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SUMMARY Distributed denial-of-service attacks on public
servers have recently become more serious. The most effective
way to prevent this type of traffic is to identify the attack nodes
and detach (or block) attack nodes at their egress routers. How-
ever, existing traceback mechanisms are currently not widely
used for several reasons, such as the necessity of replacement
of many routers to support traceback capability, or difficulties
in distinguishing between attacks and legitimate traffic. In this
paper, we propose a new scheme that enables a traceback from
a victim to the attack nodes. More specifically, we identify the
egress routers that attack nodes are connecting to by estimating
the traffic matrix between arbitral source-destination edge pairs.
By monitoring the traffic variations obtained by the traffic ma-
trix, we identify the edge routers that are forwarding the attack
traffic, which have a sharp traffic increase to the victim. We also
evaluate the effectiveness of our proposed scheme through sim-
ulation, and show that our method can identify attack sources
accurately.
key words: Distributed Denial of Service (DDoS), Traceback,
Traffic matrix, Simple Network Management Protocol (SNMP)

1. Introduction

The recent rapid growth and the increasing utility of
the Internet are making security issues increasingly im-
portant. Denial-of-service (DoS) attacks are one of the
most serious problems and must be resolved as soon as
possible. These attacks prevent users from communi-
cating with service providers and have damaged many
major web sites all over the world.

The number of attacks has been increasing, and
the techniques used to attack servers have become more
complex. In the distributed denial-of-service (DDoS)
attacks often seen recently, multiple distributed nodes
attack a single server concurrently. A malicious user
tries to hack the remote nodes by exploiting the vul-
nerabilities of the software running on them, installs
an attack program on the hijacked nodes, and keeps
them waiting for an order to attack a victim server.
When the malicious user sends a signal to them, they
begin to attack the same server. Even if the rate of at-
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tack for each node is small, the attack traffic can cause
serious damage to the victim server when the number
of hijacked nodes is large.

Identifying the attack sources is one of effective
(and ideal) solutions to cut off the link to the attacker
or filter attack packets by an edge router connected
to the attacker. However, because attackers can easily
spoof the source address fields of the attack packets,
it is quite hard to identify the attack sources by only
checking the source address of the attack packets.

For this reason, several methods for identifying the
attack sources are proposed. In general, these methods
are called IP tracebacks. One of them is proposed in [1],
where a router generates an ICMP traceback packet to
the destination of the packet with a low probability
at the event of packet forwardings. The victim iden-
tifies the actual source of the packet by using the re-
ceived ICMP traceback packets. Other methods are
proposed in [2]–[4], in which a router marks IP packets
to be forwarded with identification information instead
of generating ICMP packets. The victim can identify
the source of the packets using the identification infor-
mation. Another method is proposed in [5], [6], where
each router stores packet digests. The victim queries
its upstream routers to see whether an attack packet
has passed through them or not.

However, these methods have several problems.
One of them is that they cannot work with legacy
routers because they need router support. Another is
that they may erroneously identify legitimate clients as
attack sources. This is because these methods can only
identify the source nodes of IP packets. Since there
is no difference between legitimate and attack packets,
identifying attack packets from the mixture of attack
and legitimate traffic is difficult.

In DoS attacks, attackers send a large number of
packets to exhaust the network resources. When an
attack starts, there is a rapid increase in the traffic
from the attack sources to the victim. Several methods
use such increase in traffic in the network to detect at-
tacks [7]–[10]. By using traffic volumes which can also
be monitored by legacy routers, we identify edge routers
connecting to the attackers without any change in core
network. Then, deploying only edge routers support-
ing IP traceback, we identify attack nodes by using IP
traceback from the identified edge routers. In addition,
identification of the attack sources by monitoring the
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increased traffic can distinguish the attackers from the
legitimate clients, which do not sharply increase traffic.
However, there are only a few papers about identifi-
cation of attack sources by monitoring the increase in
traffic.

Lakhina et al propose a method for identifying the
attack sources by monitoring the traffic on each link in
the network [8]. In this method, the measured loads of
all links are separated into normal and abnormal sub-
spaces. The normal subspace indicates the time-of-day
variation of the traffic. Other variations are categorized
into the abnormal subspace. We then identify the at-
tack source that explains the largest amount of anoma-
lous subspace. Although this method can identify the
attack source in a single attacker case, this method has
difficulty in identifying multiple attack sources such as
DDoS, because we need to consider all possible cases by
changing the number of attackers. It requires a huge
computation overhead.

