is
denoted as To(i). Then To(i) is given by the following equa-
tion:

To(i) =
b(i)
t(i)

3.2.3 Calculating the Estimated Throughput

The equation proposed in [23] which estimates the through-
put of a TCP connection uses the following parameters:
packet size, delayed ACK option value, RTT, retransmis-
sion timeout, and packet loss rate. To calculate the esti-
mated throughput if it is assumed that the TCP connection
is a TCP Reno connection, all the parameters are estimated
as follows:

202
IEICE TRANS. COMMUN., VOL.E91–B, NO.1 JANUARY 2008

• Packet size
The traffic monitoring tools store the amount of traffic
that arrives at the router in both units of packets and
bytes. The total number of packets in the i-th control
interval is denoted as n(i), and the estimated packet size
is denoted as se(i). Then se(i) can be calculated as fol-
lows:

se(i) =
b(i)
n(i)

• The delayed ACK option value
The ACK sequence number of the j-th ACK packet in
the i-th control interval is denoted as a(i, j). Using the
difference between two ACK sequence numbers, the
estimated value of the delayed ACK option dele(i, j) is
given by:

dele(i, j) = a(i, j) − a(i, j − 1)

The average number of the dele(i, j) in the i-th control
interval is denoted as dele(i). dele(i) is derived as fol-
lows:

dele(i) =

∑nb

j=1 dele(i, j)

nb

where nb is the number of samples of the estimated de-
layed ACK option values in the i-th control interval.
Here, all duplicate ACK packets and ACK packets just
after the duplicate ACK packets are ignored in the cal-
culation, because the ACK sequence numbers of such
ACK packets are not appropriate for determining the
delayed ACK option value.
• RTT

Although many different kinds of mechanisms have
been proposed to estimate the RTT in past papers [24]–
[26], the mechanism proposed in [20], which utilizes
TCP’s timestamp option [27], is used in this paper.
This mechanism estimates the RTT as follows. The
sender transmits a TCP data packet dp1 with timestamp
ts1. It arrives at the router at time m1. The receiver re-
sponds with an ACK packet ap1 with timestamp ts2

and the echo ts1. The router recognizes ts1 in both the
packet dp1 and ap1, then makes an association between
the two packets. On receiving the ACK packet ap1, the
sender transmits a new data packet dp2 with timestamp
ts3 and the echo ts2. The router receives the packet dp2

at time m2 and recognizes ts2 in both the packet ap1

and dp2, then makes an association between the packet
ap1 and dp2. With three associated packets, the router
estimates the RTT using m1 and m2. The j-th estimated
RTT in the i-th control interval rtte(i, j) is given by:

rtte(i, j) = m2 − m1

The average value of the rtte(i, j) in the i-th control in-
terval is derived as follows:

rtte(i) =

∑nr

j=1 rtte(i, j)

nr

where nr is the number of samples of the estimated
RTTs in the i-th control interval.
• Retransmission timeout

[28] recommends that four times of the RTT be used
as an estimated value of the retransmission timeout. In
this paper, this method is used to estimate the retrans-
mission timeout rtoe(i) as:

rtoe(i) = 4rtte(i)

• Packet loss rate
The estimated packet loss rate is derived in a manner
similar to the cwnd-based method. However, because
the throughput-based method does not estimate the in-
crease ratio α of the congestion window size of each
TCP connection, the packet loss rate observed when
all the TCP connections passing through the router are
supposed to be TCP Reno cannot be estimated. Thus,
packet loss rate p(i) is simply calculated from nd(i) and
na(i) as follows:

p(i) =
nd(i)
na(i)

When the number of co-existing TCP connections is
small, this equation overestimates the packet loss rate
of TCP connections. However, the number of TCP
connections passing through the router increases and
the ratio of tampered-TCP connections relatively de-
creases, the effect of the overestimation becomes small.
The estimated packet loss rate is smoothed according to
the following EWMA calculation:

p(i) = (1 − γl)p(i − 1) + γl p(i)

Finally, the estimated throughput Te(i) in the i-th con-
trol interval is given by:

Te(i) =
se(i)

rtte(i)
√

2dele(i)p(i)
3 +rtoe(i)min

(
1,3

√
3dele(i)p(i)

8

)
p(i)(1+32p(i)2)

3.2.4 Assessing the Tampering Property

The throughput-based method assesses a TCP connection as
tampered-TCP if its To(i) and Te(i) in the i-th control inter-
val satisfy the following equation:

To(i)
Te(i)

> (1 + γt) (5)

where γt (0 < γt) is a parameter that accounts for error in
estimating To(i) and Te(i). Note that the above assessment
of the tampering property of the TCP connection is repeated
for every control interval, which reduces the effect of assess-
ment misses.

