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TCP Congestion Control Mechanisms for Achieving Predictable
Throughput Using Inline Network Measurement

Go HASEGAWA†a), Member, Kana YAMANEGI††, Nonmember, and Masayuki MURATA†, Member

SUMMARY Recently, real-time media delivery services such as video
streaming and VoIP have rapidly become popular. For these applications
requiring high-level QoS guarantee, our research group has proposed a
transport-layer approach to provide predictable throughput for upper-layer
applications. In the present paper, we propose a congestion control mech-
anism of TCP for achieving predictable throughput. It does not mean we
can guarantee the throughput, while we can provide the throughput required
by an upper-layer application at high probability when network congestion
level is not so high by using the inline network measurement technique
for available bandwidth of the network path. We present the evaluation
results for the proposed mechanism obtained in simulation and implemen-
tation experiments, and confirm that the proposed mechanism can assure
a TCP throughput if the required bandwidth is not so high compared to
the physical bandwidth, even when other ordinary TCP (e.g., TCP Reno)
connections occupy the link.
key words: transmission control protocol (TCP), throughput guarantee,
congestion control mechanism, Linux

1. Introduction

The Internet users’ demands for network quality has in-
creased due to services becoming progressively diversified
and sophisticated because of the remarkable degree to which
the Internet has grown, which is due in part to access
and backbone network technologies. Applications involv-
ing real-time media delivery services, such as VoIP, video
streaming and TV meeting systems, all of which have expe-
rienced a dramatic level of development, require large and
stable amounts of network resources in order to maintain the
Quality of Service (QoS). For example, the quality of real-
time streaming delivery applications is highly dependent on
propagation delay and delay jitter. The available bandwidth
on the end-to-end network path is also an important factor
in order to smoothly provide rich contents, including voice
and video.

There are a number of network-layer technologies,
such as IntServ [1] and DiffServ [2], that provide such high-
quality network services over the Internet. However, im-
plementation of IntServ or DiffServ architectures would re-
quire additional mechanisms to be deployed to all routers
through which traffic flows traverse in order to sufficiently
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benefit from the introduction of IntServ or DiffServ into the
network. Therefore, due to factors such as scalability and
cost, we believe that these schemes have almost no chance
of being deployed on large-scale networks.

On the other hand, a number of video streaming ap-
plications use User Datagram Protocol (UDP) [3] as a
transport-layer protocol, and UDP controls the data trans-
mission rate according to the network condition [4]–[6].
However, these mechanisms have a large cost when mod-
ifying the application program for achieving application-
specific QoS requirements, and the parameter settings are
very sensitive to various network factors. Furthermore,
when such applications co-exist in the network and share
the network bottleneck resources, we cannot estimate the
performance of the network or that of the applications, be-
cause the control mechanisms of such applications are de-
signed and implemented independently, without considering
the effect of interactions with other applications.

In our research group, we have previously proposed
transport-layer approaches for achieving QoS for such ap-
plications. For example, in [7], we proposed a background
transfer mechanism using Transmission Control Protocol
(TCP) [8], which transfers data using the residual bandwidth
of the network without any impact on the co-existing net-
work traffic sharing the bottleneck link bandwidth. Since
TCP controls the data transmission rate according to the
network condition (congestion level), we believe that the
transport-layer approach is ideal for providing high-quality
data transmission services in the Internet. Furthermore, by
implementing the mechanism into TCP, rather than intro-
ducing a new transport-layer protocol or modifying UDP, we
can accommodate existing TCP-based applications transpar-
ently, and we can minimize the degree of modification to
provide high-quality transport services.

In this paper, we focus on achieving predictable
throughput by TCP connections. Essentially, TCP cannot
obtain guaranteed throughput because its throughput is de-
pendent on, for example, Round Trip Time (RTT), packet
loss ratio of a network path, and the number of co-existing
flows [9]. Therefore, we intend to increase the probability at
which a TCP connection achieves the throughput required
by an upper-layer application, while preserving the funda-
mental mechanisms of congestion control in TCP. We refer
to this as predictable throughput. By predictable through-
put, we mean the throughput required by an upper-layer
application, which can be provided with high probability
when the network congestion level is not extremely high.
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In this paper, we propose a congestion control mechanism
of TCP for achieving the predictable throughput with high
probability, regardless of the network congestion level. We
modify the degree of the increase of the congestion window
size [10] of a TCP connection in the congestion avoidance
phase by using the information on the available bandwidth
of the network path obtained by Inline Measurement TCP
(ImTCP) [11], [12], which has been previously proposed
by our research group. The application examples of the
proposed mechanism include TCP-based video/voice deliv-
ery services, such as Windows Media Player [13], RealOne
Player [14], and Skype [15]. We also show that we can con-
trol the sum of the throughput of multiple TCP connections,
by extending the mechanism for one TCP connection. This
mechanism may be used in the situation in which a stable
throughput should be provided for the network traffic be-
tween two local area networks interconnected by IP-VPN
[16].