The anomaly detection methods using traffic vol-
umes between all source/destination pairs are also pro-
posed. The traffic volumes between every pair of ingress
and egress points are typically described as a traffic
matrix. The method proposed in [10] uses the com-
pact summary of the per-flow statistics and detect
anomalies by comparing the difference between the ac-
tual summary and the forecasted summary obtained
by the forecast models. Another method proposed in
[9] separates the traffic matrix into normal and ab-
normal subspaces. Since this method separate traffic
volumes between all source/destination pairs into nor-
mal and abnormal subspaces, we can identify traffic be-
tween source/destination pairs having large abnormal
subspaces as attack traffic.

However, these methods assume that the traffic
matrix can be monitored accurately. Though Cisco’s
NetFlow [11] can monitor the flow statistics and pe-
riodically export the monitored statistics to the cen-
tral storage device, the process of NetFlow in routers
consumes CPU time to identify flows of recieved pack-
ets. The perfomance analysis of NetFlow [12] says the
resource consumption would increase according to the
number of active flows passing the router. Especially,
DDoS attack traffic contains many of spoofed packets
which lead the large number of flows having a single
packet. As a result, during DDoS attacks, the ac-
tivation of NetFlow has possibility to consume very
large amount of CPU time. Though [13] proposes the
distributed method to monitor traffic data and sepa-
rate them into normal and abnormal subspaces, this
method needs router support and cannot work with
legacy routers. On the contrary, the objective of our
work in this paper is to estimate the edge-to-edge traffic
matrix accurately under the assumption that we can-
not monitor the amount of traffic for all edge pairs and
therefore we only measure the load of network links.

Estimating traffic matrix from the measurement

of link loads is also proposed in some literatures e.g.,
[14], however, existing traffic matrix estimation meth-
ods are not suitable to apply the identification of at-
tacks because the assumption used in these methods
may decrease the accuracy of estimation of traffic vol-
umes including the attack traffic. We describe in detail
in Subsection 2.1.

In this paper, we propose a new method for identi-
fying attack sources by estimating the increase in traffic
between each source and destination. In this method,
we can estimate the increase in traffic accurately by
focusing not on the total rate of traffic but on the in-
crease in traffic. In addition, our method can work
with existing routers because we can obtain link load
data through Simple Network Management Protocol
(SNMP).

In Section 2, we explain an overview of our pro-
posed method. In Section 3 we evaluate our method.
In Section 4 we conclude by briefly summarizing the pa-
per and mentioning some of the future works we intend
to do.

2. Identification of attack sources by estimat-
ing traffic matrix

Our method identifies attack sources by estimating the
increases in traffic between every pair of sources and
destinations. We estimate the increases in traffic from
the monitored link load. In the estimation of the traffic
matrix, we don’t focus on the total amount of traffic,
but only focus on the amount of increase from the pre-
vious measurement. The reason why we use only the
increases in traffic for the traffic estimation is discussed
in the next subsection. In this section, we first show a
brief overview of our proposed scheme.

Fig. 1 shows an overview of our proposed method.
In our method, we introduce a control node to perform
the process of identification of attack sources. We call
this node a monitoring node, and we also define the
region where the monitoring node controls as a moni-
tored network. The monitoring node identifies the at-
tack sources by periodically performing the following
operations.

1. Obtains the statistics of the link load data from all
routers in the monitored network.

2. Estimates a matrix of the increase in traffic be-
tween all arbitrary pairs of edge routers in the mon-
itored network.

3. Identifies the attack sources from the estimated
traffic increase matrix.

We can obtain link load data through SNMP.
SNMP is supported by essentially every device in IP
networks and is used to monitor or manage the device.
That is, our method can work with existing routers.

The interval for obtaining the statistics affects the
time for identifying the attack sources. If we set the
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Fig. 1 Overview of proposed method

interval to a larger value, the identification takes more
time. On the other hand, if we set the interval to a
smaller value, the loads on the routers increase though
we can identify attack the sources soon after the at-
tack starts. Thus, we should set this interval to as
small value as possible without high loads on routers.
In general, to avoid high loads on routers, the inter-
val of SNMP is set to 5 minutes. Therefore, we set
this interval to 5 minutes in our evaluation described
in Section 3.

In the following sections, we describe the details
about how to estimate the increase in traffic and how
to identify the attack sources.

2.1 Estimation of Increase in Traffic

First, we assign a set of links outside the monitored net-
work as E. We call these links edge links. The router,
which is connected by an edge link, is called the edge
router. We assign a set of all the links in the monitored
network, including the edge links, as L.

Traffic matrix T is defined as the |E| × |E| sized
matrix, whose element ti,j (i, j ∈ E) indicates the
amount of traffic traversing from edge link i to edge
link j. We can obtain the link loads from each router
through SNMP. The link loads can be denoted by the
2|L|-size link load matrix X as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xf
1

xb
1

xf
2

xb
2
...

xf
|L|

xb
|L|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

In matrix X, elements xf
l (l ∈ L) and xb

l (l ∈ L)
indicate the amount of traffic on link l in the forward
and backward directions respectively, because most of
the network links are bidirectional. We only use the

words forward/backward to distinguish the direction
of the link. Therefore, there is no policy for deter-
mining the forward or backward direction of each link.
However, we must distinguish between the ingress and
egress traffic. To distinguish between them, we de-
note the ingress traffic measured on edge link i as
xin

i (i ∈ E) and egress traffic measured on the edge
link j as xout

j (j ∈ E) .

