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あらまし 本稿では、無線センサネットワークにおいて、データ集約を行うセンサ端末の解析モデルを提案する。各

センサ端末はセンシング装置と無線送受信機を持ち、限られた容量のバッテリで駆動する。センサネットワークでは、

電力消費の削減が重要な課題である。そのため、各センサ端末は、他のノードから受信したセンシング情報をバッファ

リングし、上流のノードからの情報を全て受信した後に、その情報を集約して次のセンサ端末に転送する。本稿では、

マルコフ連鎖を用いて、データ集約方式の性能解析モデルを提案する。
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Abstract In this paper we propose an analytical model of a node in a wireless sensor network, which is performing

data aggregation and forwarding. Each sensor node is equipped with a sensing device and RF transceiver, as well

as a battery unit of only limited capacity. Due to its stringent energy consumption requirements, received sensing

data from other nodes is buffered at the considered node and transmitted to its next hop toward the sink only after

a batch of packets from all its upstream nodes has been received. We derive an analytical model for investigating

data aggregation strategies using a Markov chain analysis.
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1 Introduction
In the recent years, wireless sensor networks (WSN) [1]

consisting of sensor nodes have become readily available as

off-the-shelf products. Usually, a sensor node consists of the

actual sensing unit, an RF transceiver, and is powered by a

battery, see Fig. 1. Since the nodes are conceived as low-cost

devices, they are deployed in large numbers with hundreds

or thousands of nodes performing their respective task, such

as monitoring the environment (e.g. temperature, humidity,

wildlife), intrusion detection, or other applications within an

ambient information infrastructure.

Conservation of energy is due to the limited power source

a major issue as it directly translates into the lifetime of the

entire network before an operator can manually replace ex-

pired nodes with new ones. In order to reduce the consumed

energy, sensor nodes often employ a sleep scheduling mecha-

nism in which redundant nodes switch to a sleep mode which

requires significantly less energy [2]. The most power is re-

quired during RF transmissions [3] and, therefore, also data

aggregation policies have been proposed, in which the limited

computation power of the sensor nodes is utilized to prepro-

cess all data packets a node receives from its neighbors prior

to forwarding. Depending on the considered application, the

information received from the node’s neighbors nodes is usu-
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Fig. 1 Wireless MicaZ sensor mote

ally correlated with that of its own data and compression

techniques can be used to reduce the amount of data trans-

mitted over the wireless channel. For instance, if a cluster

of nodes is monitoring the temperature within a room, the

measurements will all yield very similar values lying around

a mean, which may be sufficient for forwarding and which is

updated on each hop along the packet’s path to the sink.

In this paper we provide a queuing theoretic framework

for analyzing the data aggregation in a sensor network. We

only consider a single arbitrary node in this work, which re-

ceives data from its downstream neighboring nodes, performs

data aggregation when it receives a sufficient number of data

packets, and then forwards this data to its upstream neigh-

bors toward the sink node. The motivation of using data

aggregation is to reduce the energy consumption used for

wireless transmission by fusing data packets into one single

packet. The underlying assumption is that processing the

data packets requires much less energy than transmission.

Especially, in scenarios with high density of nodes, due to

the employment of CSMA/CA in IEEE 802.15.4 the number

of collisions on MAC layer will drastically improve, so reduc-

ing the number of transmissions may have a highly beneficial

impact [4].

The remainder of this paper is organized as follows. We

first discuss our envisaged scenario in greater in detail in

Section 2 and also briefly summarize some existing work on

data aggregation in WSN. Following that, we introduce our

analytical model in Section 3, which is supplemented by nu-

merical evaluations. Finally, Section 4 concludes this paper

with an outlook on future work.

2 Data Gathering and Aggregation in
Sensor Networks

In this paper we do not restrict ourselves to any spe-

cific application of WSN, but simply assume that a generic

data gathering scheme is applied. This section summarizes

the scenario we are considering and briefly discusses related

work.

downstream  

nodes!

upstream  

nodes!

S! 1! M!
!!

starting threshold!

a!

blocking!