We first evaluate the effectiveness of our proposed
mechanism by simulation experiments using ns-2 [17] to in-
vestigate the fundamental characteristics. We confirm that
the proposed mechanism can achieve a TCP throughput of
10–20% of the bottleneck link capacity, even when the link
is highly congested and there is little residual bandwidth
for the TCP connection. We also show that the proposed
mechanism can provide a constant throughput for the traf-
fic mixture of long-lived and short-lived TCP connections.
We further implement the proposed mechanism on a Linux
2.6.16.21 kernel system, and evaluate its performance on an
experimental network, which is the controlled conditional
network. Finally, we confirm the performance of our pro-
posed mechanism in the commercial Internet environment.
From these results, we confirm that the proposed mechanism
can achieve the required throughput with high probability in
an actual network, as in the simulation results.

The remainder of this paper is organized as follows:
In Sect. 2, the proposed mechanism to provide predictable
throughput is described. The performance of the pro-
posed mechanism through extensive simulation experiments
is evaluated in Sect. 3. In Sect. 4, the implementation design
in the Linux 2.6.16.21 kernel system is outlined and the per-
formance in an actual network is presented. Finally, conclu-
sions and areas for future study are discussed in Sect. 5.

2. Proposed Mechanisms

Figure 1 shows an overview of the proposed mechanism.
We assume that an upper-layer application sends bw (pack-
ets/sec) and t (sec) to the proposed mechanism, which is
located at the transport layer. This means that the applica-
tion requires average throughput bw at every interval of t
sec in the TCP data transmission, and the proposed mech-
anism tries to achieve this demand. A possible appication
of the proposed mechanism is TCP-based video streaming
service such as Youtube, where the evaluation slot is set to
the length of the playout buffer at the reveiver.

Note that by implementing the proposed mechanism,

Fig. 1 Overview of the proposed mechanism.

we also need to modify the socket interface to pass the value
of required throughput from the upper-layer application to
TCP. Here, bw is the required throughput and the time inter-
val is referred to as the evaluation slot, as shown in Fig. 1.
We change the degree of increase of the congestion window
size of a TCP connection to achieve a throughput of bw ev-
ery t sec. Note that in the slow start phase, we use a mech-
anism that is identical to the original TCP Reno, i.e., the
proposed mechanism changes the behavior of TCP only in
the congestion avoidance phase. By minimizing the degree
of modification of the TCP source code, we expect that the
original property of the congestion control mechanism can
be preserved. We can also reduce the introduction of imple-
mentation bugs by basing our modification on the existing
TCP source code.

Since the proposed mechanism changes its behavior in
units of the RTT of the connection, we introduce the vari-
able e as t = e · rtt, where rtt is the RTT value of the TCP
connection.

In Sect. 2.1, the calculation method of target through-
put in each evaluation slot is introduced. In Sect. 2.2, the
algorithm to achieve the required throughput is proposed.

2.1 Calculating the Target Throughput

We split an evaluation slot into multiple sub-slots, called
control slots, to control the TCP behavior in a finer-grained
time period. The length of the control slot is s (RTT), where
s is 2 ≤ s ≤ e (Fig. 2). Figure 2 shows the relationship
between the evaluation slot and the control slots. We set
the throughput value we intend to achieve in a control slot,
which is referred to as the target throughput of the con-
trol slot. We change the target throughput in every control
slot and regulate the packet transmission speed in order to
achieve the target throughput. The final goal is to make the
average throughput in the evaluation slot larger than or equal
to bw, the required throughput.

We use the smoothed RTT (sRTT) value of the TCP
connection to determine the lengths of the evaluation slot
and the control slot. That is, we set the length of the i-th
control slot to s · srtti, where srtti is the sRTT value at the
beginning of the i-th control slot. At the end of each control
slot, we calculate the achieved throughput of the TCP con-
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Fig. 2 Evaluation and control slots.

nection by dividing the number of successfully transmitted
packets in the control slot by the length of the control slot.
We then set the target throughput of the i-th control slot, gi

(packets/sec), as follows:{
gi = bw + (gi−1 − tputi−1)
g0 = bw

where tputi (packets/sec) is the average throughput of the i-
th control slot. This equation means that the target through-
put of the i-th control slot is determined according to the
difference between the target throughput and the achieved
throughput in the (i − 1)-th control slot.

2.2 Achieving the Target Throughput by Changing the
Congestion Window Size

Although it may seem that one simple method to achieve
the target throughput by TCP would be to fix the conges-
tion window size to the product of the target throughput
and RTT and to keep the window size even when packet
losses occur in the network, such a straightforward method
would introduce several irresolvable problems in the net-
work congestion. In addition, such a method would result
in severe unfairness with respect to co-existing connections
using the original TCP Reno. Therefore, in the proposed
mechanism, the degree of modification of the TCP conges-
tion control mechanism is minimal in order to maintain the
original properties of TCP. This means that the degree of the
congestion window size is increased only in the congestion
avoidance phase of a TCP connection; in other words, this
mechanism does not modify the TCP behavior in the slow
start phase or when a TCP connection experiences packet
loss(es).