MARUYAMA et al.: NEW METHODS FOR MAINTAINING FAIRNESS BETWEEN WELL-BEHAVED TCP FLOWS AND TAMPERED-TCP FLOWS AT EDGE ROUTERS
203

3.2.5 Setting the Target Packet Discarding Probability

Since the throughput of a TCP connection is proportional to
the inverse of the square root of the packet loss rate [15],
this can be used to determine the target packet discarding
probability p′(i) in the i-th control interval. Based on this
property, p′(i) is given by:

p′(i) =
(
To(i − 1)
Te(i − 1)

)2

p′(i − 1)

4. Simulation Experiments of Proposed Mechanism

In this section, the simulation results to evaluate the per-
formance of the proposed mechanism described in Sect. 3
are presented. The control parameters for the cwnd-based
method are set as δ = 0.5, h = 0.0001, γα = 0.6, γβ = 0.6,
γd = 0.6, γw = 0.1, and kw = 4. The parameter h is deter-
mined according to the minimum value of inter-arrival times
of incoming packets, which is calculated from the link band-
width and packet size. Therefore we use this value to judge
the boundary of two successive windows. The other param-
eters are set by parameter tuning to be suitable for this net-
work condition. The control parameters for the throughput-
based method are set as γl = 0.6, γt = 2, and kt = 6. These
parameters are set by parameter tuning to be suitable for this
network condition. The simulation model is shown in Fig. 1
where µR = µT = 100 Mbps, µ = 50 Mbps, τ = 20 msec,
B = 333 packets, nT = 1, nR = 20, and the packet size
is set to 1500 bytes. We set a smaller value to the band-
width of bottleneck link than that of Fig. 2 so as to confirm
that the proposed mechanism can detect and control only
the tampered-TCP connection even in a situation where it
is more difficult for the tampered-TCP connection to work
well. The simulation time is 70 seconds. In first 10 seconds,
only TCP Reno connections transmit data, and after 10 sec-
onds, the tampered-TCP connection starts transmission. We
use the average values of the evaluation metrics of the last
60 seconds. The performance of the proposed mechanism is
evaluated when α, the increase ratio of the congestion win-
dow size of the tampered-TCP connections, takes values in
the interval [1,20] while β, the decrease ratio of the con-
gestion window size of the tampered-TCP connection, takes
values in the interval [0.5,1.0]. We change the α by 1 and β
by 0.1. The throughput ratio is used as an evaluation metric.
It is defined as:

Throughput ratio =
(Throughput o f tampered-TCP)

(Throughput o f TCP Reno)
(6)

In addition, following three metrics are used to examine the
performance of the proposed mechanism: the false nega-
tive ratio, the detection time of tampered-TCP connections,

and the false positive ratio. The false negative ratio is de-
fined as the ratio that the proposed mechanism fails to de-
tect tampered-TCP connections. The detection time is de-
fined as the time that the proposed mechanism takes to de-
tect tampered-TCP connections. The false positive ratio is
defied as the ratio that TCP Reno connections are once as-
sessed as tampered-TCP in the simulation.

Besides, the bottleneck link is always congested in the
following simulations. Detailed algorithm and evaluation of
the mechanism to judge the congestion level is one of our
future works. One possible solution is to set the threshold
value for the queue length at the router buffer with the pro-
posed mechanisms to monitor the link utilization.

4.1 Throughput Ratio

Figure 5 plots the change in the throughput ratio of no
control, the cwnd-based method and the throughput-based
method. This figure shows that the both methods keep the
throughput ratio about 1 for almost all the parameters.

In other words, in time of congestion, the proposed
mechanism achieves the fairness between the tampered-
TCP and TCP Reno connections. In addition, TCP variants
that maintain the fairness between TCP Reno do not become
a candidate for throughput control by the proposed mech-
anism from the following two reasons: (1) The proposed
mechanism is active only when the network is congested,
so the aggressive behavior of such TCPs for utilizing un-
used bandwidth is not regulated. (2) Such TCPs will behave
fairly against co-existing TCP Reno when congested, so the
proposed mechanism does not work in such case.

4.2 False Negative Ratio and Detection Time

Figures 6 and 7 show changes in the false negative ra-
tio and the detection time for the cwnd-based method and
throughput-based method. In the region around (α, β) =

(a) No control.

(b) Cwnd-based method. (c) Throughput-based method.