Fig. 2 Considered sensor network scenario

2. 1 Scenario Description

Each node reads at certain time intervals the measurement

data from its sensory unit and keeps this data in its buffer

together with other measurement samples it receives from

neighboring nodes. Once the considered node has collected

enough data or a timer expires, it broadcasts an aggregated

data packet to its upstream neighbors toward the sink node,

see Fig. 2. In this paper, we assume that the node is aware

of the topology of its surrounding nodes by prior exchange

of messages and for the sake of simplicity omit the timer in

the following analysis.

In this way, data is propagated in a hop-by-hop manner

from the boundary of the network toward the sink node.

The application of data aggregation is beneficial on the en-

ergy consumption as previous studies have indicated that the

energy required for fusing is at about 5 nJ/bit, whereas that

for transmission and reception lies about 10 times higher [5].

Finally, it should also be remarked that the buffer size at

each sensor node is rather small due to hardware limitations.

In the case that a batch arrives that can not be fully stored

in the buffer, the buffer is filled until its capacity is reached

and the remaining packets are discarded. All packets are also

discarded if the buffer is found full upon arrival.

2. 2 Related Work

Data aggregation in WSN has been studied extensively in

the past. At this point, we would like to discuss some of

the papers that are relevant to our investigation. In [6], the

authors consider a data-centric sensor network in contrast

to traditional end-to-end routing schemes. A heuristic ap-

proach is used to construct a data aggregation tree and the

impact of the node placement is studied in terms of energy

costs and delay. In [7], security is taken into account in sensor

networks and SDAP (Secure Hop-by-hop Data Aggregation

Protocol) is proposed, which partitions the aggregation tree

into groups for reducing the importance of high-level nodes

in the aggregation tree.

The paper by Fan et al. [8] provides a nice overview of
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various data aggregation strategies, ranging from tree-based

or cluster-based aggregation and they deviate from other ap-

proaches by considering a structure-free method, which com-

bines a spatial convergence of packets meeting at a certain

node utilizing Data-Aware Anycast with temporal conver-

gence through Randomized Waiting. An entropy-based view-

point of data aggregation is given in [9], which focuses on the

transmission of redundant information and the joint entropy

of the correlated information sent by different sources is es-

timated.

Most of the papers dealing with data aggregation consider

a graph theoretic view, whereas we consider a queuing theo-

retic approach for the problem of data aggregation in WSN.

The following section will provide a description of our pro-

posed model.

3 Analytical Modeling of Data Aggrega-
tion

Let us now return to the scenario as shown in Fig. 2. Our

considered node receives packets following a Poisson process

with rate λ from all downstream neighboring nodes. Since

each downstream neighbors may already have aggregated

packets to send, the arrival process at our observed node

consists of a superposition of Poisson streams with batch

arrivals of packets that may be generally distributed. We

assume that data aggregation can be modeled as a batch or

bulk service process, where two thresholds trigger the ser-

vice unit to become active for aggregation. The service time

may be considered as general independent with threshold a

at which the service starts and parameter b, which is the

maximum size of the batch that can be simultaneously pro-

cessed. Due to memory limitation requirements the queue

length S is finite.

Models such as this can be found in the literature, e.g.

in [10]～[12], and a nice overview of models with different

arrival and service processes for bulk service queues with fi-

nite buffers is presented in [13]. In this paper, we extend the

model by Gold and Tran-Gia [10] by taking also batch ar-
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Fig. 3 Evolution of state space over time

rivals into account for the case of Poisson arrivals, which can

be expressed in Kendall’s notation as MG/G[a,b]/1 − S.

An example of the state space dynamics of the

MG/G[a,b]/1 − S system is shown in Fig. 3. At time step

t = 4, the buffer occupancy exceeds the service threshold of

a = 4 and service is started, which finishes by time t = 5.

Batch arrivals occur for example at time t = 4 and t = 10

and since the completion of the service at t = 11 still results

in a buffer occupancy of at least the threshold a, another ser-

vice phase is instantly entered after the processing delay. In

this specific example, we consider a deterministic processing

time of 1 s.