In the proposed mechanism, the sender TCP updates its
congestion window size cwnd in the congestion avoidance
phase according to the following equation when it receives
an ACK packet from the receiver TCP:

cwnd ← cwnd +
k

cwnd
(1)

where k is the control parameter. From the above equa-
tion, we expect that the congestion window size increases
by k packets in every RTT. The main function of the pro-
posed mechanism is to regulate k dynamically and adap-
tively, whereas the original TCP Reno uses a fixed value
of k = 1. In the rest of this subsection, we explain how to
change k according to the network condition and the current
throughput of the TCP connection.

2.2.1 Increasing the Degree of the Congestion Window
Size

Here, we derive kbw
j , nwhich is an ideal value for the de-

gree of increase of the congestion window size when the
j-th ACK packet is received from the beginning of the i-th
control slot, so that the TCP connection achieves gi of the
average throughput. For achieving the average throughput
gi in the i-th control slot, we need to transmit (gi · srtti · s)
packets in (s · srtti) sec. However, since it takes one RTT
to receive the ACK packet corresponding to the transmitted
packet, and since it takes at least one RTT to detect packet
loss and retransmit the lost packet, we intend to transmit
(gi · s · srtti) packets in ((s − 2) · srtti) sec.

We assume that the sender TCP receives the j-th ACK
packet at the nj-th RTT from the beginning of the control
slot, and the congestion window size at that time is cwndnj .
Since the congestion window size increases by k packets ev-
ery RTT, we can calculate psnd, the number of packets that
would be transmitted if we use kbw

j for k in Equation (1) in
the rest of the control slot. The length of the rest of the con-
trol slot is (s − 2 − nj) · srtti sec. The equation for psnd is as
follows:

psnd = (s − nj − 1)cwndnj

+
kbw

j

2
(s − nj − 1)(s − nj)

On the other hand, pneed, i.e., the number of packets that
should be transmitted in order to obtain gi, is calculated as
follows:

pneed = gi · srtti · s − aj

where aj is the number of transmitted packets from the be-
ginning of the control slot to when the j-th ACK packet is
received. Then, we can calculate kbw

j by solving the equation

psnd = pneed for kbw
j :

kbw
j = 2{gi · srtti · s − aj − (s − nj − 1)cwndnj }

/{(s − nj − 1)(s − nj)} (2)

In the proposed mechanism, we use the above equation to
update k for Eq. (1) when the sender TCP receives a new
ACK packet. By this ack-based mechainsm, the proposed
mechanism can accomodate the fluctuation of RTTs of the
network path.

2.2.2 Limitation of the Degree of Increase Based on the
Available Bandwidth

By using Eq. (2) for determining k, the degree of increase
of the congestion window size becomes too large when the
current throughput of a TCP connection is far below the tar-
get throughput. Values of k that are too large would cause
bursty packet losses in the network, resulting in a perfor-
mance degradation due to retransmission timeouts. On the
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other hand, when the network has sufficient residual band-
width, the degree of increase of the congestion window size
in Eq. (2) becomes smaller than 1. This results in a lower
throughput increase than that for TCP Reno. Therefore, we
limit the maximum and minimum values for k, which are de-
noted by kmax and kmin, respectively. We simply set kmin = 1
to preserve the basic characteristics of TCP Reno. However,
some applications, such as those transferring sensing obser-
vation data and maintaining a monitoring log on a system,
generate data at a constant rate and do not require higher
throughput than the designated throughput even when the
network has enough bandwidth. For such applications we
do not set kmin, which means that the proposed mechanism
does not achieve more than the required throughput even if
the residual bandwidth is more than the required throughput.

kmax, on the other hand, should be set such that bursty
packet losses are not invoked, and the target throughput is
obtained. Thus, we decide kmax according to the follow-
ing considerations. First, when the proposed mechanism
has obtained the target throughput in all of the control slots
in the present evaluation slot, we determine that the avail-
able bandwidth of the network path is sufficient to obtain
the target throughput of the next control slot. Therefore, we
calculate kmax so as to avoid packet losses by using the infor-
mation of the available bandwidth of the network path. The
information about the available bandwidth of the network
path is estimated by ImTCP [12], which is the mechanism
for inline network measurement. ImTCP measures the avail-
able bandwidth of the network path between the sender and
receiver hosts. In TCP data transfer, the sender host trans-
fers a data packet and the receiver host replies to the data
packet with an ACK packet. ImTCP measures the available
bandwidth using this mechanism; that is, ImTCP adjusts the
sending interval of the data packets according to the mea-
surement algorithm and then calculates the available band-
width by observing the change of ACK arrival intervals. Be-
cause ImTCP estimates the available bandwidth of the net-
work path from the data and ACK packets transmitted by an
active TCP connection in an inline fashion, ImTCP does not
inject extra traffic into the network. ImTCP is described in
detail in [12].

Next, when the proposed mechanism has not obtained
the target throughput in the previous control slot, the pro-
posed mechanism will not obtain the target throughput in
the following control slots. We then set kmax so as to obtain
a larger throughput than the available bandwidth of the net-
work path. This means that the proposed mechanism steals
bandwidth from competing flows in the network in order to
achieve the bandwidth required by the upper-layer applica-
tion.