2.1.1 Traffic Matrix Estimation using Gravity Model

We estimate the traffic matrix of each pair of edge links
from the link loads and routing information in moni-
tored network. [14] uses a gravity model to estimate the
traffic matrix. The gravity model assumes that traffic
from a source to a destination is proportional to the
total traffic at the source and at the destination. Using
this model, we estimate the traffic matrix from

ti,j = xin
i

xout
j∑

∀k∈E
xout

k

(i, j ∈ E) , (2)

where xin
i is the element of X corresponding to the

amount of ingress traffic to the monitored network mea-
sured on the edge link i and xout

j is the egress traffic
measured on the edge link j.

However, we cannot estimate increases in traffic
accurately using Eq. (2) as follows. We assume that an
attack traffic whose rate is tattack traverses from i to j.
We also assume legitimate traffic ti,j can be accurately
estimated by Eq. (2). Traffic from i to j, including the
attack traffic is estimated from

t′i,j = (xin
i + tattack)

xout
j + tattack∑

k xout
k + tattack

, (3)

where t′i,j is the traffic traversing from i to j including
attack traffic. Then, the increased traffic by the attack
is estimated by

t′i,j − ti,j =
t2attack + tattack(xin

i + xout
j )∑

k∈E xout
k + tattack

, (4)

where ti,j is the legitimate traffic from i to j. Fig. 2
shows a simple example. In this example, we assume
the total rate of traffic in the monitored network is
6 GBytes/sec, both xin

A and xout
B are 1 GBytes/sec. We

also assume the attack traffic from the edge link A to
B has the rate of 1 GBytes/sec. From Eq. (4), the to-
tal traffic, including the attack traffic from edge link
i to j is estimated as 0.55 GBytes/sec, which is quite
different from the attack rate (1 GBytes/sec).

As previously mentioned, when attack traffic is in-
jected, the estimated increase in traffic is proportional
to the total rate of traffic monitored at the source. That
is, the gravity model is infeasible for directly estimat-
ing the attack traffic because the impact of the attack
traffic is distributed among the edge links that have
legitimate traffic to the victim. As a result, the esti-
mated attack rate is significantly lower than the rate of
the attack traffic that is really generated.
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Fig. 2 Simple example of DoS attack

2.1.2 Traffic matrix estimation focusing on increased
traffic

To accurately estimate the increase in traffic, we pro-
pose a matrix estimation method focusing not on the
total rate of traffic but on the increase in traffic.

First, we calculate the increases in traffic on each
link from

Gn = Xn − X̄n, (5)

where Gn is the 2|L|-size vector in which the ele-
ments gf

i,n (i ∈ L) and gb
i,n (i ∈ L) indicate the

increase in traffic on link i in the forward and backward
directions at time n, respectively. Xn is the link load
vector at time n and X̄n is the 2|L|-size vector in which
x̄f

i,n is the average rate of legitimate traffic on the link
i in the forward direction before time n and x̄b

i,n is one
on the same link in the backward direction. We explain
how to calculate X̄n in Subsection 2.1.4.

Then, by using Gn, we estimate the increases in
traffic between every pair of sources and destinations.
The increase in traffic can be shown as a |E| × |E| ma-
trix Fn whose element fi,j,n (i, j ∈ E) indicates the
increase in traffic traversing from edge link i to edge
link j.

Eq. (2) cannot be used to estimate the traffic in-
crease matrix from Gn, which may include negative val-
ues, because it supports only positive values. Therefore,
we modify Eq. (2) to support negative values. We de-
fine the traffic increase matrix Fn, having the traffic
increase fi,j,n, from edge link i to j between the time
n − 1 and n. The value of fi,jn is calculated from

fi,j,n=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gin
i,n

gout
j,n∑

{k:(gout
k,n

>0)} gout
k,n

(gin
i,n>0, gout

j,n >0)

−
∣∣∣∣∣gin

i,n
gout

j,n∑
{k:(gout

k,n
<0)} gout

k,n

∣∣∣∣∣ (gin
i,n<0, gout

j,n <0)

0 (others).