Fig. 5 Changes in the throughput ratio when using the proposed mecha-
nism.

204
IEICE TRANS. COMMUN., VOL.E91–B, NO.1 JANUARY 2008

(a) Cwnd-based method. (b) Throughput-based method.

Fig. 6 False negative ratio for tampered-TCP connections.

(a) Cwnd-based method. (b) Throughput-based method.

Fig. 7 Detection time for tampered-TCP connections.

(1, 0.5), which corresponds to TCP Reno’s increase and de-
crease ratio of the congestion window size, the false nega-
tive ratio in the cwnd-based method is nearly 1. This means
that the cwnd-based method does not assess a normal TCP
Reno connection as a tampered-TCP connection. In ad-
dition, in the region where the tampering property of the
tampered-TCP connections is weak, the false negative ratio
becomes high. This is because the parameter γw is used to
account for the estimation error in Eqs. (1), which causes the
tampered-TCP connections in this region to occasionally be
assessed as normal TCP Reno connections. In case of the
throughput-based method, the false negative ratio around
(α, β) = (1, 0.5) is nearly 0. This is because a normal TCP
connection during the slow start phase is sometimes misas-
sessed as a tampered-TCP. However, the effects of the mis-
assessment are small as we will mention later. One of the
solutions to this problem is setting a longer control interval
than the other ones for the first assessment of the tamper-
ing property of each TCP connection. In the other region,
tampered-TCP connections are detected at almost 100% for
both methods.

Figure 7 shows that both methods take about 2 sec-
onds to detect the tampered-TCP connections. This is cal-
culated as follows. In this paper, we set the packet size
s = 1500 byte. The average window size of one connection
wa is :

wa =
2τµ + B
nt + nR

The round trip time rtt is given by :

rtt = 6τ

The number of packets in one control interval is derived as :

ni =
kw
q

(a) Cwnd-based method. (b) Throughput-based method.

Fig. 8 False positive ratio for TCP Reno connections.

The number of window in one control interval is:

nw =
kw/q
wa

Therefore, the detection time td is given as follows:

td = nwrtt +
8nis

µ106

By assigning the value used in the simulation, we can get 4
as the detection time. Though his value is different from the
simulation results, we can assume that the slow start phase
at the beginning of the tampered-TCP connection shorten
the detection time. Therefore, the detection time is about
2. The same reason as the throughput-based method. Cur-
rently, when ISP monitors and detects connections that use
large bandwidth, the MIB information is mainly used, and
the typical update interval of the MIB information is 5 min-
utes. Thus, it can be said that the proposed mechanism de-
tects tampered-TCP connections much faster.

4.3 False Positive Ratio

Figure 8 depicts the false positive ratio for the cwnd-based
method and throughput-based method. This figure shows
that the false positive ratio of both methods increases as the
tampering property of tampered-TCP connections becomes
stronger. This can be explained as follows. The tampered-
TCP modeled in this paper increases its congestion win-
dow size rapidly as its tampering property becomes stronger,
which leads to unstable changes in the congestion window
size and in the throughput of the competing TCP Reno con-
nections. This causes an estimation error for α and β in the
cwnd-based method, and for the observed throughput and
the estimated throughput in the throughput-based method.
In addition, in case of the throughput-based method with a
short control interval, a normal TCP connection during the
slow start phase is sometimes misassessed as a tampered-
TCP. One of the solutions to this problem is setting a longer
control interval than the other ones for the first assessment
of the tampering property of each TCP connection.

However, in the case of false positive errors, the
throughput of misassessed TCP Reno connection does not
decrease so largely. This is shown by Table 1, which
presents the throughput and throughput ratio of misassessed
TCP Reno connections and successfully-assessed TCP Reno
connections. This result means the following things: The

MARUYAMA et al.: NEW METHODS FOR MAINTAINING FAIRNESS BETWEEN WELL-BEHAVED TCP FLOWS AND TAMPERED-TCP FLOWS AT EDGE ROUTERS
205

Table 1 Throughput and throughput ratio of mis-detected TCP Reno and
successfully-assessed TCP Reno connections.

Cwnd-based method
α β Mis-detected Reno Throughput

Reno (Mbps) (Mbps) ratio
10 0.7 2.117 2.399 0.882
20 0.9 2.233 2.377 0.939

Throughput-based method
α β Mis-detected Reno Throughput

Reno (Mbps) (Mbps) ratio
10 0.7 2.548 2.401 1.061
20 0.9 2.175 2.431 0.895

(a) Cwnd-based method. (b) Throughput-based method.