In summary, the proposed mechanism updates kmax by
using the following equation when the sender TCP receives
a new ACK packet:

kmax =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A · srtti − cwnd
(if tputi−1 > gi−1)
min(A + (gi − tputi−1), P) · srtti − cwnd
(if tputi−1 < gi−1)

(3)

where A and P (packets/sec) are the current values for the
available bandwidth and physical capacity, respectively, as
measured by ImTCP. In the upper equation in Eq. (3), A·srtti
indicates the maximum number of packets that the proposed
mechanism can occupy within the network capacity without
packet losses occurring. In the lower equation in Eq. (3),
(gi − tputi−1) · srtti indicates the number of packets required
in order to obtain the target throughput when the network
has insufficient available bandwidth.

2.2.3 Length of the Control Slot

In general, the length of the control slot (s) controls
the trade-off relationship between the granularity of the
throughput control and the influence on the competing traf-
fic. For example, if we use a small value for s, it becomes
easier to obtain the required throughput because we update
the target throughput gi more frequently. On the other hand,
the smaller value of s means that the congestion window
size is changed so drastically that we achieve the average
throughput in a smaller control slot, which results in a larger
effect on other competing traffic. Therefore, we should set
s to be as large as possible, while maintaining the required
throughput. Since the ideal value of s depends on various
factors of the network condition, including the amount of
competing traffic, we propose an algorithm to dynamically
regulate s.

The algorithm is based on the following considerations.
First, when the proposed mechanism has not obtained the
target throughput although we set kmax by using Eq. (3), a
smaller value should be used for s in order to achieve the
target throughput. Second, when the proposed mechanism
has achieved the target throughput with kmax calculated by
Eq. (3) and when the congestion window size is satisfied
with cwnd ≥ bw · srtti, we can expect that the proposed
mechanism could achieve the target throughput, even when
we increase the length of the control slot. Therefore, we use
a larger s in the next evaluation slot.

2.3 Maintaining Multiple Connections

In this subsection, by extending the mechanism in Sect. 2.1
and 2.2, we depict the mechanism that controls the sum of
the throughput of multiple TCP connections. In this mech-
anism, we assume that multiple TCP connections are main-
tained at transport-layer proxy nodes such as TCP proxy
[18], and the throughput is controlled at the proxy nodes.
The proposed mechanism at the proxy node controls the sum
of the throughput of multiple TCP connections according to
the following assumptions:

• The proposed mechanism is intended to achieve the re-
quired throughput, bw, of the sum of multiple TCP con-
nections at every t sec interval.
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• The multiple TCP connections use the same values for
the length of the evaluation and control slots, which
are set based on the minimum sRTT measured by the
sender-side proxy node.

• The sender-side proxy node can identify the number
of active TCP connections. This assumption is natural
when we use explicit proxy mechanisms such as TCP
proxy and SOCKS [19].

One of the possible applicaion of this mechanism is Virtual
Private Network (VPN) environemnts. When we want to
guarantee the throughput of TCP flows in the VPN connec-
tions between two networks, we can utilize the proposed
mechanism to protect the performance of the VPN from
competing VPN connections in the network. Note that one
of the advantage of this mechanism is that we do not re-
quire the additional mechanisms to the routers and switches
in the networks, and we can provide throughput guarantee
only with the end-to-end control.

For realizing the above control, we can simply extend
Eq. (2) to multiple TCP connections, as follows:

kbw
j =

2{(gi · srtti · s − asum
j )/Npm − (s − nj − 1)cwnd

nj

i }
(s − nj − 1)(s − nj)

where asum
j is the sum of the packets that TCP senders have

sent when receiving the j-th ACK, and Npm is the number
of active TCP connections. We use this equation for all
TCP connections. This equation means that the degree of
the increase of the congestion window size is calculated by
distributing the number of packets needed for achieving the
target slot to the active TCP connections.

3. Simulation Results and Discussions

In this section, we evaluate the proposed mechanism by sim-
ulation experiments using ns-2. Figure 3 shows the network
model. This model consists of sender and receiver hosts,
two routers, and links between the hosts and router. We set
the packet size at 1,000 Bytes. The bandwidth of the bot-
tleneck link is set at 100 Mbps, and the propagation delay
is 5 msec. A DropTail discipline is deployed at the router
buffer, and the buffer size is set at 100 packets. The num-
ber of TCP connections using the proposed mechanism is
Npm, and the number of TCP Reno connections, for creating
background traffic, is Nreno. The bandwidth of the access
links is set at 1 Gbps, and the propagation delay is 2.5 msec.
For the proposed mechanism, we set t = 32 · RTT (e = 32)
for the length of the evaluation slot. In this network model,
32 RTT corresponds to approximately 1 sec. In addition, s,
the length of the control slot, is initialized to 16.

3.1 Case of One Connection

We first evaluate the performance of the proposed mecha-
nism for one TCP connection. In this simulation, we set
Npm = 1, and bw is 20 (Mbps), which is equal to 20% of
the bottleneck link capacity. To change the congestion level

Fig. 3 Network model for the simulation experiments.

Fig. 4 Changes in congestion window size, average throughput, and
length of the control slot.

of the network, we change Nreno to 1, 10, 40 at every 5 sec-
onds. Figure 4 shows the changes in the congestion window
size, the average throughput, and the length of the control
slot of the TCP connection with the proposed mechanism.
In this figure, the vertical grid represents the boundaries of
the evaluation slots.