(6)

Focusing on the increase in the traffic, we can elim-
inate the effect of the amount of legitimate traffic and
estimate the increase in the traffic more accurately.
That is, we can estimate that the increase in traffic

from attack sources to the victim is large by checking
the increase in traffic when the attack starts. If the
monitored network suffers from multiple attacks whose
sources and victims are different, some traffic from dif-
ferent sources to different destinations concurrently in-
creases. In this case, the estimated increase in traffic
is proportional to the increase in traffic measured at
the sources. That is, traffic from a source of an attack
to a victim of another attack is estimated as increased.
However, we can identify the attack sources that gener-
ate the attack traffic, even if we could not identify the
victim node exactly where the attack source sends the
attack traffic to.

2.1.3 Modification of traffic matrix

Although Fn is a |E| × |E| matrix, Fn can be denoted
as following the |E|2-size vector;

Fn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1,1,n

f1,2,n

...
f1,|E|,n
f2,1,n

...
f|E|,|E|,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Due to the fact that the total amount of traffic on the
link is the summation of the traffic of flows that are
passing the link, Fn and Gn satisfy

Gn = AFn, (8)

where A is a 2|L| × |E|2 routing matrix which is given
by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

af
1,1,1 af

1,2,1 · · · af
|E|,|E|,1

ab
1,1,1 ab

1,2,1 · · · ab
|E|,|E|,1

af
1,1,2 af

1,2,2 · · · af
|E|,|E|,2

ab
1,1,2 ab

1,2,2 · · · ab
|E|,|E|,2

...
...

. . .
...

af
1,1,|L| af

1,2,|L| · · · af
|E|,|E|,|L|

ab
1,1,|L| ab

1,2,|L| · · · ab
|E|,|E|,|L|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

af
i,j,k (i, j ∈ E, k ∈ L) is equal to 1 if the traffic from

edge link i to edge link j traverses on link k in the
forward direction, or set to zero otherwise. In a similar
way, ab

i,j,k (i, j ∈ E, k ∈ L) is equal to 1 if the traffic
from edge link i toedge link j traverses on link k in the
backward direction or zero otherwise. Matrix A can be
obtained by monitoring the routing messages, such as
the Link State Advertisement (LSA) of OSPF [15] or
by simulating routing [16].

The traffic matrix estimated by the gravity model
cannot satisfy Eq. (8) because Eq. (6) does not use the
traffic statistics on the internal links of the monitored
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network, but uses only the traffic measurements of the
edge links. Therefore, we adjust the traffic matrix esti-
mated by the gravity model to satisfy Eq. (8). We can
obtain the final estimation results for Fn from

Fn = F ′
n + pinv(A)(Gn − AF ′

n), (10)

where F ′
n is the |E|2-size vector indicating the results

estimated by Eq. (6), and pinv(A) is a pseudo-inverse
matrix of A. We can obtain the least squares solution
of X = AT by multiplying X by the pseudo-inverse ma-
trix of A. That is, by Eq. (10), we obtain Fn which sat-
isfies Gn = AFn and minimizes |Fn−F ′

n|2. In this paper
we obtain pinv(A) by using a function of Scilab [17].

2.1.4 How to estimate average of legitimate traffic

Our method for estimating the increase in traffic uses
the average rate of legitimate traffic. The rate of le-
gitimate traffic varies according to the time of day. To
follow the time-of-day variation of this traffic, we as-
sume that the average rate of legitimate traffic X̄n is
basically estimated by the exponentially weighted av-
erage of the monitored traffic rate from

X̄n+1 = αXn + (1 − α)X̄n (0 < α < 1) . (11)

Note here, other estimation method (e.g. AutoRe-
gressive Integrated Moving Average (ARIMA) model)
can also be used to estimate the average rate of le-
gitimate traffic. However, according to [10], exponen-
tially weighted average is almost as accurate as ARIMA
model though it is very simple. For this reason, we use
the exponentially weighted average described above.

However, when the traffic increases suddenly and
rapidly (we call these spikes throughout the rest of this
paper), X̄n becomes large after the spike. The large
X̄n value causes difficulties in the identification of the
increase in traffic after the spike, because the larger X̄n

value makes the impact of (Xn − X̄n) small, even for
cases of increases in traffic. For this reason, we must
estimate the average of the legitimate traffic without
the effect of spikes.

We can eliminate the effect of spikes by updat-
ing only the elements of X̄n corresponding to the link
on which the increase in traffic is under a threshold.
However, as described in the previous subsection, our
method assumes the situation covered by Eq. (8). For
this reason, we should update X̄n by satisfying Eq. (8).

For this purpose, we update X̄n using an ele-
ment from estimated Fn, which is not rapidly in-
creasing. First, we extract the element not increas-
ing rapidly from Fn. We denote the |E| × |E| ma-
trix of the extracted elements as F̂n. Each element
f̂i,j,n (i, j ∈ E) is defined by

f̂i,j,n =
{

fi,j,n (fi,j,n < μi,j + βσi,j)
0 (others) . (12)

where μi,j is the average of the last J values of
fi,j,k (i, j ∈ E, n − J < k ≤ n) and σi,j is the vari-

ance of the last J values of fi,j,k (i, j ∈ E, n − J < k ≤ n) .
β is the parameter by which we can set the threshold.
By Eq. (12), when the traffic from i to j sharply in-
creases at time n beyond the threshold, f̂i,j,n is zero,
while in other cases, f̂i,j,n is fi,j,n.