In Section 3. 1, we derive the corresponding steady state

probabilities following the analysis in [10]. A simple exam-

ple of how to apply the performed approach follows in Sec-

tion 3. 2 for the MGEOM1/D[a,S]/1− S queueing sytem. Fi-

nally, we investigate the paramater sensitivity of the gen-

eral system with respect to key performance characteristics

like sojourn time, blocking probability or probability of com-

pletely processed batches in Section 3. 3.

3. 1 Analysis of M G/G[a,b ]/1 − S

Let X(t) denote the number of packets in the queue at time

t. At the end of each service phase, a Markov chain can be

embedded. The matrix Q of transition probabilities of this

Markov chain follows that in [10] and is given in Eqn. (1).
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The entries di correspond to the probabilities of having i

arrivals during a service phase.

di =

Z ∞

t=0

fH(t)
i
X

j=1

aj(t)
X

{(i1,··· ,ij):
Pj

k=1 ik=i∧ik>0}

Y

ik

P (N = ik) dt

(2)

Here, the term aj(t) = (λt)j

j!
e−λt is the probability of hav-

ing j batch arrivals at time t, fH(t) is the probability density

function of the service time for a batch, and N is the random

variable for the number of total packet arrivals.

To obtain the steady state probabilities of the Markov

chain can then be simply reduced to finding the eigenvalues

of the matrix Q with respect to the normalizing condition in

Eqn. (3).
S
X

i=0

x(i) = 1 (3)

Since an embedded Markov chain has been considered so

far, the state probabilities are only valid at the regeneration

instants when a service ends. However, using the Markov

chain state probabilities, the state probabilities at an arbi-

trarily chosen observation epoch can also be derived. Let

X∗ denote the random variable for the number of packets

in the queue at an arbitrary point in time. Then we use

Eqns. (7)–(14) from [10] to obtain the joint probabilities for

the number of packets in the queue for a specific service type

at an arbitrary instant in time.

As we consider batch arrivals, we need to refine Eqn. (10)

in [10] and derive the arrival probabilities during the forward

recurrence time. Furthermore, we have for type 4i the fol-

lowing mean EType in Table 1 of [10]: a−i
λ E[Nb]

; the interval

length may follow any distribution, but only the mean value

are of interest for our analysis.

3. 2 Example: M GEOM 1/D[a,S ]/1 − S

As an example, we assume now that the service time in

the considered systems is deterministic and equals to t. In

the system, the service period is initialized when at least a

packets are in the waiting queue. The service unit allows to

process all packets in the queue, i.e., up to S packets can be

processed simultaneously with S being the capacity of the

entire waiting queue.

Let Na denote the number of batch arrivals during a ser-

vice time period t which follows a Poisson process with rate

λ. Then, the probability for having i arrivals follows a Pois-

son distribution as well, i.e.,

P (Na = j) =
(λt)j

j!
e−λt . (4)

Let N denote the total number of packets arriving during

a service time period t. Further, let Nb denote the size of a

single batch and it follows a geometric distribution with pa-

rameter q shifted by one. Hence, Nb can be described as the
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Fig. 4 Total number N of packet arrivals during a service period

for various q in the MGEOM1/D[a,S]/1 − S system

sum of a geometric distribution and a deterministic distribu-

tion with mean 1, Nb ∼ GEOM1(q) = GEOM(q) + D(1).

Then, for y batch arrivals during t, the total number of pack-

ets is

N =
X

y

Nb

=
X

y

GEOM(q) + D(1)

= NEGBIN(y, q) + D(y) (5)

which is the sum of a negative binomial distribution with

parameters y and q, and a deterministic distribution with

mean y. The probability of i packets arriving within y batch

arrivals follows as

P (N = i |Na = y) =
i
X

j=0

x1(i − j) x2(j) = x1(i − y)

=

 

i − 1

i − y

!

(1 − q)yqi−y (6)

with the probability distribution function x1(i) for the

NEGBIN(y, q) and x2(i) for D(y), respectively. Then, we

obtain the probability distribution function of the total num-

ber of packets N within a service period as follows.