The results for 0-5 seconds, shown in Fig. 4(a), indicate
that when one TCP Reno connection co-exists with a TCP
connection of the proposed mechanism, the proposed mech-
anism can obtain the required throughput while performing
almost equivalently to TCP Reno. In this period, the avail-
able bandwidth is sufficiently large to obtain the required
throughput, because there are only two connections in the
network, which have capacities of 100 Mbps. Thus, the pro-
posed mechanism sets k = kmin (= 1), resulting in fairness
while maintaining the TCP Reno connection.

For the results for 5–10 seconds, in which case there
are 10 TCP Reno connections, we observe that the proposed
mechanism has a faster increase in the congestion window
size compared to that of the TCP Reno connections. In this
case, this is because it is impossible to obtain the required
throughput with behavior identical to TCP Reno due to the
increase in the amount of competing traffic. Consequently,
the proposed mechanism changes the degree of increase of
the congestion window size (k) in order to achieve the re-
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Fig. 5 Percentage of evaluation slots in which the required throughput is
achieved.

quired throughput.
Furthermore, the results after 10 seconds with 40 TCP

Reno connections show that the congestion window size
of the proposed mechanism increases faster than that of
the previous cases, and the length of control slot, s, is
changed to a smaller value. This result indicates that the
proposed mechanism controls its congestion window size
with a smaller length of the control slot to obtain the re-
quired throughput because sufficient throughput cannot be
achieved by merely changing the degree of increase of the
congestion window size. As a result, the proposed mecha-
nism can obtain the required throughput even when there are
40 competing TCP Reno connections. Thus, we have con-
firmed that the proposed mechanism can effectively obtain
the required throughput by changing the degree of increase
of the congestion window size and the length of the control
slot according to the network congestion level.

We next show the relationship between the perfor-
mance of the proposed mechanism and the number of co-
existing TCP Reno connections in greater detail. We set
Npm = 1, and bw is 10% (10 Mbps) and 20% (20 Mbps).
Figure 5 shows the ratio of the number of evaluation slots,
in which the proposed mechanism obtains the required
throughput, to the total number of evaluation slots in the
simulation time. In this simulation experiment, the simula-
tion time is 60 seconds. For the sake of comparison with the
proposed mechanism, we also show the simulation results
obtained using TCP Reno (labeled “Reno”) and modified
TCP (labeled “constant”), which uses a constant congestion
window size of bw · srttmin (packets) even when packet drops
occur. Here, srttmin is the minimum sRTT value for the TCP
connection.

Figure 5 indicates that the original TCP Reno can ob-
tain the required throughput for 100% of the evaluation slots
when a few background connections co-exist, because the
original TCP Reno fairly shares the bottleneck link band-
width with all of the connections. However, when the num-
ber of co-existing connections (Nreno) increases, TCP Reno
cannot obtain the required throughput because it shares the
bandwidth with numerous connections. We can also observe
that the TCP with a constant window size cannot achieve the

Fig. 6 Case for limiting the throughput of co-existing TCP Reno
connections.

Fig. 7 Case for various target throughput.

required throughput when Nreno is larger than 10. In this sit-
uation, the network congestion cannot be resolved because
the congestion window size is not decreased, even when
packet losses occur in the network. In contrast, the pro-
posed mechanism can obtain the required throughput with
high probability even when several connections co-exist in
the network. This means that the proposed mechanism can
control the trade-off relationship between the aggressiveness
of the proposed mechanism and the degree of influences on
competing traffic.

We also evaluated the proposed mechanism when we
limit the maximum value of the congestion window size of
co-existing TCP Reno connections. This corresponds to the
situation in which the bottleneck link bandwidth is larger
than the access link bandwidth. In this simulation, we set
the maximum value of the congestion window size of co-
existing TCP Reno connections to 100 packets, which lim-
its the throughput of each TCP Reno connection to approxi-
mately 4 Mbps. Figure 6 shows the simulation results when
bw is set to 10% and 20%, respectively.

Compared with the results shown in Fig. 5, the results
in Fig. 6 show that the proposed mechanism has a more
stable probability of achieving the required throughput. In
this situation, the proposed mechanism can utilize the net-
work bandwidth more effectively because the competing
TCP Reno connections are not very strong due to their win-
dow size limitation.

As the final result for one connection case, we investi-
gate the performance of the proposed mechanism when we
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Table 1 Throughput of competing TCP Reno flows.