After that, we update X̄n+1 with the following
equation.

X̄n+1 = α(X̄n + AF̂n) + (1 − α)X̄n (13)

In Eq. (13), we calculate the increase in traffic on each
link from F̂n by AF̂n. Using the increase in traffic, we
calculate the amount of traffic at time n as X̄n + AF̂n.
Then, we update X̄n+1 as the weighted average of the
monitored traffic using the amount of traffic at time n.

With the above stated equations, we can update
X̄n+1 without the effect of any spikes in Fn. By de-
ciding whether each element of Fn should be used to
update, we can satisfy Eq. (8).

The above model to estimate the average of legit-
imate traffic uses three parameters, α, β and J . If the
change of legitimate traffic causes large entries in Gn,
the legitimate traffic is errorneously identified as an at-
tack. To avoid this errorneous detection, we should set
the parameters to the value which can minimize Gn

during no attack times.
α indicates the weight to current measurement.

Setting α to a large value, we cannot eliminate the
impact of temporal change of traffic on the estimated
average of legitimate traffic. As a result, the impact
enlarges the increase of legitimate traffic from the esti-
mated average of legitimate traffic. However, setting
α to a small value, the estimated average of legiti-
mate traffic cannot follow the periodic change of traffic.
Therefore, we use the traffic data monitored before to
set α to adequate value. By using the traffic data mon-
itored before, we set α to the value which can minimize
the squared errors between monitored traffic rate and
its estimated rate.

By β, we can set the sensitivity to detect the spikes.
If we set β to a large value, the spike also affect the esti-
mated average of legitimate traffic. On the other hand,
if we set β to a small value, the periodical change of traf-
fic may mistakenly be identified as a spike. As a result,
we cannot udpate the estimated average of legitimate
traffic. Therefore, we use the traffic data monitored
before and set β to as small value as possible without
identifying the periodic change of the monitored traffic
as a spike.

J is the number of monitored data used for setting
a threshold to detect spikes. By setting J to large value,
we use more monitored data. However, setting J to
large value needs more memories to store the monitored
data. Therefore, we set J to as large value as possible.
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2.2 Identification of attack sources

When an attack starts, the traffic sharply increases
from the attackers to the victim. Moreover, the larger
the increase is, the more serious the impact on the net-
work resources is. We identify the sources increasing
the traffic on the victim as attack sources. However,
when many attack sources are widely distributed, the
impact of the attack is serious, even if each attack
source generates a small rate of attack traffic. Thus,
the identification of the attack sources, by setting a
static threshold to the increase in traffic, is not suf-
ficient. Instead of setting a threshold, we identify the
attack sources by comparing the increase in traffic from
each edge link to the victim. When the victim detects
an attack, it is reasonable enough to assume that the
source generating more traffic to the victim has more
likelihood of being considered an attack source. With
this assumption, we identify attack sources from the
nodes generating a lot of traffic to the victim node. We
also use the total rate of traffic to detect the event of
an attack. By using the total rate of attack traffic, we
can identify the attack sources even in cases of DDoS.
The total rate of attack traffic can be estimated from
the increase of the egress traffic to the victim.

When an attack starts, the egress traffic increases
with the rate of the attack traffic. However, the rate
of legitimate traffic may also change according to the
time-of-day. Assuming the increase of egress traffic to
the victim is attack traffic may be an overestimation of
the attack traffic, because an increase in egress traffic
includes both legitimate and attack traffic. As a result
of this overestimation, the source node sending only
legitimate traffic may be mislead as an attack source.
For this reason, we estimate the rate of the attack traffic
g̃out from results of traffic estimation. When an attack
to edge link j starts at the time n, g̃out is estimated
from

g̃out = gout
j,n − μout

j − γ, (14)

where gout
j,n is the egress traffic on edge link j to the

outside of the monitored network, μout
j is the average

of the last J values of gout
j,k (n − J ≤ k < n) , and γ

is the parameter indicating the variation in the rate of
the legitimate traffic. In this equation, μout

i represents
the effect of the time-of-day variation of the legitimate
traffic and γ mitigates the effect of the other variations
of the legitimate traffic. By adequately setting γ, we
can estimate g̃out as the value which may be a little
smaller than the actual attack rate, but is never larger
than the actual attack rate.

