

Outline of Presentation

- Introduction and motivation
- Adaptive response by attractor-selection
- Application to routing in MANET
- Simple numerical examples
- · Conclusion and outlook

2 Yurogi

Introduction

16th International Conference on Computer Communications and Networks (ICCCN 2007), Honolulu, HI, August 2007

- Required features in ad-hoc network routing: scalable, robust, adaptive, fully distributed, and self-organizing
 - → Can often be found in biological systems (e.g. swarm intelligence)
- Main idea: randomized, noise-driven selection of next hop using bio-inspired method

Adaptive Response by Attractor-Selection (ARAS)

- · Method from cell biology:
 - reaction to lack of nutrient when no signaling pathway exists from environment to DNA
 - attractor: region within which the orbit of dynamical system returns regardless of initial conditions and
 - activity: mapping of environment to "goodness" of current system state
- · Description by Langevin-type of stochastic differential equation system

$$\frac{dm_i}{dt} = f(m_1, ..., m_M) \times \alpha + \eta_i$$
noise

activity

4 Yurogi

General Concept of ARAS

Mathematical Model of ARAS

 Consider a system with M possible choices given by vector $\mathbf{m} = [m_1, ..., m_M]$

$$\frac{d\mathbf{m}}{dt} = \frac{s(\alpha)}{1 + \max(\mathbf{m})^2 - \mathbf{m}^2} - d(\alpha)\mathbf{m} + \mathbf{\eta}$$

• The factors $s(\alpha)$ and $d(\alpha)$ are the rate of synthesis and degradation and are functions of the activity α

$$s(\alpha) = \alpha \left[\beta \alpha^{\gamma} + \phi^{*} \right]$$
$$d(\alpha) = \alpha$$

• $\eta = [\eta_1, ..., \eta_M]$ is vector with white noise

Mathematical Model (2)

- Define $\varphi(\alpha) = \frac{s(\alpha)}{d(\alpha)}$
- In equilibrium there are M solutions with entries:

7 Yurogi

• Both values H and L merge at $\phi^* = \frac{1}{\sqrt{2}}$

Activity Dynamics

• Activity α reflects the "goodness" of the system

$$\frac{dm_i}{dt} = f(m_1, ..., m_M) \times \alpha + \eta,$$

- · Basic behavior:
 - α ≈ 0: dynamics dominated by noise term
 - α ≈ 1: convergence to attractor (noise influence recedes)
- We use packet delivery ratio of a flow as activity

MANET Routing with ARAS

- Consider reactive routing like AODV
- RREQ (route requests) are flooded for new/ broken paths
- Each node maintains next hop probability vector p which is initialized by RREP
- Route maintenance uses neighbor and candidate sets

Route Maintenance Phase

- At certain intervals, all nodes are probed for their relative distance to the destination and stored in sets: neighbor set N_n, candidate set C_n
- Next hop is chosen randomly according to probability vector p
- ARAS state values m_i decay over time at rate δ

0 **Y**

8 Yurogi

Numerical Evaluation

- Nodes randomly distributed in unit square with spatial homogeneous Poisson process of density $\boldsymbol{\lambda}$
- Transmission range r = 0.2
- Duration of each simulation $T_{max} = 10000$, each simulation repeated 1000 times
- Node activity model with transition probability q

Sample Trace Run

- Parameters: $\lambda = 120$, q = 0.995, r = 0.2
- · Identical simulation conditions and layout
- · AODV degrades over time, ARAS remains constant

Yurogi

Conclusion and Outlook

- Biologically-inspired method for selecting next hop in ad-hoc networks
- Increased resilience through stochastic routing
- Feedback-based (reinforcement learning)
- Future work:
 - More comparisons with other routing methods

15 Yurogi

- Investigation of other possibilities for activity mappings
- Prototype implementation