Physical link Target Number of Throughput of Total Reno Fairness
bandwidth throughput Reno flows proposed flow throughput index
100 Mbps 10 Mbps 10 15.2 Mbps 79.7 Mbps 0.999
100 Mbps 10 Mbps 20 13.5 Mbps 82.3 Mbps 0.999
100 Mbps 10 Mbps 40 11.7 Mbps 84.9 Mbps 0.999
100 Mbps 20 Mbps 10 24.8 Mbps 70.0 Mbps 0.999
100 Mbps 20 Mbps 20 23.8 Mbps 72.0 Mbps 0.999
100 Mbps 20 Mbps 40 21.9 Mbps 74.7 Mbps 0.998

change the target throughput. In Fig. 7, we plot the change
in the ratio of the number of evaluation slots, in which the
proposed mechanism obtains the required throughput, to the
total number of evaluation slots, as a function of the number
of competing TCP Reno connections. In the figure, we show
the results when we set the physical bandwidth of the bot-
tleneck link is 10 Mbps and 100Mbps, and we change the
target throughput from 10% to 80% of the physical band-
width. From this figure, we can see that when the physi-
cal link bandwidth is 100 Mbps, we can provide 10%–20%
throughput even when the number of competing Reno con-
nections is around 30. However, when the physical band-
width is 10 Mbps, we can provide around 20% throughput
only when the number of competing Reno flows is smaller
than 10. This is because the proposed mechanism would in-
crease the congestion window aggressively, which increase
the congestion level of the network.

Table 1 shows the average throughput of the flow of
proposed mechanism, the total throughput of competing
Reno flows, and fairness index of the Reno flows. This table
shows that the proposed mechanism steals the bandwidth ac-
cording to the required throghput, and the competing Reno
flows utilize the remaining bandwidth effectively and fairly.

3.2 Case of Multiple Connections

Next, we demonstrate the performance of the proposed
mechanism for the multiple TCP connections described in
Sect. 2.3. In the simulation, we establish multiple TCP con-
nections between Sender 1 and Receiver 1 in Fig. 3, and the
proposed mechanism at Sender 1 controls the throughput of
the connections. We set bw = 20 (Mbps) and Npm= 5 and
10. This setting means that a total throughput of 20 (Mbps)
is achieved for the 5 or 10 TCP connections. The maxi-
mum value of the congestion window size of co-existing
TCP Reno connections is 100 packets. Here, we assume
that the TCP sender host knows the current information on
the available bandwidth and physical capacity of the net-
work path. This assumption is necessary in order to focus
on evaluating the algorithm described in Sect. 2.3.

Figure 8 shows the percentage of the number of eval-
uation slots, in which the proposed mechanism can obtain
the required throughput, to the total number of evaluation
slots in the simulation time. This figure shows the results
for the following cases: 10 connections without the pro-
posed mechanism (labeled “TCP Reno”); 10 connections,
each with the proposed mechanism, where bw = 2 (Mbps)

Fig. 8 Performance comparison for multiple connections.

(labeled “For one”); and multiple connections with the pro-
posed mechanism (labeled “For multi”). This figure shows
that the original TCP Reno without the proposed mechanism
cannot obtain the required throughput when the number of
co-existing connections becomes larger than 30. When we
use the proposed mechanism for each of the 10 connections,
the performance is not as good when the number of compet-
ing connections exceeds 40. This is because bursty packet
losses occur because the multiple connections simultane-
ously inject several packets into the network based on the
available bandwidth information estimated by each connec-
tion. On the other hand, the proposed mechanism for mul-
tiple connections can obtain the required throughput with
high probability even when the number of the co-existing
TCP Reno connections increases. This is because the prob-
lem of the proposed mechanism for one connection is solved
by sharing kmax with the multiple connections, as described
in Sect. 2.3. In addition, the performance for Npm = 10 is
better than that for Npm = 5 to achieve the required through-
put. This is because the effect of sharing kmax becomes larger
when a larger number of connections is accommodated.

3.3 Case of a Mixture of Short-Lived and Long-Lived
Connections

We finally show the result when short-lived TCP connec-
tions such as Web traffic co-exist in the network. In these
simulation experiments, the short-lived TCP connections
determine their data size and data transmission intervals
based on the Scalable URL Reference Generator (SURGE)
model [20]. SURGE is a realistic Web workload genera-
tion tool that mimics a set of real users accessing a server.
Table 2 shows the parameters of the SURGE model.
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Table 2 Parameters for the SURGE model.

Component Function Parameters

Size-Body p(x) =
e−(lnx−μ)2/2σ2

xσ
√

2x
μ = 9.375, σ = 1.318

Size-Tail p(x) = αkαx−α+1 k = 133K, α = 1.1

Interval p(x) = αkαx−α+1 k = 1, α = 1.5

Fig. 9 Performance with co-existing short-lived connections.

3.3.1 Effect of Background Short-Lived TCP Connections

Figure 9 shows the simulation results when the proposed
mechanism tries to achieve a throughput of bw = 20 (Mbps)
for 10 long-lived (persistent) TCP connections and the back-
ground traffic generated by short-lived TCP Reno connec-
tions. For the purpose of comparison with the proposed
mechanism, this figure also shows the results obtained when
Sender 1 uses 10 normal TCP Reno connections without the
proposed mechanism. This figure shows that the proposed
mechanism can provide a higher probability of achieving the
required throughput than can TCP Reno. However, com-
pared with Figs. 5–8, the probability drops sharply when the
amount of background traffic increases. This is because the
traffic from the short-lived TCP connections is more aggres-
sive than that from the long-lived TCP connections due to
its bursty nature, and the proposed mechanism is not adept
at stealing bandwidth from short-lived connections.