Then, we identify source i as attack source when
source i satisfies∑

(k:fk,j,n>fi,j,n)

fk,j,n ≤ g̃out, (15)

where fi,j,n is the element of the estimated traffic in-
crease matrix Fn corresponding to the traffic from edge
link i to victim edge link j. Before using Eq. (15), we
must first sort out the set of fk,j,n(1 ≤ k ≤ N) by
descending order based on their values. We then cal-
culate the total of the top m traffic to the victim node.
We compare the total top m traffic with the estimated
egress traffic g̃out. We increment m by one and calcu-
late the total top m traffic until the total traffic exceeds
g̃out. Finally, we identify these m nodes as the attack
sources.

Let us denote the actual rate of attack traffic as
tattack and that the sum of the top m increases of
the egress traffic to the victim as ttop(m). If ttop(m)

is smaller than g̃out and ttop(m+1) is larger than g̃out,
then we can identify m+1 attack sources. In this case,
the total rate of attack traffic from the identified attack
sources is ttop(m+1), which is larger than g̃out. That is,
the rate of the attack traffic from the unidentified at-
tack sources is at most tattack− g̃out, which is calculated
from γ + μ − fnormal where fnormal is the increase in
legitimate traffic. Therefore, by setting γ adequately,
we can identify most of the attack sources and limit
the rate of attack traffic from the unidentified attack
sources.

2.3 Calculation time of our method

In our method, we estimate the traffic increase matrix
from Eq. (6), Eq. (10) and Eq. (13). The calculation
time for Eq. (6) is O(|E|2) because we should estimate
the traffic transmitted between every pair of ingress
and egress points. Although Eq. (10) needs the value
of pinv(A), we do not have to calculate pinv(A) each
time, since A seldom varies. The calculation times for
Eq. (10) and Eq. (13) are O(|L||E|2), because they in-
clude the products of a 2|L| × |E|2 matrix and a |E|2-
sized vector. That is, the calculation time for estimat-
ing the traffic increase matrix is O(|L||E|2).

To identify the attack sources, we check whether
the candidate satisfies Eq. (15). The number of can-
didates is |E|. If fk,j,n(1 ≤ k ≤ N) are sorted by
descending order, we check the condition at most |E|
times. Using a quicksort algorithm, we can sort |E| el-
ements by less than O(|E|2) comparisons. That is, the
calculation time for identifying the attack sources using
the estimated matrix is O(|E|2).

Consequently, the calculation time for our method
is O(|L||E|2). However, in a large network, we can
reduce the calculation time by using a link load on only
a part of the links, not on all links. This can be done
by taking A and Xn from a part of links.

3. Evaluation

We evaluate our method by using simulations. In our
simulation, we use the backbone topology of Abilene
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Fig. 3 Backbone Topology of the Abilene

(11 nodes and 14 links) shown in Fig. 3 for the mon-
itored network. We assume that each node in Fig. 3
has one edge link. That is, in this simulation, the pur-
pose of our method is to extract nodes connecting to
attackers from 11 nodes in Fig. 3. We use the traffic
data captured for 24 hours with 5 minutes interval on
the Abilene backbone network for the legitimate traf-
fic in the simulation.The sampling rate of the data is
1:100 (that is, one out of every 100 packets is sampled).
In this simulation, we use packets/sec to measure the
traffic rate, because attacks sending a number of small
packets (including SYN flood attacks, which are the
most frequent attacks [18]) affect packets/sec more sig-
nificantly than byte/sec.

In our simulations, we set α to 0.3 and β to 3,
which allows a time-of-day variation of the traffic.

3.1 Accuracy in estimating the increase of traffic

First, we validate that our method can accurately es-
timate the increase in traffic. Fig. 4 shows the time-
dependent variation of the arrival rate of each packet
between a source and a destination. Fig. 5 compares
the actual time-dependent variation of the increase in
arrival traffic with its estimated rate. Comparing Fig. 4
and Fig. 5, we can see that by monitoring the increase
in traffic, we can eliminate the time-of-day variation of
the traffic. That is, by monitoring the increase in traf-
fic, we can identify the attack sources without the effect
of a time-of-day variation in the traffic. From Fig. 5,
we also see that in the cases where a rapid increase in
traffic occurs, our method can accurately estimate it.