Fig. 9 Changes in the throughput ratio with the proposed mechanism
(50% of all the connections are tampered).

parameter tuning for various network environments should
be one of our future work. However, the proposed mech-
anism periodically checks the tampered characteristics of
TCP connections, temporary estimation errors can be fixed
in the following intervals. Therefore, it can be said that
the proposed mechanism sometimes misassesses TCP Reno
connections as tampered-TCP, however, the effects of this
misassessment are small.

Therefore, it can be said that the proposed mechanism
sometimes misassesses TCP Reno connections as tampered-
TCP. However, the effects of this misassessment are small.

4.4 Effectiveness in Case of Many Tampered-TCP Con-
nections

Though we think it is unlikely that about 50% of all the con-
nections are tampered-TCP in the actual network situation,
we check the performance of the proposed mechanism in
such a situation. We show the simulation results in Fig. 9 to
evaluate the performance of the proposed mechanism when
50% of TCP connections are tampered. In this simulation,
we set γt = 1.

This result shows that the cwnd-based method appro-
priately control the tampered-TCP connections in the re-
gion where α is small. This is because the tampered-TCP
modeled in this paper increases its congestion window size
rapidly as its tampering property becomes stronger, which
leads to unstable changes in the congestion window size and
results in the estimation errors. It is one of our future works
to improve the accuracy of the cwnd-based method when α
of the tampered-TCP connections is large.

As for throughput-based method, the tampered-TCP
connections are controlled properly when β is smaller than
1. In this case, tampered-TCP connections occupy the band-

width in a rotation-fashion, so such connections decreases
the throughput of TCP Reno connections before it is de-
tected and controlled by the throughput-based method. It
is one of our future works to improve the accuracy of the
throughput-based method when β of the tampered-TCP con-
nections is about 1.

5. Conclusion

In this paper, we proposed a new mechanism at edge routers
to protect normal TCP connections from tampered-TCP
connections. The proposed mechanism estimates a window
size or an average throughput of each TCP connection pass-
ing through the edge router by monitoring TCP packets, and
assesses its tampering property based on the estimation re-
sults and regulates the throughput of tampered-TCP connec-
tions by dropping incoming packets at an appropriate prob-
ability. By results of the simulation experiments, we pre-
sented that the proposed mechanism regulates the through-
put ratio about 1 and achieve the fairness amongst TCP con-
nections. Our future works are: (1) Investigating the per-
formance of the proposed mechanism in the actual Internet
environment. (2) Simulations using another TCP variant,
which is compound TCP included in Windows Vista, as a
well-behaved TCP. (3) Detailed algorithm to set the thresh-
old value of the queue length to monitor the link usage. (4)
Tuning parameters for various network environments. (5)
Improving the accuracy of cwnd-based method when α of
the tampered-TCP connections and the number of tampered-
TCP connections are large. (6) Improving the accuracy of
the throughput-based method when β of the tampered-TCP
connections is nearly 1 and the number of tampered-TCP
connections is large.

References

[1] M. Fomenkov, K. Keys, D. Moore, and K. Claffy, “Longitudinal
study of Internet traffic from 1998–2003,” Proc. WISICT 2004, Jan.
2004.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”
RFC2581, April 1999.

[3] S. Bokhari, “The Linux operating system,” Computer, vol.28, no.8,
pp.74–79, Aug. 1995.

[4] I. Phillips and J. Crowcroft, TCP/IP and Linux Protocol Implemen-
tation: Systems Code for the Linux Internet (Networking Council
Series), John Wiley & Sons, 2001.

[5] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP con-
gestion control with a misbehaving receiver,” ACM SIGCOMM
Computer Communications Review, vol.29, no.5, pp.71–78, Oct.
1999.

[6] M. Baldi, Y. Ofek, and M. Yung, “Idiosyncratic signatures for au-
thenticated execution of management code,” Proc. DSOM 2003,
Oct. 2003.

[7] Y.R. Yang and S.S. Lam, “General AIMD congestion control,” Proc.
ICNP 2000, Nov. 2000.

[8] H. Shimonishi, M. Sanadidi, and T. Murase, “Assessing interactions
among legacy and high-speed TCP protocols,” Proc. PFLDnet 2007,
Feb. 2007.

[9] J. Maruyama, G. Hasegawa, and M. Murata, “Is tampered-TCP re-
ally effective for getting higher throughput in the Internet?,” Proc.
ATNAC 2006, pp.167–171, Dec. 2006.