3.3.2 Protecting a Mixture of Multiple Connections

We next consider the case in which the proposed mechanism
controls the throughput of the mixture of traffic of long-
lived and short-lived TCP connections. We set bw = 20
(Mbps) and Npm = 10, where five connections are long-
lived connections and the remaining five connections are
short-lived connections. Figure 10 shows the ratio of the
number of evaluation slots, in which the proposed mecha-
nism can obtain the required throughput, and the sum of the
average throughput of the short-lived connections. This fig-
ure also shows the sum of the average throughput of the five
short-lived connections when the long-lived connections of
the proposed mechanism do not exist in the network. This

Fig. 10 Case for a mixture of connections.

figure indicates that the proposed mechanism can obtain the
required throughput with a high probability for long-lived
connections. Furthermore, the average throughput of the
short-lived traffic is approximately equivalent to that with-
out the long-lived connections. This means that the pro-
posed mechanism can provide the throughput required by
long-lived connections but does not harm the performance
of short-lived connections.

4. Implementation and Evaluations on Actual Net-
works

In this section, we outline the implementation of the pro-
posed mechanism in a Linux 2.6.16.21 kernel system [21],
and then evaluate the performance of it in actual networks.

4.1 Implementation Overview

Figure 11 shows the architecture of the proposed mecha-
nism implemented in the Linux 2.6.16.21 kernel system.
When new data is generated at the application, the data is
passed to the TCP layer through the socket interface [22].
The data is passed to the IP layer after TCP protocol pro-
cessing by the tcp output() function, and the resulting IP
packets are injected into the network. Conversely, an ACK
packet that arrives at the IP layer of the sender host is passed
to the tcp input() function for TCP protocol processing.
The congestion window size of a TCP connection is up-
dated when an ACK packet is passed to the tcp input()
function. Therefore, the control program for the congestion
window size for the proposed mechanism should be imple-
mented in the tcp input() function. The Linux 2.6.16
kernel system unifies the interfaces for congestion control
mechanisms and enables us to implement the congestion
control algorithm as a module. In this paper, we implement
the proposed mechanism as a module in the Linux 2.6.16.21
kernel system.

The tcp input() function calls the cong avoid()
function and updates the congestion window size when an
ACK packet arrives. The module for the proposed mech-
anism determines the congestion window size according to
the algorithm described in Sect. 2, and splits the time into the
evaluation/control slots in the cong avoid() function. On
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Fig. 11 Outline of implementation architecture.

Fig. 12 Flow chart of the cong avoid() function.

the other hand, ImTCP, which we utilize to obtain the avail-
able bandwidth of the network path, calculates the available
bandwidth in the tcp input() function [7]. The proposed
mechanism learns from ImTCP the available bandwidth in
the cong avoid() function, and changes the degree of the
increase of the congestion window size based on the band-
width value.

Figure 12 shows the flow chart of the cong avoid()
function of the proposed mechanism.

First, the cong avoid() function compares the con-
gestion window size (cwnd) and the slow start threshold
(ssthresh). When cwnd is smaller than ssthresh, the con-
gestion window size is updated by the slow start algorithm
as TCP Reno. On the other hand, when cwnd is larger than
ssthresh, the congestion window size is determined based
on the algorithm of the proposed mechanism. In the con-
gestion avoidance phase, the proposed mechanism checks
the passed time from the beginning of the present evalu-
ation/control slots and judges the end of the slots. When
the passed time is longer than the length of the evalua-
tion/control slots, the proposed mechanism calculates the
average throughput in the slot and initializes the variables
for the next slots. Next, the increase degree of the conges-
tion window size is determined on consideration of kmax,

Fig. 13 Experimental system in the Internet environment.

Table 3 PC specifications of the Internet environment.

sender traffic generator receiver
CPU P4 3.40 GHz Xeon 3.60 GHz Xeon 2.66 GHz

Memory 1024 MB 2048 MB 1024 MB
Kernel Linux 2.6.16.21 Linux 2.6.17 Linux 2.4.21

kmin and kbw
j , which is calculated according to Eq. (2). Fi-

nally, cwnd is updated by Eq. (1).

4.2 Experiment Results

We confirm the performance of the proposed mechanism in
the commercial Internet environment. Figure 13 shows the
network environment, which consists of two local area net-
works in Osaka, Japan and Tokyo, Japan, which are con-
nected to the Internet.

The network environment consists of an endhost that
generates cross traffic (traffic generator), an endhost that
uses the proposed mechanism (sender), and an endhost that
receives packets from both endhosts (receiver) across the
Internet. The path of the commercial Internet network be-
tween Osaka and Tokyo passes through 100-Mbps optical
fiber services, and the local area networks in Osaka and To-
kyo are 100-Mbps Ethernet networks. Table 3 shows the
specifications of the endhosts of the experimental system.

Through preliminary investigations, we confirmed the
following characteristics regarding the network between
Osaka and Tokyo:

• Seventeen hops exist in the network path from Osaka
to Tokyo.

• The minimum value of RTTs is 17 msec.
• The upper limit of the bandwidth between Osaka and

Tokyo is 70 Mbps.