P (N = 0) = P (Na = 0) = e−λt (7)

P (N = i) =

i
X

j=1

P (Na = j) P (N = i |Na = j)

=

i
X

j=1

(λt)j

j!
e−λt

 

i − 1

i − j

!

(1 − q)jqi−j (8)

Figure 4 shows the cumulative distribution function of the

total number of packets for λ = 1 1/s and t = 1 s. These nu-

merical values di = P(N = i) can now be used to generate

the matrix Q and to derive the steady state probabilites as

eigenvalues of Q.

In order to compute the state probabilities not only at the

embedding points, but at arbitrary time instants, we need to

compute the d∗
i values, corresponding to the probabilities of
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Fig. 5 Comparison of steady state probabilities from simulation

and analysis

arrival of packets during the forward recurrence time. This

is given in Eqn. (9).

d∗
i =

i
X

j=1

 

i − 1

i − j

!

(1 − q)j qi−j

Z E[t]

t=0

1

E[t]

(λt)j

j!
e−λt dt

=

"

i
X

j=1

 

i − 1

i − j

!

(1 − q)j qi−j −λj e−λt

E[t]

j
X

n=0

tn

n! λj−n+1

#E[t]

t=0

(9)

3. 3 Parameter Sensitivity Study

In the following, we will discuss some of the features that

can be seen in the system with respect to the sensitivity

toward the system parameters. We consider the arrival of

packets in batches with a batch arrival rate of λ = 1 1/s and

where the batch size is determined by the geometric distribu-

tion with parameter q. As described before, we have discrete

and deterministic service time for packets with a processing

time of H = 1 s. The activation threshold for service cor-

responds to the number of downstream neighboring nodes

from which the sensor node receives its data and which is

expressed by a. We use as thresholds for the service process

the lower value of a = 4, which activates the service and the

upper value of b = S = 10, i.e., all entries in the queue are

processed.

To evaluate the performance in more complex scenarios

and to validate our analysis, we additionally implemented a

discrete event simulation of the queueing system. In the ex-

periments given below, we used a very large number of 105

batches for obtaining the statistical results from the simu-

lation. Figure 5 shows that the state probabilities obtained

from simulation and analysis achieve a good match at the

embedding points directly following a departure from the

system, as well as at arbitrary time instants.

Figure 6 shows the CDF of the sojourn time of batches for

the MGEOM1/D[a,S]/1−S system. Since we have a discrete

service time of at least 1 s, this is also the minimum sojourn

time in the system. As the batch size decreases (indicated by

growing values of q), the sojourn time of entire batches also
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Fig. 6 Sojourn time of batches in the MGEOM1/D[a,S]/1 − S

system
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Fig. 8 Percentage of the not completed batches in the

MGEOM1/D[a,S]/1 − S system

increases as batches have to wait longer until the threshold

a is reached.

In Fig. 7, the CDF of the sojourn time of packets is shown.

It should be noted that these values given here are not nor-

malized, so the CDF may not reach 1, if packets are lost due

to blocking. Together with Fig. 8, we are able to see the

blocking probability of batches and packets as function of

parameter q. For large batch sizes (small q), there is a sig-

nificantly higher probability of uncompleted units. However,

this decreases exponentially with q.

4 Conclusion and Outlook
In this paper we proposed an analytical model for evalu-

ating data aggregation of a wireless sensor node. The model
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is based on a batch arrival/batch service queuing model and

we used the analysis in [10] as the basis, which we extended

for our purposes. We derived probability distributions for

the number of packets during a service period and studied

the influence of the parameters on the system’s performance

in the case of a discrete time model with geometric packet

arrivals. Furthermore, we investigated the sojourn time of

batches and packets as well as the percentage of uncompleted

batches and packets in dependence of the batch size of pack-

ets.

In the future, we would like to extend the study to inves-

tigate the data dissemination delay and energy consumption

in a multi-hop sensor network, where each node performs

data aggregation. This can be combined with using spatial

stochastic processes for characterizing the random node lay-

out similarly to [14].
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