206
IEICE TRANS. COMMUN., VOL.E91–B, NO.1 JANUARY 2008

[10] E. Blanton, M. Allman, K. Fall, and L. Wang, “A conservative se-
lective acknowledgment (SACK)-based loss recovery algorithm for
TCP,” RFC3517, April 2003.

[11] J. Padhye and S. Floyd, “On inferring TCP behavior,” ACM SIG-
COMM Computer Communication Review, vol.31, no.4, pp.287–
298, Aug. 2001.

[12] K. Pentikousis and H. Badr, “Quantifying the deployment of TCP
options — A comparative study,” IEEE Commun. Lett., vol.8, no.10,
pp.647–649, Oct. 2004.

[13] M. Mellia, R.L. Cigno, and F. Neri, “Measuring IP and TCP behav-
ior on edge nodes with Tstat,” Comput. Netw., vol.47, no.1, pp.1–21,
Jan. 2005.

[14] S. Floyd and K. Fall, “Router mechanisms to support end-to-end
congestion control,” Technical Report, Lawrence Berkeley Labora-
tory, Berkeley, CA, Feb. 1997.

[15] J. Padhye, J. Kurose, D. Towsley, and R. Koodi, “Model based TCP-
friendly rate control protocol,” Proc. NOSSDAV’99, June 1999.

[16] P. Phaal, S. Panchen, and N. McKee, “InMon corporation’s sFlow:
A method for monitoring traffic in switched and routed networks,”
RFC 3176, Sept. 2001.

[17] “NetFlow,” available at http://www.cisco.com/japanese/warp/public/
3/jp/product/hs/ios/nmp/prodlit/pdf/iosnf ds.pdf

[18] “The Network Simulator - ns-2,” available at http://www.isi.edu/
nsnam/ns/

[19] M. Basseville and I. Nikiforov, Detection of abrupt changes: Theory
and application. Prentice-Hall, 1993.

[20] B. Veal, K. Li, and D.K. Lowenthal, “New methods for passive es-
timation of TCP round-trip times,” Proc. PAM 2005, pp.121–134,
March 2005.

[21] K. McCloghrie and M. Rose, “Management information base
for network management of TCP/IP-based Internets: MIB-II,”
RFC1213, March 1991.

[22] P. Benko and A. Veres, “A passive method for estimating end-to-end
TCP packet loss,” Proc. IEEE GLOBECOM 2002, Nov. 2002.

[23] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” Proc.
ACM SIGCOMM’98, Sept. 1998.

[24] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-
trip times,” ACM Computer Communication Review, vol.32, no.3,
pp.75–88, Aug. 2002.

[25] G. Lu and X. Li, “On the correspondency between TCP acknowl-
edgment packet and data packet,” Proc. IMC 2003, Oct. 2003.

[26] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP connection characteristics through passive measure-
ments,” Proc INFOCOM 2004, March 2004.

[27] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” RFC1323, May 1992.

[28] M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP friendly rate
control (TFRC),” RFC3448, Jan. 2003.

Junichi Maruyama is now a M.E. candi-
date at Graduate School of Information Science
and Technology, Osaka University. His research
work is in the area of transport architecture.

Go Hasegawa received the M.E. and D.E.
degrees in Information and Computer Sciences
from Osaka University, Osaka, Japan, in 1997
and 2000, respectively. From July 1997 to June
2000, he was a Research Assistant of Graduate
School of Economics, Osaka University. He is
now an Associate Professor of Cybermedia Cen-
ter, Osaka University. His research work is in
the area of transport architecture for future high-
speed networks. He is a member of the IEEE.

Masayuki Murata received the M.E. and
D.E. degrees in Information and Computer Sci-
ences from Osaka University, Osaka, Japan, in
1984 and 1988, respectively. In April 1984, he
joined Tokyo Research Laboratory, IBM Japan,
as a Researcher. From September 1987 to
January 1989, he was an Assistant Professor
with Computation Center, Osaka University. In
February 1989, he moved to the Department of
Information and Computer Sciences, Faculty of
Engineering Science, Osaka University. From

1992 to 1999, he was an Associate Professor in the Graduate School of
Engineering Science, Osaka University, and from April 1999, he has been
a Professor of Osaka University. He moved to Advanced Networked En-
vironment Division, Cybermedia Center, Osaka University in 2000, and
moved to Graduate School of Information Science and Technology, Osaka
University in April 2004. He has more than two hundred papers of inter-
national and domestic journals and conferences. His research interests in-
clude computer communication networks, performance modeling and eval-
uation. He is a member of IEEE, ACM, The Internet Society, and IPSJ.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