In this experiment, we set e = 32 for the length of the
evaluation slot; s, the length of the control slot, is initial-
ized to 16. The cross traffic is generated by traffic generator,
and the packets are sent to receiver. We set the size of the
TCP socket buffer on traffic generator to limit the maximum
throughput of each TCP Reno connection to approximately
3 Mbps, and the amount of the cross traffic is changed by
the number of TCP Reno connections. The size of the TCP
socket buffer on sender and receiver is large enough.

We first evaluate the behavior of the proposed mecha-
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Fig. 14 Changes in cwnd, control slot length and throughput in the
Internet experiment.

nism against the change in the amount of cross traffic. In this
experiment, we use one connection for the proposed mech-
anism, and set bw to 14 (Mbps), which is equal to 20% of
the bottleneck link capacity. To change the congestion level
of the network, we change the number of TCP Reno con-
nections between traffic generator and receiver to 0, 5, 25,
and 40 at every 20 seconds. Figure 14(a) shows the changes
in the congestion window size and the length of the con-
trol slot, and Fig. 14(b) shows the changes in the average
throughput in each evaluation slot.

From the results for 0–20 seconds in Fig. 14, when
there is only one connection for the proposed mechanism,
the upper limit of the throughput between Osaka and To-
kyo is 70 Mbps because the proposed mechanism can obtain
approximately 70 Mbps at most. In addition, the results af-
ter 20 seconds in Fig. 14 are almost equivalent to the results
on the simulation experiments. That is, the results for 20–
40 seconds show that the proposed mechanism can obtain
more than the required throughput by keeping the same be-
havior as the normal TCP connection, and the results for 40–
60 seconds show that it can achieve the required throughput
by having a faster increase in the congestion window size.
From the results after 60 seconds, we observe that the length
of the control slot is changed to a smaller value, and the
proposed mechanism can achieve the required throughput.
Thus, we have confirmed that the proposed mechanism can
effectively obtain the required throughput by changing the
degree of the increase of the congestion window size and
the length of the control slot according to the network con-
gestion level in the commercial Internet environment.

We next evaluate the average throughput in each evalu-
ation slot when we set bw to 7 and 14 Mbps and the number
of TCP Reno connections to 30 and 50. Figure 15 shows

Fig. 15 CDF of the throughput in the Internet experiment.

the cumulative distribution function (CDF) of the average
throughput in each evaluation slot.

From Fig. 15, we can observe that the ratio of achiev-
ing the required throughput is slightly smaller than that in
the simulation results in the previous section. One possi-
ble reason is that there are short-lived connections, includ-
ing web traffic, in the Internet environment. This traffic has
a highly bursty nature. Since the proposed mechanism is
based on TCP, it cannot adapt to the shorter-term changes of
the network condition than its RTT. Another reason is that
the measurement accuracy of the available bandwidth of the
network path operated by ImTCP becomes slightly degraded
in the actual Internet environment. However, most of the
evaluation slots which cannot achieve the required through-
put can achieve throughput close to the required throughput.
Thus, we conclude that the proposed mechanism works well
even in the actual Internet environment.

5. Conclusion

In this paper, the author focused on upper-layer applica-
tions requiring constant throughput, and proposed an TCP
congestion control mechanism for achieving the required
throughput with a high probability. The proposed mecha-
nism modifies the degree of increase of the congestion win-
dow size of a TCP connection in the congestion avoidance
phase by using the information on the available bandwidth
of the network path. Through simulation experiments, we
demonstrated that the proposed mechanism for one connec-
tion can achieve the required throughput with a high prob-
ability, even when there is almost no residual bandwidth on
the network path. We also reported that the extended mecha-
nism performs effectively to provide the required throughput
for multiple TCP connections. In addition, we implemented
the proposed mechanism on a Linux 2.6.16.21 kernel sys-
tem and confirmed from the implementation evaluation that
the proposed mechanism works well in actual networks.

We believe that the fairness comparison is desirable
when multiple flows in the network utilize the proposed
mechanism. Note that the performance of the proposed
mechanism is highly dependent on the estimation results
of the available bandwidth given by ImTCP. However, the
current version of ImTCP does not give accurate estimation
of available bandwidth especially when there exists a small
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number of ImTCP flows in the simple network such as in
Figure 3. From extensive simulation results, we confirm that
the proposed mechanism can not provide good performance
when multiple flows utilize the proposed mechanism.

The possible solutions for the above problem are as fol-
lows. The one is to modify the mechanisms of ImTCP to
behave well in multiple-flow situation. The another solu-
tion is to utilize other algorithms than ImTCP to estimate
the available bandwidth. Note that the proposed mechanism
in this paper is independent on the detailed mechanism of
bandwidth estimation. In addition, we expect that when the
accurate estimation results of the available bandwidth are
obtained, the proposed mechanism would provide the same
level of the fairness property among co-existing connections
as TCP Reno, since the proposed mechanism is quite a sim-
ple modification to TCP Reno (just changing the increasing
slope of the congestion window). So, we would tackle this
problem as one of the important future work.

In addition, we will evaluate the performance of the
proposed mechanism in other actual network environments.
In addition, we would like to confirm the applicability of
the proposed mechanism for actual upper-layer applications,
such as a real-time video streaming.
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