We performe another simulation to evaluate accu-
racy when attacks from several sources start. We inject
attack traffic from randomly selected five sources to a
single destination. Fig. 6 and Fig. 7 compare the results
of the estimations with actual values. The horizontal
axis is the actual rate of traffic and the vertical axis
is the estimated value. In Fig. 6, the attack rate from
each source is 4000 packets/sec. In this case, 25% of all
packets to the victim are attack packets. In Fig. 7, the
attack rates from each source is 10000 packets/sec. In
this case, about a half of all packets to the victim are
attack packets. The lines in both figures show x±1000.
These figures show we can accurately estimate the in-
crease in traffic. Even for large attacks, we can esti-
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tack injected)

mate the increase in traffic with an error rate of less
than 1000 packets/sec.
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3.2 Accuracy of identification of attack sources

3.2.1 Definition of false-positive and false-negative

The accuracy of our method for identifying attack
sources is evaluated by two metrics, false-positive and
false-negative. We define false-positive as a case where
a source not generating attack traffic is erroneously
identified as an attack sources. We define false-negative
for cases where an attack source cannot be identi-
fied. That is, the number of false-positives indicates
the number of sources erroneously identified as attack
sources and the number of false-negatives indicates the
number of attack sources that cannot be identified. We
also define the false-negative and false-positive rates as
follows:

false-negative rate =
# of false-negative

total # of attack sources

false-positive rate

=
# of false-positive

total # of sources not generating attack traffic

3.2.2 Number of attack sources vs. false-positives and
false-negatives

We simulate our method to identify attack sources,
changing the number of attack sources. We inject at-
tack packets at 14 different times which are randomly
selected. We change the number of attack sources from
one to five and attack sources are randomly selected.
In this simulation, we set the attack rates so that 25%
of all packets to the victim are attack packets and the
attack rate from each attack source is equal. We set γ
to 6000 packets/sec.

Table 1 shows the total number of false-positives
and false-negatives of 14 attacks and their rates. From

Table 1 Number of attack sources vs. false-positives and false-
negatives

# of # of false-negatives # of false-positives
attack sources (false-negative rate) (false-positive rate)

(total # of
attack sources)

1 (14) 0 (0.00) 12 (0.09)
2 (28) 0 (0.00) 6 (0.05)

3 (42) 2 (0.04) 12 (0.12)
4 (56) 6 (0.14) 14 (0.16)
5 (70) 14 (0.20) 16 (0.21)
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Fig. 8 Rank of increase in traffic vs. number of false-positives

these results, we can accurately identify the attack
sources regardless of the number of attack sources.

However, there are a few false-positives. There-
fore, we investigate such false-positives. Figure 8 shows
where these false-positives are ranked in estimated in-
crease in traffic and actual increase in traffic when the
number of attack sources is five. In this figure, the hor-
izontal axis is the rank order in estimated increase in
traffic and actual increase in traffic and vertical axis is
the number of false-positives correnponding to the rank
order. From this figure, though actual increases in traf-
fic from the sources mistakenly identified are ranked 6th
or lower, estimated ones are ranked 5th or higher. That
is, the reason of these false-positives is estimation er-
rors. These estimation errors are caused by the rapid
increase in traffic traversing to the link that is near the
link to the victim. In these cases, the rapid increases
cause errors because most of the path of the increased
traffic is common with the path from the source of the
increased traffic to the victim.

3.2.3 γ vs. false-positive and false-negative

We evaluate the relationship between γ and the false-
positives or false-negatives in our method by using a
simulation with various values of γ. In this simulation,
we inject attack packets from randomly selected five
sources at randomly selected 14 different times. Fig. 9
shows the results. In this figure, we inject two kinds
of attacks. First, the attack rate from each source is
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4000 packets/sec. In this case, 25 % of all packets to
the victim are attack packets. In the second one, the
attack rate from each source is 10000 packets/sec. In
this case, about a half of all packets to the victim are
attack packets. From Fig. 9, we can see that the pro-
posed method can reduce the number of false-positives
by setting γ to a larger value. However, a large γ causes
many false-negatives. In addition, when comparing two
kinds of attacks, we can also see that if we set γ to
the same value, we have less false-negatives in cases of
larger attacks than in smaller attacks. From this figure,
we can also see that the number of false-positives is al-
most the same, regardless of the injected attack rate.
That is, the attack rate does not affect the number of
false-positives.

3.2.4 γ vs. attack rate from unidentified attack
sources

To evaluate the relationship between γ and the total
rate of attacks from unidentified attack sources, we sim-
ulate our method to identify attack sources, changing
the attack rate. In this simulation, we inject attack
packets from randomly selected five sources at ran-
domly selected 14 different times and the attack rate
from each source is equal.

In Fig. 10, the horizontal axis is the total rate of
the attack traffic. Each line shows γ, which can iden-
tify one of the five attack sources, two of the five attack
sources, three of the attack sources, four of the attack
sources and all of the attack sources at all time. From
this figure, we can see that a smaller γ is needed to
identify attack sources for smaller attacks or to iden-
tify more attack sources. This figure also shows that
even when we set γ to the same value, we can identify
more attack sources for large attacks. For example, by
setting γ to 10000 packets/sec, we can identify only one
attack source when the attack rate from each attacker
is 2000 packets/sec. However, by setting γ to the same
value, we can identify four attack sources when the at-
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Fig. 10 Relationship between attack rate and γ to identify at-
tachk sources

tack rate is 6000 packets/sec.
Fig. 11 shows the relationship between γ and the

total rate of attack traffic from unidentified attack
sources. In this figure, the three lines indicate the false-
positive rate and the maximum and average of the to-
tal rate of attack traffic from the unidentified attack
sources. From this figure, we can see that by setting
γ to a smaller value, the attack rate from unidentified
attack sources can be small while a smaller γ causes
more false-positives. We can also see that the average
of the total rate of attack traffic from unidentified at-
tack sources is near γ. That is, the total rate of attack
traffic from unidentified attack sources is closely related
to γ.

However, in some cases, the total rates of attack
traffic from unidentified attack sources are higher than
γ. There are two reasons for this. First one is caused
by the decrease of legitimate traffic to the victim. In
this case, our method underestimates the total attack
rates to the victim. Another reason is caused by errors
in our method for estimating the increases in traffic.
Our method for estimation has errors in the range of
±1000 packets/sec. That is, the estimated increase in
traffic from an attack source may be 1000 packets/sec
less than the actual increase, while the difference from
one to another attack source may be 1000 packets/sec
larger than the actual increase. In this case, this error
causes 1000 packets/sec attack traffic from unidentified
attack sources. However, we can accurately identify at-
tack sources sending attack traffic whose estimated rate
is larger than γ + μ − fnormal. That is, by adequately
setting γ, we can identify attack sources even when the
estimated increases have several errors.

As previously mentioned, the total rate of attack
traffic from unidentified attack sources is closely related
to γ. That is, by defining the maximum attack rate
that does not affects the network resources, we can ad-
equately set γ to limit the total attack rate from uniden-
tified attack sources to the defined maximum attack
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rate.

3.2.5 Comparison with existing method

Finally we compare our method with exisiting method.
The method proposed in [9] separates traffic ma-

trix into normal and abnormal subspaces by apply-
ing Principal Component Analysis (PCA). When the
square sum of abnormal subspaces is larger than the
threshold, it is detected as attacks. These abnormal
subspaces also can be used to identify attack sources.
Using abnormal subspaces, we can identify all attack
sources by identifying the sources having the largest
abnormal subspaces, until the squared sum of the ab-
normal subspaces of traffic which are not identified as
attack becomes less than the threshold. In this simula-
tion, we use two traffic matrix for PCA method. One
is the true traffic matrix. Another is estimated by the
method proposed in [14]. By using estimated traffic
matrix, we compare our method with PCA method in
the conditions that we can only monitor link loads.

We compare our proposed and PCA methods by

simulation. In this simulation, we inject attack pack-
ets from randomly selected five sources at randomly
selected 14 different times and the attack rate from
each source is equal. We compare the false-positive
rates when we set the thresholds so that false-negative
rates are less than 0.1. Fig. 12 shows the results. In
this figure, the horizontal axis is the attack rate from
one attack source and the vertical axis is the false-
positive rate. From this figure, false-positive rate of
PCA method with the true traffic matrix is low. That
is, in the case of monitoring traffic matrix accurately,
PCA method identifies attack sources accurately. How-
ever, false-positive rate of PCA method using estimated
traffic matrix is quite high. This is because the method
proposed in [14] cannot estimate the traffic matrix ac-
curately in the case of attacks. Because the increase in
traffic matrix estimated by the method proposed in [14]
is proportional to the total rate of traffic monitored at
the source, we mistakenly identify sources having large
amount of traffic or cannot identify attack sources hav-
ing small amount of traffic. As a result, PCA method
cannot identify attack sources accurately in the case
that we can monitor only the link utiliztions.

On the other hand, our method can identify at-
tack sources accurately. This is because our method
estimates not the total amount of traffic but the in-
crease in traffic. By focusing on the increase in traffic,
we can accurately estimate the increase in traffic caused
by the attacks and identify attack sources. From this
figure, we can also see that our method can identify
attack sources more accurately when the attack rate is
larger. This is because larger attack causes the signifi-
cant increase in traffic. As a result, because the increase
in traffic caused by the attack is much larger than the
time-dependent variations of legitimate traffic, we can
identify the sources easier.

This way, to detect attack sources, traditional traf-
fic matrix estimation method is insufficient and we need
to use the estimation method focusing on the changes
in traffic caused by attacks. In our method, we can
identify attack sources accurately by focusing on the
increase in traffic.

4. Conclusion and future works

In this paper, we have proposed a new method for
identifying attack sources by estimating traffic matri-
ces. Our method periodically collects link load data
from each router through SNMP and estimates the in-
crease in traffic between each source and destination.
When attacks start, our method identifies the sources
of the attack using the estimated increase. We have
also shown that our method can accurately identify at-
tack sources without any false-positives by setting the
adequate parameters of γ.

One of our future works are to set γ and sampling
rate automatically.
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